ebook img

Submarine Earthquake History of the Çınarcık Segment of the North Anatolian Fault in the Marmara ... PDF

25 Pages·2017·2.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Submarine Earthquake History of the Çınarcık Segment of the North Anatolian Fault in the Marmara ...

Submarine Earthquake History of the Çınarcık Segment of the North Anatolian Fault in the Marmara Sea, Turkey Laureen Drab, Aurélia Hubert-Ferrari, Sabine Schmidt, Philippe Martinez, Julie Carlut, Meriam El Ouahabi To cite this version: Laureen Drab, Aurélia Hubert-Ferrari, Sabine Schmidt, Philippe Martinez, Julie Carlut, et al.. Sub- marine Earthquake History of the Çınarcık Segment of the North Anatolian Fault in the Mar- mara Sea, Turkey. Bulletin of the Seismological Society of America, 2015, 105 (2A), pp.622-645. ￿10.1785/0120130083￿. ￿insu-01571132￿ HAL Id: insu-01571132 https://hal-insu.archives-ouvertes.fr/insu-01571132 Submitted on 1 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BulletinoftheSeismologicalSocietyofAmerica,Vol.105,No.2A,pp.622–645,April2015,doi:10.1785/0120130083 ı ı Submarine Earthquake History of the Ç narc k Segment of the North Anatolian Fault in the Marmara Sea, Turkey by Laureen Drab,* Aurélia Hubert-Ferrari, Sabine Schmidt, Philippe Martinez, Julie Carlut, and Meriam El Ouahabi Abstract TheNorthAnatolianfault(NAF)intheMarmaraSeaisasignificanthaz- ardforthecityofIstanbul.Theuseofpaleoseismologicaldatatoprovideanaccurate seismic risk assessment for the area is constrained by the fact that the NAF system is submarine; thus a history of paleoearthquakes can be inferred only by using marine sediment cores. Here, a record of turbidites was obtained in two cores and used to reconstruct the earthquake history along the Çınarcık segment, a main branch of the NAF.Klg04wascollectedfromabermnorthofthefault,andKlg03waspositionedin theÇınarcıkbasin,southofthefault.Thecoreswerecorrelatedusinglong-termgeo- chemical variations in the sediment, and turbidites deposited simultaneously at both sites were then identified. Radionuclide measurements suggest the most recent turbi- ditewastriggeredbythe1894C.E.M 7.3earthquake.Weconcludethattheturbidites w identifiedatbothsitesare earthquakegenerated, basedontheirparticular sedimento- logical and geochemical signatures; the correlation of turbidites at berm and basin sites; and the match of the most recent turbidite with a nineteenth century historical earthquake. To date older turbidites, we used carbon-14 and paleomagnetic data to buildanOxCalmodelwithalocalreservoircorrectionof400(cid:1)50 yr.TheÇınarcık segmentisfoundtohaverupturedin1509C.E.,sometimeinthefourteenthcentury,in 989 C.E., and in 740 C.E., with a mean recurrence interval in the range of 256–321 years.Finally,weusedtheearthquakerecordobtainedtoreviewtherupturehistoryof the adjacent segments over the past 1500 years. Introduction ConstrainingtherecurrencerateofM >7earthquakes generallybeenidentifiedbasedontheirsynchronicityatdif- w thatthreatenthemegacityofIstanbulisproblematicbecause ferent sites and their distinctive sedimentological or geo- thelateHolocenefaultsaresubmarine.Istanbul,with12mil- chemical signatures (Gorsline et al., 2000; Nakajima and lion inhabitants, borders the Marmara Sea (Fig. 1a), a sub- Kanai, 2000; Shiki et al., 2000; Beck et al., 2007; Masson marine pull-apart basin related to the North Anatolian fault et al., 2011; Drab et al., 2012). In the case of the Marmara (NAF),amajorstrike-slipfaultthatrupturesinlargemagni- Sea,severalstudies(McHughetal.,2006;SarıandÇağatay, tude earthquakes. Since the 1999 M 7.4 Izmit earthquake, 2006; Beck et al., 2007; Drab et al., 2012) revealed that its w stresseshavefurtherincreasedintheeasternpartoftheMar- sediments contain a record of turbidites triggered by large mara Sea (Hubert-Ferrari et al., 2000; Parsons et al., 2000; earthquakes. These turbidites have been used to constrain Pondard et al., 2007). Understanding past ruptures of the thehistoryofearthquakesrupturingacrossagivendepocen- NAFintheMarmaraSeaisthusakeyissueinassessingseis- ter (McHugh et al., 2006; Drab et al., 2012). The present mic hazards for this area. studyshowsthatmarinesedimentcorescanbeusedtocon- Subaqueous paleoseismology can reconstruct the his- strainpaleorupturesoftheNAFsegmentlocatedjustsouthof tory of large earthquakes on submarine faults (Goldfinger, Istanbul and to evaluate the recurrence rate of large magni- 2011),asshakingassociatedwithlargeoffshoreearthquakes tude earthquakes in this area. triggerssubmarinelandslidesandturbiditycurrents.There- Here, we apply subaqueous paleoseismology to two sultingdepositscanbesampledbysedimentcoring,charac- gravity cores located in the Çınarcık basin of the Marmara terized, and dated. Earthquake-generated turbidites have Sea (Fig. 1b). The Çınarcık basin is located ∼20 km to the southofIstanbulandisnorthboundedbytheÇınarcıkfault, *Now at Lamont Doherty Earth Observatory, Columbia University, 61 themainsegmentoftheNAF.Inthetwocores,weidentified Route9WPalisades,NewYork10964;[email protected]. andcharacterizedturbiditedepositsusingtheirgrainsizeand 622 Submarine Earthquake History of the Çınarcık Segment of the NAF in the Marmara Sea, Turkey 623 Figure1. (a)GlobalgeodynamiccontextoftheAnatolianplatewithGlobalPositioningSystemvelocitiesfromReilingeretal.(2006). ThelocationoftheMarmaraSea(shownin[b])isindicatedwithabox.(b)GeneraltectonicmapoftheMarmaraSea,crossedbytheNorth Anatolianfault(NAF).Basins,highs,andmainsegmentsofthefaultareindicatedfromthewesttotheeastwithdifferentlines,andtheir namesaregiveninthegrayboxtotheright.Thestudyarea(shownin[c])isdepictedwithabox.HistoricalearthquakeslocatedbyAm- braseys(2002)arerepresentedwithrupturedatesanddots.(c)ThemapofÇınarcıkbasin.Locationofthetwostudiedcoresisrepresented withrespecttotheÇınarcıkfaultsegment.Arrowsshowsedimentpathsforturbiditedeposits(Altınoketal.,2011).Thelinecrossingthetwo coresrepresentsthetopographicprofilepresentedin(d).Whitecrossesrepresentthelocationofotherpublishedcoresdiscussedinthestudy. (d)TopographicprofileofthenorthernpartoftheÇınarcıkbasin.TheprofilestartsclosetothecenteroftheÇınarcıkbasin.Thecolorversion of this figure is available only in the electronic edition. geochemical characteristics. We also used east Mediterra- geringmechanismsoftheturbidites.Radiogeniclead(210Pb) nean-scale changes in sedimentation to correlate the two andcesium(137Cs)dataallowedustodateandcorrelatedthe records toa reference corelocated ina nonturbiditedeposi- turbiditesatthetopofthesedimentcolumnswithrecenthis- tional environment. We then investigated the possible trig- torical earthquakes. Radiocarbon dating (14C) combined 624 L. Drab, A. Hubert-Ferrari, S. Schmidt, P. Martinez, J. Carlut, and M. El Ouahabi with paleomagnetic data enabled us to construct an age seismicity during the end of the thirteenth and fourteenth model for the core Klg04 located in a berm in the Çınarcık centuriesintheMarmaraarea(AmbraseysandFinkel,1991). faultscarp(Fig.1c,d)andtodateturbiditesoverthelast1500 The 989 C.E. earthquake principally affected the Istanbul years.Finally,theNAFrupturebehaviorintheMarmaraSea region,withatsunamireachingthecity(AmbraseysandFin- is discussed. kel, 1991; Altınok et al., 2011). Historical data predomi- nantly locate the event in the Çınarcık basin (Ambraseys, 2002; Guidoboni and Comastri, 2005). Finally, the 740 Setting M 7.1C.E.earthquakewasassociatedwithalargetsunami w (Altınok et al., 2011). It has been generally located in the Tectonic and Paleoseismological Background Çınarcıkbasin(Ambraseys,2002;GuidoboniandComastri, The NAF is a major dextral strike-slip fault extending 2005), but some authors suggested an epicenter location in over 1200 km in northern Turkey and in the Aegean Sea the Izmit Gulf or Central basin (McHugh et al., 2006; Ber- (Barka and Kadinsky-Cade, 1988; Sengör et al., 2005) trandetal.,2011;Çağatayetal.,2012).Historicalinforma- (Fig.1a).IntheMarmaraSea,theNAFaccommodatesadex- tionforolderagesislimited,butAmbraseys(2002)located tral horizontal motion of 18:5 mm=yr (Kurt et al., 2013) the407C.E.and437C.E.earthquakesintheÇınarcıkbasin. spread over a width of 130 km (Barka and Kadinsky-Cade, Based only onhistoricalreports, itis difficultto unam- 1988). Most of the deformation is localized on the northern biguouslyassociateanoffshoreearthquakewithagivensub- branch of the NAF (Armijo et al., 2002), which crosses the marine fault (Table 1). Even studies combining historical MarmaraSea.TheMarmaraSeais170kmlong,hasamaxi- datawithattenuationmodels(Parsons,2004)ordistribution mumwaterdepthof1250m,andiscomposedofthreealigned ofslipdeficitandCoulombstressinteraction(Pondardetal., pull-apart basins separated by two topographic ridges (Le 2007)proposedifferentrupturescenariosacrosstheMarmara Pichon et al., 2001; Armijo et al., 2002; Sarı and Çağatay, Sea. Subaqueous paleoseismological studies provide addi- 2006; Fig. 1b). tional constraints. Indeed, in the Marmara Sea, earthquake- ThestudyfocusesontheÇınarcıkbasin,theeasternmost triggeredturbiditeshavebeendocumentedbyMcHughetal. transform basin of the Marmara Sea (Fig. 1c). The (2006),SarıandÇağatay(2006),Becketal.(2007),andDrab 50 kmlong×18 kmwide basin is bounded to the north etal.(2012).InadditionMcHughetal.(2006)andDrabetal. by the main segment of the NAF and to the south by a sec- (2012)foundthatlargeearthquakesrupturingtheboundingor ondary normal fault system (Smith et al., 1995; Le Pichon crossingfaultofagivenbasinstronglyaffectitssedimentation et al., 2001; Armijo et al., 2002). The main northern seg- buthaveminorornoeffectsonthenearbysedimentarybasins. ment, here called the Çınarcık segment, runs at the base of Thus,aseriesofindividualseismoturbiditescanbelinkedtoa a steep escarpment, 1000 m high (from 200 to 1200 meters specific earthquake rupture associated with large historical belowsealevel[m.b.s.l.])and40kmlong.Thefaultischar- earthquakes. acterized by composite strike-slip and normal motions (Armijo et al., 2002). Seismoturbidite Characteristics Inthelast300years,theÇınarcıkbasinhasexperienced severalM >6earthquakes(Ambraseys,2002;Fig.1a).The Ingeneral,turbiditesareofteninterpretedtohaveaseis- w most recent 1963 C.E. M 6.3 earthquake occurred on the mic trigger because of their broad contemporaneous occur- w southernfaultborderingtheÇınarcıkbasin(BulutandAktar, rence in a given setting (Goldfinger, 2011) and of their 2007; Fig. 1a). Presently, this is the only earthquake unam- particularsedimentologicalimprint.IntheMarmaraSea,the biguously attributed to a fault in the Çınarcık basin. The geographical extent of turbidite deposits has been deduced 1894C.E.M 7.3earthquakehasbeenlocatedintheÇınar- by correlating different sediment cores or by using high- w cıkbasin(Parsons,2004;Hebertetal.,2005;Pondardetal., resolutionseismicsubbottomprofilesforimagingfinetrans- 2007)orintheIzmitGulf(Hubert-Ferrarietal.,2000;Am- parent layers related to turbidite deposits (McHugh et al., braseys,2002;McHughetal.,2006).Theassociatedtsunami 2006; Beck et al., 2007). strongly affected the Prince Islands, south of Istanbul (Am- Seismoturbidites are generally distinctive from non- braseys, 2002; Altınok et al., 2011). During the eighteenth earthquake-triggeredslopefailureturbiditesbecauseoftheir century, there was a westward-propagating sequence of specific sedimentological and mineralogical imprints. They earthquakesintheMarmaraSea(1719C.E.,1754C.E.,May arecharacterizedprimarilybycomplexlaminae(Shikietal., andAugust1766C.E.),butthecorrespondingfaultruptures 2000;McHughetal.,2011);sharpbasallayers(Shikietal., are poorly constrained. In 1509 C.E., a large earthquake 2000);multiplecoarsebasesenrichedwithshellsanddetrital destroyed Istanbul; its epicenter has been located near the material, indicating multiple sources (Nakajima and Kanai, city (Ambraseys, 2001, 2009), but it may have ruptured 2000; Bertrand et al., 2008; Goldfingeret al., 2008); varia- eithertheÇınarcıkortheCentralfaults(GuidoboniandCo- tion in the composition of detrital material between each mastri, 2005). Destruction associated with the 1343 C.E. event (Nakajima and Kanai, 2000); and abrupt changes in earthquake was mostly on the western part of the Marmara sedimentary structures (Nakajima and Kanai, 2000; Shiki Sea,butthisearthquakewasassociatedwithalargeburstof et al., 2000). Submarine Earthquake History of the Çınarcık Segment of the NAF in the Marmara Sea, Turkey 625 k k 740 SouthııÇnarcIzmitBay IzmitBay ııÇnarckbasin Central/Izmit/ııÇnarc 860 ınarckbasin ıÇ y y 989 ınarckbasinmitBa mitBa ınarckbasin ıÇ Iz Iz ıÇ y 296 mitBa 1 z I 1344 entralbasin C eLiterature 1343 Ganosfault IzmitBay CentralbasinCentralbasin Centralbasin h t m Seafro 1509 ıckbasin Bay Bay albasin ıckfault ıckbasin ıckfault armara ıÇnar Izmit Izmit Centr ıÇnar ıÇnar ıÇnar M 1e blenth 1719 Bay Bay Bay Bay Bay Tasi mit mit mit mit mit ake Iz Iz Iz Iz Iz u hq or Eart 4 asin asin outh asin Historical 175 ııÇnarckb ııÇnarckb ııÇnarcksnorth ııÇnarckb Locationof May1766 ııÇnarckbasin Centralbasin FaultextendtoııÇnarck–CentralğTekirdaIzmitfault/ııÇnarck –CentralııÇnarckfault Central August1766 Ganosfault ğTekirda ııWestofÇnarck Ganosfault ğ–TekirdaGanosfault ğ–TekirdaGanosfault 1894 IzmitBay ııÇnarck EastofIzmitbasinIzmitBay ııÇnarck(southornorth)/IzmitoverlapııSouthÇnarck 2) 2) 5) 0 1 0 HistoricalEarthquake Ambraseys(20 etal.Bertrand(2011)ğetal.Çaatay(2012)etal.Drab(20GuidoboniandComastri(20etal.Herbert(2005)Hubert-Ferrarietal.(2000)etal.McHugh(2006) Parsons(2004) etal.Pondard(2007) 626 L. Drab, A. Hubert-Ferrari, S. Schmidt, P. Martinez, J. Carlut, and M. El Ouahabi Seismoturbidites in the Marmara Sea have been distin- Thesedimentaryimprintsofthedifferentenvironmental guishedfromother turbidites basedontheirparticulargrain changesaresummarizedinFigure2,usingdatafromthecore size and geochemical characteristics (Sarı and Çağatay, Klg06 published in Drab et al. (2012) and the core MD01- 2006; Beck et al.,2007; Çağatayet al.,2012). The seismo- 2430 published in Vidal et al. (2010) and Valsecchi et al. turbiditesdepositedintheCentralandTekirdağbasinshave (2012).ThetwocoresarelocatedontheMarmaraSeastruc- the following specific characteristics (Drab et al., 2012): tural Western High, are devoid of anysignificant turbidites, (1) they display nongradational changes in particles size and contain a continuous record of environmental changes. andcoarsebasalpulse;(2)intermediatesilt-richlayersshow Drabetal.(2012)haveshownthattheseglobalenvironmen- numerous thin parallel laminae and flaser-bed structures tal changes are synchronous in the different basins of the linked to oscillating currents (Beck et al., 2007; Campos MarmaraSeaandcanbetrackedthroughx-rayfluorescence etal.,2013);(3)sharpbasalsandlayersarecharacterizedby (XRF)measurements.Asaconsequence,commontimehori- a decrease in bromine (Br) content, a relative increase in zons between sediment cores can be defined and used to titanium(Ti),apeakinzirconium(Zr),andmagneticsuscep- match turbidites in a given depocenter. tibility (Çağatay et al., 2012; Campos et al., 2013); and (4) the turbidite is capped by a clayey silt layer. Turbidites Coring Site and Methods inducedbyearthquakesintheIzmitGulfhavethesamechar- acteristics and show a large peak in manganese below the Two Kullenberg sediment piston cores, Klg03 and baseoftheturbiditerelatedtoatransientreductionfrontfol- Klg04,werecollectedintheÇınarcıkbasinduringtheMar- lowing the turbidite deposit (Çağatay et al., 2012). Finally, marascarpscruisein2002(Armijoetal.,2005),shortlyafter these seismoturbidites are synchronous with distal fine- the 1999 M 7.4 Izmit earthquake (Fig. 1a, Table 2). They w graineddepositsintheadjacentWesternHighthatarerelated are3kmapartandliealongtheÇınarcikfaultsegmentbor- to a thick suspension cloud above the turbidite flow deringthenorthernedgeofthebasin.CoreKlg03islocated (McHugh et al., 2011; Drab et al., 2012). in the deepest part of the main Holocene depocenter In the Çınarcık basin, the record of turbidites has not (1240m.b.s.l.;Cartonetal.,2007),1.6kmsouthofthemain beenstudiedindetailyet,butSarıandÇağatay(2006)iden- faultstrand.Thesiteisonthemainpathofturbiditescoming tified reworked deposits in sediment cores and inferred a from the northern shelf, but it can also be reached by turbi- seismic trigger due to (1) the increase in different detrital ditesgeneratedontheCentralHighoronthesouthernslope materialatthebaseoftheirevents,(2)theoccurrenceofshal- (Fig. 1c). Core Klg04 is located in a topographic berm be- lowbenthic foraminifers, and(3)theexclusion ofanyother tweentwosplaysoftheÇınarcıksegmentnearthebaseofthe possible triggering mechanism. 1000 m high northern slope in front of the Prince Islands (Fig. 1c). It lies 300 m north of the main fault segment and is 35 m higher than the Klg03 site (Fig. 1d). Because Paleo-Environmental Changes Recorded in the the Klg04 site is placed significantly above the basin floor, Marmara Sea it can be reached only by turbidites originating from the Evidence for the simultaneous deposition of sediment northern shelf. can be established in the Maramara Sea cores because Hol- In this article, we also used data from core Klg06, ocenesedimentationdisplaysdistinctandimportantchanges. locatedontheWesternHigh,100kmawayfromtheÇınarcık Forthelast4ka,mostofthesechangeshavebeenrelatedto basin (Fig. 1b). The core spans the last 7 ky and does not anthropogenic disturbances (Mudie et al., 2002; Kazanci contain a record of coarse-grained turbidites like the ones et al., 2004; Valsecchi et al., 2012). deposited in the basins of the Marmara Sea (Drab et al., Pollen studies (Mudie et al., 2002; Valsecchi et al., 2012). Core Klg06 is thus used to highlight global environ- 2012) documented two phases of forest clearance. The first mentalchangesthatoccurredintheMarmaraSeaandtopro- phase occurred from 5 to 4 ky B.P. The second one started vide common time horizons in-between the Klg03, Klg04, around 2.5 ka and marked the first appearance of sustained and Klg06 cores. agriculture along the Marmara Sea coasts (Mudie et al., A number of sedimentological investigations were per- 2002,2007;Valsecchietal.,2012).Forestclearancewasas- formed to describe and characterize turbidites in the cores. sociated with significant land degradation in the Marmara X-rayradiographsobtainedonthescopixsystematEnviron- Sea catchments (Kazanci et al., 2004; Valsecchi et al., nements et Paloenvironnements Ocaniques et Continentaux 2012).Thesechangesinvegetationandlandusetriggeredan (EPOC) research group in the University of Bordeaux were increase in sedimentary flux to the Marmara Sea (Walling, usedtoidentifyturbidites,similartomethodsusedbyBeck 2006)andresultedinaprogressiveincreaseinsedimentation etal.(2007)andDrabetal.(2012).Grainsizemeasurements rateontheMarmarasouthernshelf(Kazancietal.,2004).In were performed on bulk sediment every centimeter on a addition, about 2 ka ago, a global increase in grain size MalvernMastersizer2000tosupporttheidentificationoftur- synchronous with a step increase in lead and titanium was bidites (Folk, 1968; Sperazza et al., 2004; Bertrand et al., describedintheMarmaraSeadeepbasins(Fig.2;Drabetal., 2008).Magneticsusceptibilitymeasurementswereobtained 2012). onsplitcoresusingaBartingtonMS2Eevery5mmatroom Submarine Earthquake History of the Çınarcık Segment of the NAF in the Marmara Sea, Turkey 627 Figure 2. SummaryofmajorHolocenesedimentationchangesobservedincoreKlg06withx-rayfluorescence(XRF),grainsize,and totalorganiccarboncontent.Agesobtainedfromdifferentstudies(Vidaletal.,2010;Drabetal.,2012;Valsecchietal.,2012;Drabetal., 2015) are indicated on the left side of the log. The color version of this figure is available only in the electronic edition. temperatureandhighlightbedsenrichedinmagnetite,which Thechronologyofthesedimentcoresisbasedon210Pb, accompaniescoarsedetritalmaterialthatcancharacterizethe 137Cs, and 14C analyses and paleomagnetic measurements. base of turbidites (Evans and Heller, 2003). XRF data were The 210Pb and 137Cs radionuclides were measured using a acquiredusinganAvaatechXRFcorescannerandwereused semiplanar γ detector (University of Bordeaux 1) at EPOC to describe geochemical and sedimentological processes (Schmidtetal.,2009).Paleomagneticmeasurements(secular associated with earthquake-related deposits by comparing variationofthegeomagneticinclinationanddeclination)pro- elements considered as detrital with more local ones, like vided independent time constraints. The natural remanent calcium. Measurements were taken every 5 mm with radia- magnetization(NRM)wasmeasuredon1.5mlongU-channel tionenergiesof10and30keVtoreachalargespectrumof samples cut from cores using a horizontal cryogenic magne- elementscomprisingcalcium(Ca),Ti,manganese(Mn),and tometer 2G-enterprise at the paleomagnetic laboratory of the Zr.Because theXRFdata needtobecomparedthroughand Institut de Physique du Globe de Paris. Measurements were between thesediment cores regardlessof the absolutevalue performed every 2 cm. The NRM was progressively demag- oftheconcentrations,westandardizedthedatatohaveazero netizedusinganalternatingfieldin11stepsuptoamaximum meanandunitvariance.Wealsousedratiosofelementsthat field peak of 90 mTon Klg04. The characteristic remanent provide the most easily interpretable signal of relative magnetization (ChRM) was then isolated using Zijderveld changes in chemical composition and minimize the risk of diagrams and least-squares principal component analysis drawing erroneous conclusions by enhancing the signal- (Kirschvink, 1980; Cogné, 2003). (Zijderveld diagrams are to-noise ratio (Palike et al., 2001; Vlag et al., 2004; Bahr presentedinFig.A1).CoreKlg03wasalsoanalyzed,butonly et al., 2005). twodemagnetizationstepswereappliedbecauseoftechnical issues. Acceleratormassspectrometryradiocarbondatingon24 Table 2 samples (benthic foraminifers, planktonic foraminifers, and Location of Kullenberg Cores mollusk shells) was carried out at Artemis LMC14 labora- Latitude Longitude WaterDepth CoreDepth toryinLaboratoiredesSciencesduClimatetdel’Environne- Core (°N) (°E) (m) (cm) ment, Orsay, and at the Aeon laboratory (Table 3). Both Klg03 40°47.98 28°59.55 1241 374 planktonic and benthic foraminifers were collected when Klg04 40°48.60 29°00.73 1206 419 possible in hemipelagic sediments just above the tur- Klg06 40°48.90 27°44.28 726 371 bidites. Mollusk shells were mostly extracted at the base 628 L. Drab, A. Hubert-Ferrari, S. Schmidt, P. Martinez, J. Carlut, and M. El Ouahabi CorrectionC.)* Modeled 1894–E.1888C.E.–E.1713C.E.–1511C.E.E.–E.1449C.E. –E.1360C.E.–E.1352C.E.–E.1339C.E.–E.1334C.E. –E.1302C.E.–E.1226C.E.–E.1041C.E.–E.867C.E. –E.610C.E.–E.600C.E.–481E.C.E.–C.E.188B.C.E.–C.E.522B.C.E.–C.E.590B.C.E.–C.E.848B.C.E.–C.E.890B.C.E.–C.E.902B.C.E. –C.E.1362B.C.E.–C.E.1493B.C.E. continued() Reservoir(B.C.E./B. 1769C.1550C.1364C.1342C. 1268C.1263C.1251C.1245C. 1185C.1058C.779C.607C. 429C.410C.136C.383B.771B.791B.1039B.1090B.1103B. 1552B.1720B. CalibratedAgeswith400(cid:1)50ofyr Unmodeled –E.1805C.E.–E.1672C.E.N/A–E.1417C.E. N/A–E.1397C.E.–E.1309C.E.–E.1302C.E. –E.1283C.E.–E.1213C.E.N/AN/A –E.570C.E.–E.612C.E.N/A–C.E.197B.C.E.N/A–C.E.612B.C.E.–C.E.1087B.C.E.N/A–C.E.338B.C.E. –C.E.1387B.C.E.–C.E.1370B.C.E. C.C. C. C.C.C. C.C. C.C. B. B.B. B. B.B. 98 0 060 29 97 0 08 0 59 06 1 777 52 63 6 20 9 64 54 2 100 09 22 5 94 4 67 e 11 1 111 1 1 3 11 or C 5 Klg04 carbon†(yr) ±30±30 ±30±30±30 ±30±30±30±15±30±35 ±30±30±60 ±30 ±30±30 ±62±60±30±45±30±30±60 the RadioAge 10601140 148015801885 151515851595238016301740 453523702370 3045 33553750 412517360438015100491039754000 n i 8 –E2E MassC(mg) 0.2670.91 0.8310.891.26 1.260.690.960.2590.710.23 0.690.860.061 0.56 0.90.43 0.91.10.710.70.770.068 s nt e3gEve 13δC‰() −5l9−0.6 −6.7−8.30.3 0.6−1.6−0.6−8.30.4−10.6 −1.7−1#N/A −3.6 −2.3−4.2 3.1−5.8−1.82−1#N/A Tabl14CResultsConstrainin SampleType ‡Benthicforaminifer§Shell ‡Benthicforaminifer§Shell‡Benthicforaminifer ‡Benthicforaminifer§Shell§Shell‖Planktonicforaminifer‡Benthicforaminifer‡Benthicforaminifer §Shell§Shell‖Planktonicforaminifer §Shell §Shell§Shell Sapropel§Shell§Shell§Shell§Shell§Shell‖Planktonicforaminifer of y ee ar Fr m e- Sum aTurbiditcale(cm) 1417284041 4848.54949.5 5256.56571 7878.58397105106110114115 154165 nS i h pt e D mpleDepthKlg04(cm) –10141728–40463845.588–5460100985911411468.5–7782–88.59291158158–04108.5203.5–30138.5130 –148152150162184197214351362 Sain 1 1 er y a l SampleName EventE1Klg04-17cmKlg04-28cmEventE2Klg04-38cmKlg04-45.5cmKlg03-88cmEventE3Klg03-100cmKlg03-98cmKlg04-59cmKlg03-114plccmKlg03-114cmKlg04-68.5cmEventE4EventE5Klg04-91cmKlg03-158cmKlg03-161cmEventE6Klg03-203.5cmEventE7Klg04-130cmKlg03-245cmEventE8TopofsapropelicKlg04-162Klg04-184cmKlg04-197cmKlg04-214cmKlg03-351cmKlg03-362cm Submarine Earthquake History of the Çınarcık Segment of the NAF in the Marmara Sea, Turkey 629 ofturbidites.Sampleswereselectedinthefirst150cmofthe two sediment cores to be able to relate recorded turbidites e e v h B.C.E. andha witht wmiatyh hniosttobriecawleelalrtchoqnusatrkaeisnefdo.rAwgheicshwthereesecgalmibernatterduputsuirnegs AgeswithReservoirCorrection0(cid:1)50yr(B.C.E./B.C.)* Modeled –B.C.E.2431B.C.E.2165 italicsarereworkedsamples maximumbounds),calibrated (f2Oa2aTotn00xradt01Chb03Gelsa)ehl.ylsoear3Bwblm)lBei,isgtce,.hwPea.drueptieshnlpeaaeatsnhtsMbkwsuutomoa(l1lrnoedi6indici0dfe,f1eteahs3rnaaepndtncldaatt3hln5siekbba0tmreroacnentpmstihileoce)irnscvfgootcayriufvrapoermvereatsfeihmfne(e(imicRfnsetoaeirfimislseml)uretsceshok1re4luleCsespthcaaeatmeglltldo.ees, Calibrated40of Unmodeled –69B.C.E.2228 mpleswrittenin (minimumand STeudrbimideitnetsology, PhysiRcaelsuanltdsChemical Properties of 25 on.Sa level Visual inspection shows that all sediment cores have CRadiocarbon†Age(yr) 4655±30 theturbiditehoriz 95.4%confidencecorrection). cmamcororeomnonstwtbtalsiyisnnaoieunrndnegitfwhcsohoeirtemmhllolpggsfosirrslaatieiygnnd-mFcsoleiiagfnzyseta.sl4mi(stihuaneoncadlcdsiouceg5asrey)ste.imodwHneiobntwyhotsfeafviernsweadtrpa,iirscxdaai-lnntyredaFyydtihegilampa.tmo3assgieianetdneariydde- ued) Mass(mg) 0.45 cationof enatthereservoir ltgaeryraieyzreesdr(bis.iyel.ta,tlbuaayrsbeairld.ditTaehrsk)e.gTsrauanyrbdsiadlnaitdyeyedrleadpyioessrpialtasnydasraercueoslfulooalcllolaywtecedhdahbriaygcha- ContinTable3( 13δCSampleDepthDepthinaTurbidite-Free‰()SampleNameinKlg04(cm)Scale(cm)SampleType ‖−§Klg04-268cm260194Shell2.7 “”Samplesareinstratigraphicorder,andtherowslabeledTurbiditesinboldshowthestratigraphiclootbeenincludedinthemodel.*UnmodeledandmodeledcalibratedagesaredeterminedusingOxcal(seeDataandResources),givMarine13curvethatincludesaglobalreservoirageof400yearswithoutthelocalcorrection(calledthe†1σUncertaintiesforconventionalradiocarbonagearegivenatthe(68.3%)confidencelevel.‡BulluminamarginataUvigerinaperegrineMelonisbarleeanumDatedbenthicforaminifersare,,and.§DatedmolluscshellsarefromthemolluscanclassMonoplacophora.‖GlobigerinabulloidesDatedplanktonicforaminifersare.13δ#Cnotmeasuredduetosamplesize. mpÇmswtmaKdcbmcdnlaetacTerayheodoslualtuoeiihanslilecaoasusitpmdraraelttgneoğptsoggjrehrsmkpimlilos0ygeeeateltnnrnl.ITheaiaser3lndtsnoattgoets(adaopucopsytiuot2jditfnumdyrnmsewcoorfpoliprfoo0i,.btcibemombnrfesisinuen0tpligcynrwaIitadhhvadtestKlduaeg7naonrartutayueonihnaihlrsi)ataseKtlrbtlrpoebssdetKiieggeieybl,ylnccleirtl.railitsa0enii,emsohlsggrendhhindong3intostps2i0rkeiiagciucfni5he0nneniditanntp3rv0eevohzrea.s0ii4aorulodebo,n1sbKeeenateyItK%l,mcw(reas2inirdlssbt∼gllebsioercnljs)hiigtietegauedhbdrsue.tovaosc5hKe0ieyrss0slotenranneefAeespnoe3-ctbl3ltctdsrbteggmgouaswhohtaillcm,(fhyaorudlyon0flaiimnloriasnbnlcaenilidepd4n)oattnaiteyanomophhqdeoiemfmlscrthitgxsrvcareeszuelu,sdheicpetiaa-meo(ieicnnerhesenallrssnrbilFlgdbiroatenannfaace,irtilaaieiitlsyiernegylytfodtoctgthtedssaaalieyAsheasnifyfa.seotbittdalciyiseeoatii.ilaa,tmi(ebToneinaeosuhn∼ymb3tdtslshsutddftglnhmBehsaaiiheeaaeb2Fotiyhnleegayiiwrrtyms,et,nwinnnhagt4sveeeacgtevbl43ertitCeesar0alamsrsaocpteaaK7,n)endrr%ayh.s,(lkxrs.-elt0uratutnFtleeaha4eanholihsrgnTtmetd2ronynisqnu.hoeacshi0gssdash–ywbedduicstmeefia,itn4so5irrcsi-nthiar5mle.sttdetiufrnkaoaekhoDs)rarcaa3lrsKy)meus.bo5eoefnmencs,aaenbs-Tam,intldhewdoctsnrstn4hgoo(shstgdrhosstessdh,eee0athihu3aoFibtecrdegt.yliml4aKioten0shcaolemienyicgnoBg.m,wmd%ianateklbemaapdv.targtaasten.aiorateseux4aeir0nndecebatlsIln5imcyrrrsi)lddydgnky3noeea------t;;., n coreshows14erosive-baseturbidites,withthicknessesrang- ing from 4 to 8 cm, and four nonerosive base turbidites 630 L. Drab, A. Hubert-Ferrari, S. Schmidt, P. Martinez, J. Carlut, and M. El Ouahabi (a) (b) %sand Ca/Ti Mn Zr MS %sand Ca/Ti Zr MS 40 2 120 e Core depth (cm) Turbidite 4 Laminations pth (cm) 50 Turbidit e 129 d e 0 4 8 12 -3 -1 1 3 or C % sand Zr (standardized) e 3 6 8 10 20 30 40 50 60 dit Ca/Ti Magnetic Susceptibility (SI) urbi 60 T 0 4 8 -2 0 2 4 6 8 % sand Zr (standardized) 6 8 10 -1 0 1 2 Ca/Ti Mn (standardized) 10 20 30 40 50 60 Magnetic Susceptibility (SI) Figure3. Typicalexamplesofturbidites:grainsizeandgeochemical(Ca=Ti,Mn,Zr,andmagneticsusceptibility)signatures.Turbidites arecomposedofabasalsandlayer,anuppersiltlayerwithfrequentlaminations,andanupperlight-grayclayeylayer.(a)X-rayimagery, grainsize,andgeochemicalprofilesofturbiditee4at120cmdepthinKlg03.(b)X-rayimagery,grainsize,andgeochemicalprofilesof turbiditee2at45cmdepthinKlg04.Manganesetypicallyshowsapeakjustbelowturbidites.Thecolorversionofthisfigureisavailableonly in the electronic edition. (Fig.4).Twenty-threeturbiditesarerecordedinKlg04,with Theoriginofthemagneticdrophasbeenextensivelystudied thicknesses ranging from 3 to 8 cm (Fig. 5). byDrab(2012)andDrabetal.(2015).Theoccurrenceofthe verylowmagnetizationislinkedtothedepositionoforganic- rich material forming a sapropelic layer (Cramp and O’Sul- Correlation of Cores and Turbidites livan, 1999; Larrasoaña et al., 2003). The cores Klg03 and Klg04 were correlated with the Inaddition,aglobalincreaseingrainsizeisidentifiedin Klg06 reference core based on the occurrence of synchro- the cores and is linked with the deforestation and growth in nous global changes in the sedimentation (Fig. 6). Among sedimentfluxobservedforthelast2ka(Kazancietal.,2004; these changes, a sapropelic layer is clearly identified in Walling,2006; Valsecchietal.,2012).Finally,weusedXRF Klg04 and Klg03 cores. Sapropelic layers are organic-rich data to identify other correlative changes in the Klg04 and layers commonly found in the Mediterranean area (Rohling Klg03cores(Fig.6).First,theupperpartofthecoresshows andHilgen,1991;CrampandO’Sullivan,1999;Larrasoaña an increase in Br, representing an increase in organic matter et al., 2003) and in the Marmara Sea (Çağatay et al., 2000; (Ziegler et al., 2008; Drab et al., 2012). Second, both cores Tolun et al., 2002; Vidal et al., 2010). The last referenced show a wide peak in Sr above the upper sapropelic layer. sapropeliclayerwasidentifiedbyÇağatayetal.(2000)and Third,thetwocoreswerecorrelatedbasedonthevariationof occurred between 4.7 and 3.2 ky in the Marmara Sea. We Ca=Ti ratio and Br content (Bahret al., 2005; Gracia et al., identifiedthelastsapropeliclayerinthecoresbyanincrease 2010). In the Marmara Sea, long-term regional variations in in total organic carbon content (Drab, 2012; Drab et al., the Ca=Ti ratio are related to environmental changes, and 2015). The layer is mapped in Figure 6 and can be used Drab et al. (2012) have shown that the record for the as an independent time constraint for the core chronology. Klg04 core can be linked to the Klg06 core in the Western Paleomagnetic measurements obtained on the Klg03 High.TheCa=TicurveinKlg04isveryspikycomparedwith and Klg04 cores also display important variations in the theKlg06one,whichcouldbelinkedtobasalerosionduring magnetic properties. A drop of magnetization in the NRM turbidite emplacement. Figure 6 shows the correlation of data is observed at 250 cm in Klg03 and at 80 cm in Klg03andKlg04cores,excludingthe coarseturbiditesfrom Klg04(Fig.6)andcorrespondstothedissolutionofmagnet- the record. The XRF variations in Klg06 core are also dis- itegrainsthroughtheprocessofdiagenesisinthesediment. played as a reference.

Description:
publics ou privés. Submarine Earthquake History of the Çınarcık Segment of the North Anatolian Fault in the Marmara Sea,. Turkey. Laureen Drab Sea, several studies (McHugh et al., 2006; Sarı and Çağatay,. 2006 White crosses represent the location of other published cores discussed in the s
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.