ebook img

Subcomplexes of Ancestral Respiratory Complex I Subunits Rapidly Turn Over in Vivo as ... PDF

12 Pages·2013·1.66 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Subcomplexes of Ancestral Respiratory Complex I Subunits Rapidly Turn Over in Vivo as ...

THEJOURNALOFBIOLOGICALCHEMISTRY VOL.288,NO.8,pp.5707–5717,February22,2013 ©2013byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PublishedintheU.S.A. Subcomplexes of Ancestral Respiratory Complex I Subunits Rapidly Turn Over in Vivo as Productive Assembly Intermediates in Arabidopsis*□S Receivedforpublication,October31,2012,andinrevisedform,December8,2012Published,JBCPapersinPress,December27,2012,DOI10.1074/jbc.M112.432070 LeiLi‡§1,ClarkJ.Nelson‡§,ChrisCarrie‡,RyanM.R.Gawryluk¶,CorySolheim‡§,MichaelW.Gray¶,JamesWhelan§, andA.HarveyMillar‡§2 Fromthe‡AustralianResearchCouncilCentreofExcellenceinPlantEnergyBiologyandthe§CentreforComparativeAnalysisof BiomolecularNetworks,M316,UniversityofWesternAustralia,35StirlingHighway,Crawley,WA6009,WesternAustralia,Australia andthe¶CentreforComparativeGenomicsandEvolutionaryBioinformatics,DepartmentofBiochemistryandMolecularBiology, DalhousieUniversity,Halifax,NovaScotiaB3H4R2,Canada Background:PlantcomplexIcontains(cid:1)-CAsubunitswhoseroleisunclear. Results:15NlabelingandimportshowCIassemblyviaarapidlyturningover(cid:1)-CAsubcomplex. Conclusion:(cid:1)-CAsformanancientpathwayforCIassembly. Significance:TheassemblypathwayofcomplexIinplantsisdifferentfromthatinanimalsandmorecloselyrepresentsthe ancestralenzyme. SubcomplexesofmitochondrialrespiratorycomplexI(CI;EC dative phosphorylation assembly and is also the major entry 1.6.5.3)areshowntoturnoverinvivo,andweproposearolein pointofelectronsfromtheoxidationofNADHintotherespi- anancestralassemblypathway.ByprogressivelylabelingArabi- ratory chain. CI contains 14 core subunits that represent the dopsis cell cultures with 15N and isolating mitochondria, we minimalactiveformandthatareconservedfromprokaryoticto have identified CI subcomplexes through differences in 15N eukaryotic organisms. In the mitochondria of eukaryotes, CI incorporation into their protein subunits. The 200-kDa sub- containsanadditional31–38accessorysubunits,anumberof complex, containing the ancestral (cid:1)-carbonic anhydrase which differ among organisms (1–4). Single-particle electron ((cid:1)-CA),(cid:1)-carbonicanhydrase-like,and20.9-kDasubunits,had microscope imaging analysis of isolated CI from Arabidopsis asignificantlyhigherturnoverratethanintactCIorCI(cid:2)CIII . and Polytomella identified a specific matrix-exposed domain 2 InvitroimportofprecursorsfortheseCIsubunitsdemonstrated formed by (cid:1)-carbonic anhydrase ((cid:1)-CA) subunits that are rapidgenerationofsubcomplexesandrevealedthattheirspe- attachedtothemembranearmofmitochondrialCIbytheinte- cificabundancevariedwhendifferentancestralsubunitswere gral membrane protein CA2 (5). In Arabidopsis, this protein imported.Timecoursestudiesofprecursorimportshowedthe domain contains at least three different (cid:1)-CA proteins, CA1 furtherassemblyofthesesubcomplexesintoCIandCI(cid:2)CIII , (At1g19580),CA2(At1g47260),andCA3(At5g66510),having 2 indicatingthatthesubcomplexesareproductiveintermediates conserved active site regions, and two less well conserved ofassembly.Thestrongtransientincorporationofnewsubunits (cid:1)-CA-likeproteins,CAL1(At5g66510)andCAL2(At3g48680), into the 200-kDa subcomplex in a (cid:1)-CA mutant is consistent which contain alterations to the primary structure of typical with this subcomplex being a key initiator of CI assembly in (cid:1)-CAs (6). Links between these subunits and photosynthetic plants.Thisevidencealongsidethepatternofcoincidentoccur- functionhavebeenpostulated(7),aroleinphotomorphogen- rence of genes encoding these particular proteins broadly in esisinplantshasbeenshownbygeneknock-outstudies(8),and eukaryotes,exceptforopisthokonts,providesaframeworkfor overexpression leads to male sterility in plants (9), but a CA theevolutionaryconservationoftheseaccessorysubunitsand activityfromtheseproteinshasnotbeenexperimentallycon- evidenceoftheirfunctioninancestralCIassembly. firmed. Although at first these subunits were thought to be specifictoCIfromphotosyntheticorganisms(10,11),evidence hasemergedof(cid:1)-CAproteinsinmitochondriaandinisolated NADH-ubiquinone oxidoreductase (complex I (CI),3 EC CI from a range of other eukaryotic lineages, including slime 1.6.5.3)isthelargest((cid:1)1000kDa)proteincomplexoftheoxi- moldsandamoebaethatlackphotosynthesis(12).Broaderphy- logeneticstudieshavealsofoundhomologybetweenotherCI accessorysubunitsoncethoughttobespecies-orlineage-spe- *ThisworkwassupportedbyAustralianResearchCouncil(ARC)Centreof cific(4). ExcellenceinPlantEnergyBiologyGrantCE0561495(toA.H.M.andJ.W.). GiventhedivergenceofCIcompositionamongeukaryotes, □S ThisarticlecontainssupplementalDataSets1–4. both the assembly pathway and the biological importance of 1SupportedbyScholarshipInternationalResearchFees,aUniversityInterna- tionalStipend(UIS),andaTopUpScholarshipforUIS. accessorysubunitsinassemblyintermediatescouldbeconsid- 2An ARC Australian Future Fellow (Grant FT110100242). To whom corre- spondence should be addressed. Tel.: 61-8-6488-7245; Fax: 61-8- 64884401;E-mail:[email protected]. roxymethyl)ethyl]glycine; TES, 2-[(2-Hydroxy-1,1-bis(hydroxymethyl)eth- 3Theabbreviationsusedare:CI,complexI;CA,carbonicanhydrase;CAL,car- yl)amino]ethanesulfonic acid; ROS, reactive oxygen species; NA and H bonicanhydrase-like;BN,bluenative;Tricine,N-[2-hydroxy-1,1-bis(hyd- peptide,naturalabundanceandheavylabeledpeptide,respectively. FEBRUARY22,2013•VOLUME288•NUMBER8 JOURNALOFBIOLOGICALCHEMISTRY 5707 This is an Open Access article under the CC BY license. AssemblyofMitochondrialComplexIinArabidopsis erablydifferentamongmajortaxonomicgroupsofeukaryotes. washthe7-day-oldcellculturethreetimesbeforeitwastrans- In CI mutants of Neurospora crassa, analysis of CI assembly ferred to 15N growth medium. Ammonium-15N nitrate-15N using radiolabeling pulse-chase has revealed that the matrix (1.69g/liter)andpotassiumnitrate-15N(1.92g/liter)(98%15N; andmembranearmsassembleindependentlyviaseparatepath- Sigma) were added to growth medium without nitrogen to ways (13–17). The membrane subunit 20.9, which is absent make the 15N growth medium. Cells labeled for 24, 120, and frommammalianCI,wasidentifiedsomeyearsagoasafactor 168hwith15Nwerecollectedontofilterpaperusingvacuum essentialforassemblyofthemembranearminfungi(18).Based filtration.Threebiologicalreplicatesforeachtimepointwere onacombinationofradiolabelingpulse-chaseexperiments,in performed. vitromitochondrialimportandmonitoringoftaggedCIsub- Protoplast Preparation and Mitochondrial Isolation from unitsinassembly-disturbedsystems,severalCIassemblymod- CellCulture—Freshcells(20–25g)foreachsingletimepoint els have been proposed for human cells (14, 19, 20). In this replicateweredispersedindigestionsolution(0.4%(w/v)Ono- process, mammalian assembly factors not conserved in other zuka cellulase RS, 0.05% (w/v) Kyowa pectolyase Y-23, 0.4 M species have been identified (13, 14, 19). Subcomplexes con- mannitol,0.7g/literMES,pH5.7)andgentlyshakeninthedark tainingCA2havebeenreportedusingantibodies(11)indeter- for3hatroomtemperature.Thesolutionwascentrifugedat gentdisassemblystudiesofCIinplants(21),inArabidopsisCI 800 (cid:2) g for 10 min. The supernatant was decanted, and the subunitknock-outmutants(22),andinwildtypeArabidopsis protoplast pellet resuspended in digestion solution without mitochondrialproteomesinsaturationmappingoftwo-dimen- enzymes by swirling and repeated rounds of centrifugation. sionalbluenative(BN)gels(23).KnockoutsofCA2andCA3do Washed protoplasts were then resuspended in extraction notyieldaclearphenotypeinArabidopsis(5,11),whichmight buffer(0.4Msucrose,50mMTris,3mMEDTA,and0.1%BSA be a consequence of functional redundancy in activities (w/v), pH 7.5) and homogenized 5–9 times with a Dounce betweentheseproteins.However,suspensioncellculturelines 0.12-mm homogenizer. Extraction buffer containing broken derivedfromthemutantca2showedreducedgrowthratesand protoplasts was then centrifuged at 2500 (cid:2) g for 5 min, the lowerCIabundance(11),whichindicatesthat(cid:1)-CAsubunits supernatantwasrecovered,andthenthissupernatantwassub- could be important for CI assembly or structural stability in jectedtocentrifugationat20,000(cid:2)gfor20min.Theresultant plants. pelletwasresuspendedin0.5–1mlofmannitolwashbuffer(0.3 However, reports of studies to date have not been able to Mmannitol,10mMTES,and0.1%(w/v)BSA,pH7.5)usinga distinguish between productive and non-productive interme- paintbrush,andthesuspensionwaspipettedontotwo35-ml diates,anessentialdistinctioninbuildingarigorousCIassem- Percollstepgradientscomprising40,25,and18%(w/v)Percoll bly model. Specifically, we needed to determine if subcom- in mannitol wash buffer. The gradients were centrifuged at plexeswerepresentinvivooriftheywereformedinvitrodueto 40,000(cid:2)gfor60minanddeceleratedwithslowbraking.Mito- detergentsolubilizationorelectrophoresis;iftheywereincor- chondria,whichformayellowbandatthe40and25%interface, poratedintothesmall/earlyassemblyintermediates;andifthey were collected and diluted in sucrose wash buffer (0.3 M wereproductiveintermediatesthatgoontoformCIorwere sucrose,10mMTES,pH7.5).Dilutedmitochondriawerecen- simply non-productive subcomplexes that accumulated in trifuged at 24,000 (cid:2) g for 15 min and decelerated with slow mitochondria. We have combined a progressive 15N labeling braking.Pelletwascollectedanddilutedagaininwashbuffer. strategyinvivo(24)withBNpolyacrylamidegelelectrophoresis Washedmitochondriaweredilutedin0.5–1mlofsucrosewash (BN-PAGE)andinvitro[35S]Metimportandassemblyassays buffer. Isolated mitochondria were quantified with the Brad- toaddresstheseissues.Thisapproachhasallowedanalysisof fordassayandwerethenusedforimportassaysormadeinto the incorporation rate of subunits into subcomplexes, 1-mgproteinaliquotsandrunonBNgelsorstoredat(cid:3)80°C mature CI, and supercomplexes of plant mitochondria to forfurtherexperiments. investigate their role in assembly and to provide key evi- Arabidopsis Plant Growth and Mitochondrial Preparation— dence for the existence of a productive CI subcomplex in Wild typeArabidopsis (Col-0) orca2 mutant seeds ((cid:1)30 (cid:2)g) vivo in plants. The subunits of the identified assembly sub- (11)werewashedin70%(v/v)ethanolfor2min,andthenthe complex, lost in animal lineages, are widely conserved in seeds were placed in a sterilization solution (5% (v/v) bleach, other eukaryotic lineages, providing evidence for their role 0.1%(v/v)Tween20)for15minwithperiodicalshaking.Seeds asancestralaccessorysubunits. were then washed in sterile water 5 times before being dis- pensedintoa250-mlplasticvesselcontaining80mlofgrowth EXPERIMENTALPROCEDURES medium(half-strengthMurashigeandSkoogmediumwithout ArabidopsisCellCultureGrowthand15NLabeling—Arabi- vitamins, half-strength Gamborg B5 vitamin solution, 5 mM dopsis cell suspension was cultured in growth medium (1(cid:2) MES,2.5%(w/v)sucrose,pH5.8).Arabidopsisseedlingswere Murashige and Skoog medium without vitamin, 3% sucrose grownundera16/8-hlight/darkperiodwithlightintensityof (w/v),0.5mg/liternaphthaleneaceticacid,0.05mg/literkine- 100–125(cid:2)molm(cid:3)2s(cid:3)1at22°Cfor2weeks.Tenvesselsofwild tin,pH5.8)at22°Cundercontinuouslightconditionswitha typeorca2mutantseedlingswerecollectedformitochondrial lightintensityof90(cid:2)molm(cid:3)2s(cid:3)1andwithorbitalshakingat preparations. Seedlings (50–100 g) were homogenized with 120 rpm. Cultures were maintained in 250-ml Erlenmeyer mortarandpestle,andmitochondriawereisolatedasdescribed flasksbytheinoculationof20–25mlof7-day-oldcellsinto100 previously (25). The protein content of freshly isolated mito- mlofnewmedium.Thesamegrowthmediumwithoutnitrogen chondriawasquantifiedwithaBradfordassayprotocolbefore (i.e. no ammonium nitrate or potassium nitrate) was used to beingusedforimportexperiments. 5708 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER8•FEBRUARY22,2013 AssemblyofMitochondrialComplexIinArabidopsis Two-dimensional BN/SDS-PAGE—Mitochondrial aliquots ulations, MALDI-TOF/TOF MS data were exported to werewashedwith2mlofsucrosewashbuffer(0.3Msucrose,10 mzXML files (CompassXport version 3.0 (Bruker)) and were mMTES,pH7.5)andthencentrifugedat14,300(cid:2)gfor10min. subsequently converted to text files using the Proteome- Pellets were dissolved in 100 (cid:2)l of digitonin solubilization Commons.orgIOFrameworkversion6.21.Textfileswerethen buffer(30mMHEPES,pH7.4,150mMpotassiumacetate,10% parsedusingascriptwritteninMathematicaversion7.0(Wol- (v/v)glycerol,50mg/mldigitonin).Sampleswerecentrifugedat fram Research) for further analysis. Isotopic envelopes were 18,000 (cid:2) g for 30 min after incubation for 20 min on ice to fittedusingatwo-populationmodelconsistingofnaturalabun- remove insoluble material and were subsequently supple- danceand15N-labeledfractionswiththeopensourceprogram mentedwith5(cid:2)lofServaBlueG250(5%(w/v)CoomassieBlue Isodist(29)aswehavedescribedpreviously(24). in750mMaminocaproicacid).CoomassieBlue-treatedprotein Proteindegradationrates(K )werecalculatedasdescribed D samplesweredirectlyloadedontoBNgels.Two-dimensional previously(24).Thetotalproteinabundanceinthecellculture BN/SDS-PAGE was carried out as described previously (26). atdifferenttimepointswasquantifiedusingImageJofstained Gradientgels(4.5–16%(w/v)acrylamide)wereusedforthefirst protein gels and by Amido Black analysis as described previ- BN dimension. Second dimension Tricine-SDS-polyacryl- ously(24).AnaverageK amongsubunitswithinCI(cid:4)III ,CI, D 2 amidegels,composedofa4%stackinggelanda12%separation and 650- and 200-kDa subcomplexes was separately deter- gel,wereusedforseparationofproteincomplexsubunits.Elec- minedat24,120,and168h.Half-livesofCI(cid:4)III ,CI,and650- 2 trophoresis parameters and Coomassie staining of BN and and200-kDasubcomplexesat24,120,and168hweredeter- BN/SDS-PAGEwerecarriedoutasdescribedpreviously(27). minedfromK ashalf-life(cid:7)ln2/K .ThefinalK valuesand D D D In-gel Digestion and MALDI-TOF/TOF Analysis—Protein half-livesforCI(cid:4)III ,CI,and650-and200-kDasubcomplexes 2 spotsinCI(cid:4)CIII ,CI,andCIsubcomplexlanesfromBNgels weredeterminedbyaveragingthevaluesobtainedat24,120, 2 were excised and subjected to in-gel digestion with trypsin and168h. usingpreviouslydescribedmethods(28)butusingonlyaquar- Import in Cell Culture and Plant Mitochondria—The full terofthetrypsinconcentrationinordertodecreasetheeffectof cDNAs of Arabidopsis thaliana CA1 (At1g19580), CA2 trypsin autolysis peaks on MS data interpretation. Peptides (At1g472660), CA3 (At5g66510), 20.9-(At4g16450), CAL1 were analyzed with an UltraFlex III MALDI-TOF/TOF mass (At5g63510),CAL2(At3g48680),andATPE(At1g51650)were spectrometer(BrukerDaltonics).In-geldigestedpeptideswere clonedintopDest14(Invitrogen)usinggatewaycloningtech- reconstitutedwith5(cid:2)lofasolutioncontaining5%(v/v)aceto- niques(Invitrogen)forinvitrotranscriptionandtranslationas nitrile,0.1%(v/v)trifluoroaceticacid(TFA)indouble-distilled describedpreviously(30).Weusedimportsofthe(cid:4)subunitof H O. Two (cid:2)l of each sample was spotted onto a MTP 384 ATPsynthase(At1g51650),whichdoesnotreadilygetincorpo- 2 MALDI target plate and mixed with 2 (cid:2)l of spotting matrix ratedintonativecomplexesinplantmitochondria,asacontrol (90% acetonitrile, 10% saturated (cid:3)-cyano-4-hydroxycinnamic forradiolabeledpatternsintheisolatedmitochondria.Equiva- acidinTA90(90%acetonitrile,0.01%TFA)).Driedspotswere lentquantitiesofmitochondriaisolatedfromcellculture,wild overlaidwith10(cid:2)lofcoldwashingbuffer(10mMNH H PO , type,andca2knock-outArabidopsiswereusedinimportreac- 4 2 4 0.1% TFA) and allowed to stand for 10 s before removal by tionsasdescribedpreviously(30). pipette.Spotswereanalyzedat50–85%laserintensitywithup RESULTS to1200shotsforMSanalysisperspot.Ionsbetween700and 4000m/zwereselectedforMS/MSexperimentsusing3%addi- Higher Turnover Rates of Specific Subunits in the 200- and tional laser power. Masses corresponding to trypsin autolysis 650-kDa CI Subcomplexes—Arabidopsis cells were grown for products were excluded from analysis. A maximum of 15 24,120,and168hin98%15N-enrichedMSmedium(24),mito- molecular ions were analyzed by MS/MS from each gel spot. chondrialoxidativephosphorylationcomplexeswereprepared TandemmassspectrometrydatawereanalyzedusingBiotools andseparatedbyBN-PAGE,andthemajorproteinspotswere (BrukerDaltonics)andanin-houseArabidopsisdatabasecom- identified by mass spectrometry. These data were consistent prisingATH1.pep(release9)fromtheArabidopsisInformation with the reported protein complex proteome of plant mito- ResourceandtheArabidopsismitochondrialandplastidpro- chondria(23).ThisconfirmedseveralreportedCIsubunit-con- tein sets (33,621 sequences; 13,487,170 residues), using the tainingproteincomplexes,includingCI(cid:4)CIII andthemature 2 Mascotsearchengineversion2.3.02andutilizingerrortoler- CI holoenzyme (10, 21) (Fig. 1). Peptide mass spectrometry ancesof(cid:5)1.2DaforMSand(cid:5)0.6DaforMS/MS;“MaxMissed analysis revealed 22 different CI-specific subunits in the CI Cleavages” set to 1; variable modifications of oxidation (Met) (ND1,ND7,ND9,75kDa,51kDa,39kDa,20.9kDa,18kDa, andcarbamidomethyl(Cys).Onlyproteinmatcheswithmore ASHI,B14,B13,B14.7,B16.6,B17.2,CA2,CA3,CAL1,NDU10, thantwopeptidesandwithionscoresgreaterthan40wereused NDU12,PDSW,PSST,andTYKY)and23differentsubunitsin foranalysis(p(cid:6)0.05).Forallspots,the0and24htimepoints theCI(cid:4)CIII (ND1,ND7,ND9,75kDa,51kDa,39kDa,20.9 2 were used for both MS and MS/MS analyses for protein IDs, kDa,18kDa,ASHI,B14,B13,B14.7,B16.6,B17.2,CA2,CA3, whereas only the MS data were analyzed for 120 and 168 h. CAL1,NDU10,NDU11,NDU12,PDSW,PSST,andTYKY).All SearchresultswereexportedtoCSVformatforeachspot. ofthesesubunitsareconfirmedsubunitsintheplantCIholoen- Quantification of Protein Turnover as NA/(NA(cid:4)H) and zyme(3,10,23,31).Interestingly,theCIsubunitCA2wasalso Protein Degradation as K and Protein Half-life—In order to foundinspot37,whichwasavisiblestainedregioninourBN D calculateheavylabelincorporationandtherelativeabundance gels(Fig.1).CIsubunitshavepreviouslybeenobservedat650 ofNA(naturalabundance)andH(heavylabeled)peptidepop- kDa(22),at400–450kDa(3,22,23),andat200kDa(3,22,23) FEBRUARY22,2013•VOLUME288•NUMBER8 JOURNALOFBIOLOGICALCHEMISTRY 5709 AssemblyofMitochondrialComplexIinArabidopsis 24 h 120 h CA2 CA2 CI+CIII2 CI+CIII2 ^ CI CI 650 kDa * 650 kDa * 200 kDa * 200 kDa * 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 NA/(NA+H) NA/(NA+H) CAL1 CAL1 CI+CIII2 ^ CI+CIII2 CI ^ 650 kDa * 650 kDa * 200 kDa * ^ 0.0 0.2 0.4 0.6 0.8 1.0 200 kDa * NA/(NA+H) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 NA/(NA+H) 20.9 kDa subunit 20.9 kDa subunit CI+CIII2 CI+CIII2 CI CI 200 kDa * ^ 650 kDa * 0.0 0.2 0.4 0.6 0.8 1.0 200 kDa * NA/(NA+H) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 FIGURE1.CoomassiestainingofBNandBN/SDS-PAGEseparationsof NA/(NA+H) mitochondrialmembraneproteinsubunitsandidentificationofcom- plexIsubunits.PositionsofsubunitsfromCIandCI(cid:4)CIII andthecorre- FIGURE2.IsotopeincorporationratiosofsubunitsinCI-containingcom- 2 plexesafter24and120hof15Nlabeling.Shownisthe15Nincorporation sponding650-and200-kDasubcomplexesareshown.Ellipsesandnumbers, ratio(NA/(NA(cid:4)H))inpeptidesofCA2,CAL1,and20.9-kDasubunitat24and identifiedCIsubunits(evidenceprovidedinsupplementalDataSetS1);red 120h.Errorbars,S.E.valuesofbiologicalreplicates(n(cid:7)3orelsemarkedwith indicatesthepositionofthethreenotedCIsubunitsacrosscomplexes. acaret).Differentcolorsshowthe200-kDasubcomplex(red),650-kDasub- complex(darkred),CI(yellow-green),andCI(cid:4)CIII (green).*,statisticallysig- nificantlowerNA/(NA(cid:4)H)ratiointhesubcompl2exescomparedwithintact inArabidopsismitochondrialBNgelanalyses.Analysisofgel CI(24hCAL1iscomparedwithCI(cid:4)CIII )(p(cid:6)0.05,ttest).Forcalculations,see 2 regionsatthesenativemolecularmassesandatmassesofthe supplementalDataSetS2. complex I subunits observed in the CI holoenzyme and CI(cid:4)CIII supercomplex was then carried out. This revealed for the same proteins were derived from CI and CI(cid:4)CIII . 2 2 thatCIsubunitsCAL1and20.9kDacouldbefoundalongwith These results indicate a significantly higher turnover rate for CA2at650and200kDa(Fig.1andsupplementalDataSetS1). the200-and650-kDasubcomplexes(p(cid:6)0.05)thanforCIand A wider range of protein bands was analyzed, but only those CI(cid:4)CIII . These differences were clearly apparent after just 2 including significant identifications of CI subunits are anno- 24hof15Nlabelingandwereveryevidentafter120hoflabeling tatedinFig.1. (Fig.2).Notably,thedifferencesbetweenCIandCI(cid:4)CIII were 2 High scoring peptides by the Mascot algorithm (p (cid:6) 0.05) notstatisticallysignificantforanyofthethreesubunitsexam- were further analyzed to determine what proportion of each ined(Fig.2andsupplementalDataSetS2). peptideinmassspectrawasderivedfromtheNAofnitrogenin TheturnoverratesindicatedbyNA/(NA(cid:4)H)valuesdonot theoriginalcellcultureandwhatproportionderivedfromthe definethespecificcontributionofsynthesisof15Nproteinand incorporationof15N(H)intonewproteinsynthesizedafterthe thedegradationofpre-existing14Nproteinstoturnover.How- growth medium switch. These values (as outlined under ever,dataonthegrowthrateofthecellcultureallowedusto “ExperimentalProcedures”andinRef.24)wereusedtocalcu- subsequentlycalculatethedegradationrate(K )ofCIandsub- D latetheNA/(NA(cid:4)H)ratioforspecificpeptidesfromeachgel complexes and convert this to protein half-life. The averaged spot.CalculationsofNA/(NA(cid:4)H)forallofthepeptidesofa K valueforthe200-kDasubcomplex(0.42(cid:5)0.04day(cid:3)1)was D givenproteinwereaveragedtodetermineafinalNA/(NA(cid:4)H) about10timesfasterthanforCI(cid:4)III (0.04(cid:5)0.01day(cid:3)1)and 2 ratio(cid:5)S.E.Thisvaluewasusedasaproxyforeachprotein’s CI(0.04(cid:5)0.02day(cid:3)1)andabout1.6timesfasterthanforthe turnoverrate(Fig.2andsupplementalDataSetS2).Subunits, 650-kDasubcomplex(0.26(cid:5)0.07day(cid:3)1).Theaveragedpro- includingCA2,CAL1,and20.9kDa,hadasignificantlylower teinhalf-lifeforthe200-kDasubcomplex(1.7(cid:5)0.3day)was NA/(NA(cid:4)H)ratiowhenthepeptideswerederivedfromthe thus about 8% of that of CI(cid:4)III (22.0 (cid:5) 5.7 days) and CI 2 200-and650-kDasubcomplexesthanwhenthesamepeptides (23.9(cid:5)11.9days)and60%ofthatofthe650-kDasubcomplex 5710 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER8•FEBRUARY22,2013 AssemblyofMitochondrialComplexIinArabidopsis A. CI 120 h C. CI 168 h 20.9 kDa * 20.9 kDa In PCDAS2W CNADL91 crea CNADL71 ^ ND1 sin B13 g ND9 ND7 T ND1 u B13 CA2 rn B351916 kk.DD6aa * * ^ B351916 kk.DD6aa * * * over R 75 kDa * 75 kDa * ate 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.05 0.1 0.15 0.2 0.25 0.3 NA/(NA+H) NA/(NA+H) B. CI+CIII2 120 h D. CI+CIII2 168 h 20.9 kDa * 20.9 kDa CAL1 CAL1 ND1 ND7 NDU10 CA2 ^ ND7 B13 ND1 ND9 B16.6 * B13 ^ NDU12 * NDU12 39 kDa * B16.6 75 kDa * 39 kDa 18 kDa * 75 kDa * B17.2 * * 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.05 0.1 0.15 0.2 0.25 0.3 NA/(NA+H) NA/(NA+H) E. CI 168 h grouped F. CI+CIII2 168 h grouped CA domain * * CA domain * * * * * * Mito- Mito- * * * Encoded * Encoded * Membrane Membrane * * * * Matrix Int * Matrix Int * * Matrix ** ** ** Matrix ** ** ** 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3 NA/(NA+H) NA/(NA+H) FIGURE3.IsotopeincorporationratiosforCIsubunitswithinmatureCIandCI(cid:2)CIII after120and168hof15Nincubation.A–D,theNA/(NA(cid:4)H)ratio foreachsubunitisshownforpeptidesisolatedfromCIandCI(cid:4)CIII following120and2168hofincubationwith15N.Errorbars,S.E.valuesamongbiological replicates(n(cid:7)3orelsemarkedwithacaret).*,statisticalsignificance2(p(cid:6)0.05)comparedwithCAL1.CIsubunitsaredividedintofourgroupsbasedoncolors. Red,matrixgroup(18kDa,B17.2,39kDa,51kDa,and75kDa);yellow,membraneandmatrixinteractiongroup(B16.6,B13,PDSW,NDU10,andNDU12);blue, mitochondrion-encodedgroup(ND1,ND7,andND9);green,(cid:1)-CAdomaingroup(CA1,CA2,CAL1,and20.9kDa).Errorbars,S.E.valuesamongbiological replicates(n(cid:7)3,orelsemarkedwithacaret).*,statisticalsignificance(Student’sttest,p(cid:6)0.05)comparedwiththeCAL1subunit.EandF,statistical comparisonofthefourgroupsinCIandCI(cid:4)CIII after168hof15Nincubation.Errorbars,S.D.amongmeasurementsofdifferentsubunitswithinagroup(n(cid:7) 6–11).One-wayanalysisofvarianceandTukey’2sposthocmultiplecomparisonsamongfourgroupswereused;**,p(cid:6)0.01;*,p(cid:6)0.05.Forcalculations,see supplementalDataSetS3. (3.0(cid:5)0.7days).ThelowerNA/(NA(cid:4)H)valuesofsubunitsin relatively high NA/(NA(cid:4)H) ratios and thus lower turnover subcomplexesarethusduetotheirsignificantinvivoturnover rates. The plant 20.9-kDa subunit, which has been found in duringthecourseofthe7daysoftheexperimentratherthan bothmatrixandmembranemodulesofCI(3,22),doesnothave justaprocessofdilutionthroughgrowth. adirecthomologinmammalsbutisrelatedtofungalNUXM Matrix Arm Subunits Have Higher Turnover Rates than subunits and the 13- and 21-kDa CI subunits in other Membrane-associated and Mitochondrion-encoded CI Sub- eukaryotesandwasthemoststableproteinsubunitstudiedin units—Toinvestigatewhethersubunitshavedifferentturnover bothCIandCI(cid:4)CIII . 2 rates compared with each other within CI and CI(cid:4)CIII , the Todetermineiftheseobservationsofvarying15Nincorpora- 2 NA/(NA(cid:4)H)ratiosforavarietyofCIsubunitsafter120and tionratesfordifferentmodulesofthecomplexwerestatistically 168hof15Nlabelingwerecompared(Fig.3,A–D).Matrixarm significant, CI subunits were divided into four groups as subunits,includingthe75-kDa,51-kDa,39-kDa,18-kDa,and detailed in the legend to Fig. 3. One-way analysis of variance B17.2 subunits, exhibited relatively low NA/(NA(cid:4)H) ratios and Tukey’s post hoc multiple comparisons among the four andthusrelativelyhigherturnoverratesthanothersubunitsin groupsrevealedthatthematrixgrouphadasignificantlyhigher bothCIandCI(cid:4)CIII .Thespecificmatrix-exposedarmcom- 15Nincorporationratethaneveryothergroup(p(cid:6)0.01).The 2 ponents,includingCA2,CAL1,and20.9kDa,andmitochon- membrane/matrix interaction group also had a significantly drion-encoded subunits, including ND1, ND7, and ND9, had higher15Nincorporationratethanthespecific(cid:1)-CAdomain FEBRUARY22,2013•VOLUME288•NUMBER8 JOURNALOFBIOLOGICALCHEMISTRY 5711 AssemblyofMitochondrialComplexIinArabidopsis FIGURE4.ImportofCAdomainsubunitsand20.9-kDasubunitintowildtypeArabidopsismitochondria.A,[35S]Met-labeledprecursors(P)wereincu- batedwithmitochondria(M)for60minwithandwithoutPKtreatmentandwereseparatedbySDS-PAGE.B,[35S]Met-labeledprecursorswereincubatedwith freshmitochondria,followingwhichproteinsfromPK-treatedmitochondriawereseparatedbyBN-PAGE.RadiolabeledbandsalignedtoaCoomassie-stained BN-polyacrylamidegelofthesamematerialandthepositionsofcomplexesandsubcomplexesareshown.Molecularmassesofcomplexesarereportedagainst standardizedmasses(23).*,locationof200–300-kDacomplexIsubcomplexes.Thecontrollaneisanequivalentimportassaywiththe(cid:4)subunitofATPsynthase (At1g51650),whichdoesnotreadilygetincorporatedintocomplexesandservesasareferenceforradiolabelingpatternsonSDS-polyacrylamidegelimages. group(p(cid:7)0.04inCI,p(cid:6)0.01inI(cid:4)III )(Fig.3,EandF,and degreesintoCIandCI(cid:4)CIII (Fig.4B).Thisefficientassembly 2 2 supplemental Data Set S3). Notably, there was no difference of labeled subunits might explain why the smaller subcom- betweentheincorporationrateof15NintotheCIholoenzyme plexes are less defined in CA1 and CA2. Comparison of the andtheCI(cid:4)CIII supercomplex,indicatingthatthetwoappear radiolabeledimportgelswithCoomassie-stainedgelsshowed 2 tobeinequilibrium. thatthe200–300-kDacomplexes(Fig.4B,*)seenintheimport (cid:1)-CAs,(cid:1)-CALs,and20.9-kDaSubunitPrecursorProteinsAre experiments were not exactly the same size, when compared Imported and Assembled into a Variety of Subcomplexes in with the abundant 200-kDa subcomplex comprising CA2, Mitochondria—Todeterminewhether(cid:1)-CAdomainsubcom- CAL1,and20.9-kDasubunitsthathadbeenobservedtoaccu- plexesareproducedrapidlyafterimport,weperformedinvitro mulateinFig.1;however,theyweresimilarinsizetothemul- import assays with [35S]Met-labeled CA1, CA2, CA3, CAL1, tiplesubcomplexescontaining(cid:1)-CAsfoundbyCIdisassembly CAL2, and 20.9-kDa subunit precursors into isolated Arabi- (3).The(cid:1)-CALand20.9-kDaproteinsdifferedwithrespectto dopsis cell culture mitochondria. Analysis of autoradiographs thesubcomplexesintowhichtheyprogressed,comparedwith ofSDS-PAGE-separatedsamplesshowedthatallsubunitswere the(cid:1)-CAproteins.Overall,theseresultsdemonstratedthatthe importedintomitochondriaduringa60-minincubationperiod CAdomainsubunitswerenotsimplyaddedasaccessorycom- andthatimportedproductswereresistanttoproteinaseK(PK) ponents to fully or nearly fully assembled CI, but to different digestion (Fig. 4A). The CAL1 subunit was clearly processed degreestheywerepresentinthefullrangeofsubcomplexesthat upon import, leading to a (cid:1)2-kDa decrease in its apparent areknowntoincludecomponentsofthemembranearmofCI molecular mass, and only the processed forms were PK-pro- (3,22).Importofthe(cid:4)subunitofATPsynthase,whichfailsto tected.Theothersubunitsassayedwerenotclearlyprocessed, assemble into a protein complex, was used as a radiolabeled leadingtochangesinmolecularweight,butmembrane-bound controlimportforcomparisonoflabelingongelimages. proteinswerePK-protectedafter60minoftheimportreaction CA2 Is Imported and Assembled into a Transient 200-kDa (Fig. 4A). Separation of PK-protected proteins by BN-PAGE Subcomplexinca2MutantArabidopsisMitochondria—Tofur- revealedthatCA3,CAL1and-2,and20.9-kDasubunitcouldbe therunderstandthenatureofthe(cid:1)-CAdomainsubcomplexes clearly assembled into 200–300-kDa subcomplexes and the inimports,timeseriesimportswerecomparedbetweenmito- 650-kDa subcomplex. CA1–CA3 were assembled to differing chondriaisolatedfromwildtypeandca2knock-outplantsthat 5712 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER8•FEBRUARY22,2013 AssemblyofMitochondrialComplexIinArabidopsis ofopisthokonts(animals(cid:4)fungi)(12).Extendingthisanalysis, wehavefoundthatinorganismsinwhichdeepgenomeand/or transcriptomesequencinghasbeenperformed,multiple(cid:1)-CA genesareoftenfound(Table1andsupplementalDataSetS4). Wheretheinferredproteinsequencesaredeemedtobecom- pleteattheNterminus,manyofthese(cid:1)-CAshaveapredicted mitochondriallocalization(Table1).Abioinformaticsurveyto assess the phylogenetic distribution of the 20.9-kDa protein sequenceshowsasimilarlywideoccurrenceofthecorrespond- inggeneacrossthevariouseukaryoticsupergroups(Table1). However,incontrasttowhatisseenwithanimals,the20.9-kDa subunitisverywidelypresentinfungi(whereithasaknown roleinCIassembly(18).Outsideofopisthokonts,(cid:1)-CAsand the20.9-kDasubunitexhibitastrikinglysimilarpatternofco- occurrence(Table1).AsidefromArabidopsis,directevidence for the presence of both (cid:1)-CAs and the 20.9-kDa subunit in mitochondrialCIisavailableforthegreenalga,Chlamydomo- nasreinhardtii(32),aswellasAcanthamoebacastellanii(33). FIGURE 5. Import of CA2 into ca2 mutant mitochondria. Mitochondria Variousofthesecomponentshavealsobeenidentifiedinpro- werepreparedfrom2-week-oldhydroponicallygrownwildtypeandca2 knock-outArabidopsis.A,CA2precursorswereincubatedwithwildtypeand teomicscreensofpurifiedmitochondriafromadditionalnon- ca2knock-outmitochondriafor5,10,20,30,and60min;mitochondriawere photosynthetic protists, including Tetrahymena thermophila thentreatedwithPK;andmitochondrialproteinswereseparatedbySDS- (34),Dictyosteliumdiscoideum(35),andTrypanosomabrucei PAGE.B,mitochondriaweretreatedwithPK,andsolubilizedcomponents werethenseparatedbyBN-PAGE.RadiolabeledbandsalignedtoCoomassie- (36, 37) (Table 1). Evidently, the subunits of the subcomplex stainedBN-polyacrylamidegelsofthesamesamples,andthepositionsof describedhereinArabidopsisarewidelyconservedandcoinci- complexesandsubcomplexesareindicated.*,locationof200–300-kDacom- plexIsubcomplexes. dentinCIacrosseukaryotes. have been previously reported by others (11) and have been DISCUSSION propagatedinourlaboratory.Analysisinthemutanthadthe CIMatrixArmandMitochondrion-encodedSubunitsHave potential advantage that [35S]Met-labeled precursors did not DifferentTurnoverRates—Theassemblyofthelargelynucleus- havetocompetewithunlabeledones,andinitialassemblypro- encoded matrix arms and the set of mitochondrion-encoded cesses and assembly factors might be more abundant in ca2 proteinsthataremainlyinthemembranearmofCIoccurvia knockouts, where the abundance of fully assembled CI is independentprocessesinotherorganisms(13–17,19,20,38); reduced(11).Atimeseriesof5,10,20,30,and60minofCA2 thus,itisconceivablethatthesesubcomplexesmightturnover precursorimportwasconducted,andthesamplesweresepa- atdifferentratesinplants.Ourdatashowthatthematrixarm ratedbySDS-PAGEandBN-PAGE.MoreCA2precursorwas (includingmembersofboththeN-module(51kDaand75kDa) imported and PK-protected in mitochondria isolated from Arabidopsis ca2 knockouts than in the equivalent wild type and the Q-module (39 kDa), as defined for the mammalian mitochondria(Fig.5A).OnBNgels,itwasclearthatCA2pre- complex(39))haveahigherturnoverratethaneitherthemito- cursors were rapidly assembled into a discrete 200-kDa sub- chondrion-encodedsubunitsorthe(cid:1)-CAdomaincomponents complex in mitochondria from the ca2 knockout (Fig. 5B). ofthemembranearm.Elevatedproteinturnovercanarisefrom Incomparison,mitochondriafromwildtypeshowedassembly high synthesis or high degradation rates or a combination of of CA2 into the same 200–300-kDa range of complexes both processes (24). As matrix arm subunits form the major observedduringimportsintocellculturemitochondria(Fig.4B ROS production sites in the respiratory chain, these compo- versus Fig. 5B). Whereas the [35S]Met incorporation into CI nentsmaybedamagedmorereadilyandrequirereplacement steadilyincreasedintheca2knockoutduringtheimporttime morefrequently.ROS-mediatedproteinoxidationcansensitize course,theabundanceofthe200kDabandpeakedat20min proteinstoproteolyticattack(40,41).ItispossiblethattheROS and declined thereafter, indicating that it was further assem- releasedfromCIcouldleadtoincreasedoxidationofsubunits bledintointactCIandwasthusaproductiveintermediateof in the vicinity or that ROS damage in the matrix is generally assembly (Fig. 5B). CI(cid:4)CIII could not be visualized until 20 greaterinmagnitudethaninthemembrane(41).Thematrix 2 min,andthenitexhibitedthesamesteadilyincreasingpattern arm subunits are also likely to be more accessible to matrix of [35S]Met incorporation seen for CI. A similar but weaker proteasesthanthemainlymembranesubunits.Itisalsopossi- patternwasobservedinwildtypemitochondriaforprogressive blethatthenaturalbreakdownofintactCIsimplybeginswith labelingfromsubcomplexestoCIandCI(cid:4)CIII (Fig.5B). thedegradationofmatrixarmsubunits,irrespectiveofdamage 2 ConservationandLossesof20.9,(cid:1)-CA,and(cid:1)-CALProteins oraccessibility.Whicheverthereason,thehigherturnoverrate among Eukaryotic Lineages—Although (cid:1)-CAs were initially of matrix arm subunits than of both the mitochondrion-en- consideredplant-specificsubunitsofCI(6,10,11),morerecent coded and the specific (cid:1)-CA domain subunits demonstrates work has demonstrated the widespread occurrence of (cid:1)-CA that different functional modules of CI have distinct protein homologs throughout eukaryotes, with the notable exception half-livesinplantcells. FEBRUARY22,2013•VOLUME288•NUMBER8 JOURNALOFBIOLOGICALCHEMISTRY 5713 AssemblyofMitochondrialComplexIinArabidopsis TABLE1 Phylogeneticdistributionof(cid:1)-CAand20.9-kDasubunitsofCI MajortaxonomicgroupsarebasedonFig.2ofBrownetal.(51).Shadedandboldfaceentriesindicatethatthereisdirectevidenceforoneormoreofthecorresponding componentsinmitochondriaand/orisolatedCI,asdescribedunder“Results”(furtherdetailsarealsoprovidedinsupplementalDataSetS4).(cid:4)/(cid:3),presence/absenceofthe 20.9-kDasubunitgeneinagivenorganism.Datainthetablearetakenlargelyfrompubliclyavailablegenome/transcriptomesequencingprojects,wheregenecoverageis likelytobehigh.Additionalsequencesforotherorganismsaswellasotherinformation(accessionnumbers,mitochondrialtargetingprobabilities)maybefoundin supplementalDataSetS4. a(cid:1)-CAhomologscanbeclassifiedintotwotypes,basedonahighdegreeofconservation(Type1)ornot(Type2)intheN-terminalregion(12).Plant(cid:1)-CAsfallintothe Type1category,whereasplant(cid:1)-CALsareincludedamongType2(cid:1)-CAs.Anasteriskdenotesthatthe(cid:1)-CATypeassignmentistentative. b(cid:1)-CAmultiplicityattributabletogenomeduplication(s). cUnpublisheddatafromtheA.godoyigenomeproject. 5714 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER8•FEBRUARY22,2013 AssemblyofMitochondrialComplexIinArabidopsis Supercomplex Formation Does Not Significantly Stabilize mustcompetewiththecorrespondingsubunitspresentinvivo ArabidopsisComplexI—Ithaspreviouslybeenproposedthat and could lessen the subcomplex signal or even change the formationofsupercomplexI(cid:4)III mightstabilizecomplexIin originalassemblyprocess,especiallywhenredundantsubunits 2 Arabidopsis(42).Loweringproteinturnoverbysupercomplex competewithsubunitshavinghighsequencesimilarity.Mito- formation could provide a functional significance to these chondriafromCIsubunitmutantshaveprovedtobeauseful superassembliesintheelectrontransportchain,beyondtheir system for detection of assembly intermediates in mammals roleinelectrontransportcatalysis.Thisproposalissupported (14,19).WefoundthatmoreCA2precursorcouldbeimported by evidence from mice that knockout of complex III (43) or into ca2 mutant Arabidopsis mitochondria and that a strong complexIV(44)subunitsdecreasesthecontentofcomplexI, 200-kDasubcomplexbandcouldbedetected,whichweakened suggestingthatsupercomplexformationstabilizescomplexI.It after 20 min as the radiolabel was transferred into CI and hasalsobeenproposedinhumanmitochondriathatsupercom- CI(cid:4)CIII .Thus,(cid:1)-CAsand(cid:1)-CALsappeartoassembleintoa 2 plexformationisrequiredforassemblyofcomplexIaswellas productive membrane 200-kDa subcomplex, which serves as foritsstabilization(45).Inaddition,structuralstabilizationof theinitiatorofCIassembly.Ourdataprovidekeyexperimental labile membrane protein complexes is proposed as a major evidencetojustifythemodelrecentlyproposedinplants(22) function of supercomplex formation in Paracoccus denitrifi- thatsubunits(includingatleastND1andND7andmatrixsub- cans(46).Aswepointedoutunder“Results,”however,wedid unitsof75and39kDa)areaddedtoaplant-specific200-kDa not show any impact of supercomplex formation on protein subcomplex to form a 650-kDa subcomplex that is further turnoverrateinArabidopsiscells(Fig.3).Hence,thesedirect assembledintoCI. measurementsarenotabletoconfirmaroleforsupercomplex OurdatadonotprovethatCA,CAL,andthe20.9-kDasub- formation in enhanced stabilization of complex I. Rather, it unitaretheonlysubunitsofthis200-kDasubcomplex.Previous appearsthatplantcomplexIisinequilibriumbetweenthecom- surveysofBN-PAGEhavefoundevidenceforAt2g28430and plexIandthesupercomplexI(cid:4)III states.Higherordercom- ND9inthisregiononBNgels(23).Althoughwewerenotable 2 plexesandrespirasomescouldnotbedetectedinouranalysisof toconfirmthisinourdata,thepossibilityofotherCIsubunits Arabidopsis membranes, so we are not able to determine if inthis200-kDacomplexcannotbeexcludedandislikelygiven thesemighthaveenhancedstability,butthistechniquecould itsmass.However,thelowabundanceofthecomplexhasnot be used in systems where larger supercomplexes are evident allowedustodatetomakeanyprogressinfindingotherrapid andprovideinvivoevidenceofrelativestability. turnoversubunitsinthismassrange. ASpecificSubcomplexofUnknownFunctionProteinsHasa ConservationoftheSubunitsof200-kDaSubcomplexSuggests ProductiveRoleinCIAssembly—Arangeofknock-outmutants an Ancestral Feature of CI Important for CI Assembly—The forCIsubunitsleadingtotheaccumulationofcertaininterme- patternsofconservationofgenesfor(cid:1)-CAsandthe20.9-kDa diates has previously been exploited to propose that CA2 is subunit and the evidence for their conserved presence in CI incorporatedattheearlystageofCIassembly(22),and(cid:1)-CA- (Table 1) argue that both protein types are ancestral compo- containingsubcomplexeshavebeendetectedinBN-polyacryl- nentsofCI,presentattheearlieststagesofeukaryoticcellevo- amidegelsofwildtypemitochondria(23).Usinga15Nlabeling lution;notably,however,thisco-occurrencepatternisnotpre- approach,wehaveshownthehigher15Nincorporationrateof served in opisthokonts (fungi (cid:4) animals) (Table 1). Of subunitscontainedinsubcomplexesthaninCIandCI(cid:4)CIII , particular note is the finding that several protists included 2 revealingthatthesestructureswerenotcreatedinvitrobysol- withintheassemblageHolozoa(animalsandtheirspecificuni- ubilization or electrophoresis artifacts but rather are in vivo cellularrelatives(47))areseentoencodeeither(cid:1)-CAsorthe intermediatesofdisassemblyorassemblyofCI. 20.9-kDa subunit, although (like fungi) not both (Table 1). The CI subcomplexes could conceivably be disassembly Intriguingly, genes for both (cid:1)-CAs and the 20.9-kDa subunit intermediatesthathaveahighdegradationrate.However,the can also be retrieved from the recently determined genome higher15NincorporationinsubcomplexesascomparedwithCI sequence of the apusomonad Thecamonas trehans, arguably andCI(cid:4)CIII meansthisexplanationonlyholdsifdissociation theclosestneighbortoopisthokonts(48).Theseobservations 2 of the complex is biased toward newly assembled CI or indicate that progressive loss of components of this putative CI(cid:4)CIII .Itisnotclearwhatcouldcausesuchabias.Also,our assemblysubcomplexbeganinopisthokontsatthebaseofthis 2 calculationsbasedonCoomassiestainingabundancetogether lineage, after its divergence from its closest related lineages, withtheproportionofpeptide15Nrevealthattheamountof ApusozoaandAmoebozoa.InHolozoa,lossofallofthesub- 15N-labeled subunits within subcomplexes exceeds the total units known to be in the subcomplex appears to have been amountof15NlabelinbothCIandCI(cid:4)CIII combined.Hence, completebeforetheemergenceofmulticellularanimals(Meta- 2 thebalanceofthedata,from15Nincorporationalone,isinfavor zoa). Outside of eukaryotes, (cid:1)-CAs are prominent among ofthe200-kDasubcomplexesfoundinwildtypebeingassem- (cid:3)-proteobacteria, and the (cid:1)-CAs of these organisms are the blyratherthandisassemblyintermediates. mostsimilarinsequencetotheeukaryotic(cid:1)-CAs,althoughin Theimportexperimentsusing(cid:1)-CAs,(cid:1)-CALs,and20.9-kDa thiscasetheydonotappeartobeassociatedwithCI(49).Con- subunitsshowedthatallofthesesubunitscanbeimportedinto sideringthe(cid:3)-proteobacterialancestryofmitochondria(50),it cell culture mitochondria and that they form a series of sub- ispossible(perhapsprobable)thatthisbacterialgroupwasthe complexesranginginsizefrom100to300kDa,althoughthe evolutionarysourceofmitochondrial(cid:1)-CAs,whichwerethen 200-kDacomplexfoundinwildtypedidnotpredominate(Fig. recruited to serve in CI assembly early in eukaryotic cell 1 versus Figs. 4 and 5). Imported [35S]Met-labeled precursors evolution. FEBRUARY22,2013•VOLUME288•NUMBER8 JOURNALOFBIOLOGICALCHEMISTRY 5715 AssemblyofMitochondrialComplexIinArabidopsis 18. Schulte,U.,Fecke,W.,Kru¨ll,C.,Nehls,U.,Schmiede,A.,Schneider,R., Acknowledgments—WethankDr.IanCastleden(CentreforCompu- Ohnishi,T.,andWeiss,H.(1994)Invivodissectionofthemitochondrial tationalSystemsBiology,UniversityofWesternAustralia)forexper- respiratoryNADH:ubiquinoneoxidoreductase(complexI).Biochim.Bio- tiseandassistanceinfileformatconversionsandconcatenation.We phys.Acta1187,121–124 alsothankDr.MarekElias(CharlesUniversity,Prague)forpermis- 19. Lazarou,M.,McKenzie,M.,Ohtake,A.,Thorburn,D.R.,andRyan,M.T. siontoincludeunpublisheddatafromtheon-goingAndaluciagodoyi (2007)Analysisoftheassemblyprofilesformitochondrial-andnuclear- genomesequencingproject(Table1andsupplementalDataSetS4). DNA-encodedsubunitsintocomplexI.Mol.Cell.Biol.27,4228–4237 20. Vogel,R.O.,vandenBrand,M.A.,Rodenburg,R.J.,vandenHeuvel,L.P., Tsuneoka,M.,Smeitink,J.A.,andNijtmans,L.G.(2007)Investigationof REFERENCES thecomplexIassemblychaperonesB17.2LandNDUFAF1inacohortof 1. Walker,J.E.,Skehel,J.M.,andBuchanan,S.K.(1995)Structuralanalysis CI-deficientpatients.Mol.Genet.Metab.91,176–182 ofNADH:ubiquinoneoxidoreductasefrombovineheartmitochondria. 21. Klodmann,J.,Lewejohann,D.,andBraun,H.P.(2011)Low-SDSBlue MethodsEnzymol.260,14–34 nativePAGE.Proteomics11,1834–1839 2. Videir,A.,andDuarte,M.(2001)OncomplexIandotherNADH:ubiqui- 22. Meyer,E.H.,Solheim,C.,Tanz,S.K.,Bonnard,G.,andMillar,A.H.(2011) none reductases of Neurospora crassa mitochondria. J. Bioenerg. Insightsintothecompositionandassemblyofthemembranearmofplant Biomembr.33,197–203 complexIthroughanalysisofsubcomplexesinArabidopsismutantlines. 3. Klodmann, J., Sunderhaus, S., Nimtz, M., Ja¨nsch, L., and Braun, H. P. J.Biol.Chem.286,26081–26092 (2010)InternalarchitectureofmitochondrialcomplexIfromArabidopsis 23. Klodmann,J.,Senkler,M.,Rode,C.,andBraun,H.P.(2011)Definingthe thaliana.PlantCell22,797–810 protein complex proteome of plant mitochondria. Plant Physiol. 157, 4. Cardol, P. (2011) Mitochondrial NADH:ubiquinone oxidoreductase 587–598 (complexI)ineukaryotes.Ahighlyconservedsubunitcompositionhigh- 24. Li, L., Nelson, C. J., Solheim, C., Whelan, J., and Millar, A. H. (2012) lighted by mining of protein databases. Biochim. Biophys. Acta 1807, DeterminingdegradationandsynthesisratesofArabidopsisproteinsus- 1390–1397 ingthekineticsofprogressive15Nlabelingoftwo-dimensionalgel-sepa- 5. Sunderhaus,S.,Dudkina,N.V.,Ja¨nsch,L.,Klodmann,J.,Heinemeyer,J., rated protein spots. Mol. Cell Proteomics 11, DOI: 10.1074/mcp. Perales,M.,Zabaleta,E.,Boekema,E.J.,andBraun,H.P.(2006)Carbonic M111.010025 anhydrasesubunitsformamatrix-exposeddomainattachedtothemem- 25. Lee,C.P.,Eubel,H.,O’Toole,N.,andMillar,A.H.(2008)Heterogeneityof brane arm of mitochondrial complex I in plants. J. Biol. Chem. 281, themitochondrialproteomeforphotosyntheticandnon-photosynthetic 6482–6488 Arabidopsismetabolism.Mol.CellProteomics7,1297–1316 6. Perales, M., Parisi, G., Fornasari, M. S., Colaneri, A., Villarreal, F., 26. Scha¨gger,H.,andvonJagow,G.(1991)Bluenativeelectrophoresisfor Gonza´lez-Schain,N.,Echave,J.,Go´mez-Casati,D.,Braun,H.P.,Araya,A., isolationofmembraneproteincomplexesinenzymaticallyactiveform. andZabaleta,E.(2004)(cid:1)carbonicanhydraselikecomplexinteractwith Anal.Biochem.199,223–231 plantmitochondrialcomplexI.PlantMol.Biol.56,947–957 27. Eubel,H.,Ja¨nsch,L.,andBraun,H.P.(2003)Newinsightsintotherespi- 7. Zabaleta,E.,Martin,M.V.,andBraun,H.P.(2012)Abasalcarboncon- ratorychainofplantmitochondria.Supercomplexesandauniquecom- centratingmechanisminplants?PlantSci.187,97–104 positionofcomplexII.PlantPhysiol.133,274–286 8. Wang,Q.,Fristedt,R.,Yu,X.,Chen,Z.,Liu,H.,Lee,Y.,Guo,H.,Merchant, 28. Taylor,N.L.,Heazlewood,J.L.,Day,D.A.,andMillar,A.H.(2005)Dif- S.S.,andLin,C.(2012)The(cid:1)-carbonicanhydrasesubcomplexofmito- ferentialimpactofenvironmentalstressesonthepeamitochondrialpro- chondrialcomplexIisessentialfordevelopmentandimportantforpho- teome.Mol.CellProteomics4,1122–1133 tomorphogenesisofArabidopsis.PlantPhysiol.160,1373–1383 29. Sperling, E., Bunner, A. E., Sykes, M. T., and Williamson, J. R. (2008) 9. Villarreal,F.,Mart´ın,V.,Colaneri,A.,Gonza´lez-Schain,N.,Perales,M., Quantitative analysis of isotope distributions in proteomic mass spec- Mart´ın,M.,Lombardo,C.,Braun,H.P.,Bartoli,C.,andZabaleta,E.(2009) trometryusingleast-squaresFouriertransformconvolution.Anal.Chem. Ectopicexpressionofmitochondrial(cid:1)carbonicanhydrase2causesmale 80,4906–4917 sterilitybyantherindehiscence.PlantMol.Biol.70,471–485 30. Carrie,C.,Giraud,E.,Duncan,O.,Xu,L.,Wang,Y.,Huang,S.,Clifton,R., 10. Heazlewood,J.L.,Howell,K.A.,andMillar,A.H.(2003)Mitochondrial Murcha, M., Filipovska, A., Rackham, O., Vrielink, A., and Whelan, J. complexIfromArabidopsisandrice.Orthologsofmammalianandfungal (2010)ConservedandnovelfunctionsforArabidopsisthalianaMIA40in componentscoupledwithplant-specificsubunits.Biochim.Biophys.Acta assemblyofproteinsinmitochondriaandperoxisomes.J.Biol.Chem.285, 1604,159–169 36138–36148 11. Perales,M.,Eubel,H.,Heinemeyer,J.,Colaneri,A.,Zabaleta,E.,andBraun, 31. Meyer,E.H.,Taylor,N.L.,andMillar,A.H.(2008)Resolvingandidenti- H.P.(2005)Disruptionofanucleargeneencodingamitochondrial(cid:1)car- fyingproteincomponentsofplantmitochondrialrespiratorycomplexes bonicanhydrasereducescomplexIandsupercomplexI(cid:4)III levelsand usingthreedimensionsofgelelectrophoresis.J.ProteomeRes.7,786–794 2 altersmitochondrialphysiologyinArabidopsis.J.Mol.Biol.350,263–277 32. Cardol,P.,Vanrobaeys,F.,Devreese,B.,VanBeeumen,J.,Matagne,R.F., 12. Gawryluk,R.M.,andGray,M.W.(2010)Evidenceforanearlyevolution- andRemacle,C.(2004)Higherplant-likesubunitcompositionofmito- aryemergenceof(cid:1)-typecarbonicanhydrasesascomponentsofmito- chondrial complex I from Chlamydomonas reinhardtii. 31 conserved chondrialrespiratorycomplexI.BMCEvol.Biol.10,176 componentsamongeukaryotes.Biochim.Biophys.Acta1658,212–224 13. Ku¨ffner,R.,Rohr,A.,Schmiede,A.,Kru¨ll,C.,andSchulte,U.(1998) 33. Gawryluk,R.M.,Chisholm,K.A.,Pinto,D.M.,andGray,M.W.(2012) Involvementoftwonovelchaperonesintheassemblyofmitochondrial CompositionofthemitochondrialelectrontransportchaininAcantham- NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol. 283, oebacastellanii.Structuralandevolutionaryinsights.Biochim.Biophys. 409–417 Acta1817,2027–2037 14. Mimaki,M.,Wang,X.,McKenzie,M.,Thorburn,D.R.,andRyan,M.T. 34. Smith,D.G.,Gawryluk,R.M.,Spencer,D.F.,Pearlman,R.E.,Siu,K.W., (2012)UnderstandingmitochondrialcomplexIassemblyinhealthand andGray,M.W.(2007)Exploringthemitochondrialproteomeofthe disease.Biochim.Biophys.Acta1817,851–862 ciliateprotozoonTetrahymenathermophila.Directanalysisbytandem 15. Schulte, U. (2001) Biogenesis of respiratory complex I. J. Bioenerg. massspectrometry.J.Mol.Biol.374,837–863 Biomembr.33,205–212 35. Czarna,M.,Mathy,G.,Mac’Cord,A.,Dobson,R.,Jarmuszkiewicz,W., 16. Tuschen,G.,Sackmann,U.,Nehls,U.,Haiker,H.,Buse,G.,andWeiss,H. Sluse-Goffart,C.M.,Leprince,P.,DePauw,E.,andSluse,F.E.(2010) (1990)AssemblyofNADH:ubiquinonereductase(complexI)inNeuro- DynamicsoftheDictyosteliumdiscoideummitochondrialproteomedur- sporamitochondria.Independentpathwaysofnuclear-encodedandmi- ingvegetativegrowth,starvationandearlystagesofdevelopment.Pro- tochondriallyencodedsubunits.J.Mol.Biol.213,845–857 teomics10,6–22 17. Videira,A.,andDuarte,M.(2002)FromNADHtoubiquinoneinNeuro- 36. Acestor,N.,Zikova´,A.,Dalley,R.A.,Anupama,A.,Panigrahi,A.K.,and sporamitochondria.Biochim.Biophys.Acta1555,187–191 Stuart, K. D. (2011) Trypanosoma brucei mitochondrial respiratome. 5716 JOURNALOFBIOLOGICALCHEMISTRY VOLUME288•NUMBER8•FEBRUARY22,2013

Description:
esis in plants has been shown by gene knock-out studies (8), and (BN-PAGE) and in vitro [35S]Met import and assembly assays . dance and 15N-labeled fractions with the open source program . Ellipses and numbers, .. H. P. (2005) Disruption of a nuclear gene encoding a mitochondrial car-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.