ebook img

Subdivision Surfaces PDF

212 Pages·2007·3.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Subdivision Surfaces

Geometry and Computing SeriesEditors HerbertEdelsbrunner LeifKobbelt KonradPolthier EditorialAdvisoryBoard Jean-DanielBoissonnat GunnarCarlsson BernardChazelle Xiao-ShanGao CraigGotsman LeoGuibas Myung-SooKim TakaoNishizeki HelmutPottmann RobertoScopigno Hans-PeterSeidel SteveSmale PeterSchro¨der DietrichStoyan • Jo¨rg Peters Ulrich Reif Subdivision Surfaces With 52 Figures 123 Jo¨rgPeters UlrichReif UniversityofFlorida TUDarmstadt Dept.Computer&InformationScience FBMathematik GainesvilleFL32611-6120 Schloßgartenstr.7 USA 64289Darmstadt [email protected]fl.edu Germany [email protected] ISBN978-3-540-76405-2 e-ISBN978-3-540-76406-9 SpringerSeriesinGeometryandComputing LibraryofCongressControlNumber:2008922290 MathematicsSubjectsClassification(2000):65D17,65D07,53A05,68U05 (cid:1)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:deblik,Berlin Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com for Anousha Daniel Julian Kavina Tobias Preface AkintoB-splines,theappealofsubdivisionsurfacesreachesacrossdisciplinesfrom mathematics to computer science and engineering. In particular, subdivision sur- faces have had a dramatic impact on computer graphics and animation over the last 10 years: the results of a development that started three decades ago can be viewed today at movie theaters, where feature length movies cast synthetic char- acters ‘skinned’ with subdivision surfaces. Correspondingly, there is a rich, ever- growingliteratureonitsfundamentalsandapplications. Yet,aswitheveryvibrantnewfield,thelackofauniformnotationandstandard analysistoolshasaddedunnecessary,attimesinconsistent,repetitionthatobscures thesimplicityandbeautyoftheunderlyingstructures.Onegoalinwritingthisbook istohelpshortenintroductorysectionsandsimplifyproofsbyproposingastandard setofconceptsandnotation. Whenwestartedwritingthisbookin2001,wefeltthatthefieldhadsufficiently settled for standardization. After all, Cavaretta, Dahmen, and Micchelli’s mono- graph [CDM91] had appeared 10 years earlier and we could build on the habilita- tionofthesecondauthoraswellasanumberofjointpapers.Butitwasonlyinthe processofwritingandseeingtheissuesinconjunction,thatstructuresandnotation becameclearer.Infact,thelengthofthebookrepeatedlyincreasedanddecreased, askeyconceptsandstructuresemerged. Chapter2 ,forexample,wasalateaddition,asitbecameclearthatthedifferen- /15 tial geometry for singular parameterizations, of continuity, smoothness, curvature, and injectivity, must be established upfront and in generality to simplify the ex- positionandlaterproofs.Bycontrast,thekeydefinitionofsubdivisionsurfacesas splineswithsingularities,inChap.3 ,wasapartofthefoundationsfromtheoutset. /39 This point of view implies a radical departure from any focus on control nets and insteadplacesthemainemphasisonnestedsurfacerings,asexplainedinChap.4 . /57 Carefulexaminationofexistingproofsledtotheexplicitformulationofanumber of assumptions, in Chap.5 , that must hold when discussing subdivision surfaces /83 ingenerality.Conversely,placingthesekeyassumptionsupfront,shortenedthepre- sentationconsiderably.Therefore,thestandardexamplesofsubdivisionalgorithms vii viii Preface reviewed in Chap.6 are presented with a new, shorter and simpler analysis than /109 in earlier publications. Chapters 7 and 8 were triggered by very recent, new /125 /157 insights and results and partly contain unpublished material. The suitability of the majorknownsubdivisionalgorithmsforengineeringdesignwasattheheartofthe investigationsintotheshapeofsubdivisionsurfacesinChap.7 .Theshortcomings /125 of the standard subdivision algorithms discovered inthe process forced arenewed search for an approach to subdivision capable of meeting shape and higher-order continuity requirements. Guided subdivision was devised in response. The second partofChap.7 recaststhisclassofsubdivisionalgorithmsinamoreabstractform /125 that may be used as a prototype for a number of new curvature continuous subdi- vision algorithms. The first part of Chap.8 received a renewed impetus from a /157 recentstreamofpublicationsaimedatpredictingthedistanceofasubdivisionsur- face from their geometric control structures after some m refinement steps. The introduction of proxy surfaces and the distance to the corresponding subdivision surface subsumes this set of questions and provides a framework for algorithm- specificoptimalestimates.ThesecondpartofChap.8 grewoutofthesurprising /157 observationthattheCatmull–Clarksubdivisioncanrepresentthesamesphere-like objectstartingfromanymemberofawholefamilyofinitialcontrolconfigurations. The final chapter, Chap.9 , shows that a large variety of subdivision algorithms /175 is fully covered by the exposition in the book. But it also outlines the limits of ourcurrentknowledgeandopensawindowtothefascinatingformsofsubdivision currently beyond the canonical theory and to the many approaches still awaiting discovery. As a monograph, the book is primarily targeted at the subdivision community, including not only researchers in academia, but also practitioners in industry with aninterestinthetheoreticalfoundationsoftheirtools.Itisnotintendedasacourse textbookandcontainsnoexercises,butanumberofworkedoutexamples.However, weaimedatanexpositionthatisasself-containedaspossible,requiring,wethink, onlybasicknowledgeoflinearalgebra,analysisorelementarydifferentialgeometry. The book should therefore allow for independent reading by graduate students in mathematics,computerscience,andengineeringlookingforadeeperunderstanding ofsubdivisionsurfacesorstartingresearchinthefield. Two valuable sources that complement the formal analysis of this book are the SIGGRAPH course notes [ZS00] compiled by Schro¨der and Zorin, and the book ‘SubdivisionMethodsforGeometricdesign’byWarrenandWeimer[WW02].The notes offer the graphics practitioner a quick introduction to algorithms and their implementation and the book covers a variety of interesting aspects outside our focus; for example, a connection to fractals, details of the analysis of univariate algorithms,variationalalgorithmsbasedondifferentialoperatorsandobservations thatcansimplifyimplementation. Weaimedatunifyingthepresentation,placingforexamplebibliographicalnotes attheendofeachcorechaptertopointoutrelevantandoriginalreferences.Inaddi- tiontothese,weincludedalargenumberofpublicationsonsubdivisionsurfacesin Preface ix thereferencesection.Ofcourse,giventheongoinggrowthofthefield,thesenotes cannotclaimcompleteness.Wethereforereservedtheinternetsite www.subdivision-surface.org for future pointers and additions to the literature and theme of the book, and, just possibly,tomitigateanydamageofinsufficientproofreadingonourpart. Itisourpleasuretothankatthispointourcolleaguesandstudentsfortheirsup- port: Jianhua Fan, Ingo Ginkel, Jan Hakenberg, Rene´ Hartmann, Ke¸stutis Karcˇiauskas,MinhoKim,AshishMyles,TianyunLisaNi,AndyLeJengShiue, GeorgUmlauf,andXiaobinWuwhoworkedwithusonsubdivisionsurfacesover many years. JanHakenberg,Rene´Hartmann,MalcolmSabin,NeilStewart, and GeorgUmlaufhelpedtoenhancethemanuscriptbycarefulproof-readingandpro- viding constructive feedback. MalcolmSabinand GeorgUmlaufadded valuable materialforthebibliographicalnotes.NiraDynandMalcolmSabinwillinglycon- tributed two sections to the introductory chapter, and it was again Malcolm Sabin whosharedhisextensivelistofreferencesonsubdivisionwhichformedthestarting pointofourbibliography.ChandrajitBajajgenerouslyhostedaretreatoftheauthors thatbroughtaboutthefinalstructureofthebook.Manythankstoyouall!Thework wassupportedbytheNSFgrantsCCF-0430891andDMI-0400214. Ourfinalthanksarereservedforourfamiliesfortheirsupportandtheirpatience. Youkeptusinspired. Contents 1 IntroductionandOverview...................................... 1 1.1 RefinedPolyhedra.......................................... 1 1.2 ControlNets............................................... 2 1.3 SplineswithSingularities.................................... 4 1.4 FocusandScope ........................................... 6 1.5 Overview ................................................. 7 1.6 Notation .................................................. 7 1.7 AnalysisintheShift-InvariantSetting ......................... 8 1.8 HistoricalNotesonSubdivisiononIrregularMeshes............. 11 2 GeometryNearSingularities .................................... 15 2.1 DotandCrossProducts ..................................... 16 2.2 RegularSurfaces ........................................... 17 2.3 SurfaceswithaSingularPoint................................ 23 2.4 CriteriaforInjectivity....................................... 31 3 GeneralizedSplines ............................................ 39 3.1 AnAlternativeViewofSplineCurves ......................... 40 3.2 ContinuousBivariateSplines................................. 41 3.3 Ck-Splines................................................ 44 3.4 Ck-Splines................................................ 47 r 3.5 ABicubicIllustration ....................................... 53 4 SubdivisionSurfaces ........................................... 57 4.1 Refinability ............................................... 58 4.2 SegmentsandRings ........................................ 59 4.3 SplinesinFinite-DimensionalSubspaces....................... 65 4.4 SubdivisionAlgorithms ..................................... 67 4.5 AsymptoticExpansionofSequences .......................... 71 4.6 JordanDecomposition ...................................... 72 4.7 TheSubdivisionMatrix ..................................... 75 xi xii Contents 5 Ck-SubdivisionAlgorithms ..................................... 83 1 5.1 GenericInitialData......................................... 84 5.2 StandardAlgorithms........................................ 84 5.3 GeneralAlgorithms......................................... 89 5.4 ShiftInvariantAlgorithms ................................... 95 5.5 SymmetricAlgorithms ......................................103 6 CaseStudiesofCk-SubdivisionAlgorithms .......................109 1 6.1 Catmull–ClarkAlgorithmandVariants.........................109 6.2 Doo–SabinAlgorithmandVariants............................116 6.3 SimplestSubdivision .......................................120 7 ShapeAnalysisandCk-Algorithms ..............................125 2 7.1 HigherOrderAsymptoticExpansions .........................126 7.2 ShapeAssessment..........................................134 7.3 ConditionsforCk-Algorithms................................140 2 7.4 AFrameworkforCk-Algorithms .............................145 2 7.5 GuidedSubdivision.........................................149 8 ApproximationandLinearIndependence.........................157 8.1 ProxySplines..............................................157 8.2 LocalandGlobalLinearIndependence ........................169 9 Conclusion ....................................................175 9.1 FunctionSpaces............................................176 9.2 Recursion .................................................177 9.3 CombinatorialStructure .....................................178 References.........................................................183 Index .............................................................199

Description:
Since their first appearance in 1974, subdivision algorithms for generating surfaces of arbitrary topology have gained widespread popularity in computer graphics and are being evaluated in engineering applications. This development was complemented by ongoing efforts to develop appropriate mathemati
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.