ebook img

SU(6) Heisenberg model on the honeycomb lattice: competition between plaquette and chiral order PDF

0.73 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SU(6) Heisenberg model on the honeycomb lattice: competition between plaquette and chiral order

SU(6)Heisenbergmodelonthehoneycomblattice: competitionbetweenplaquetteandchiralorder PierreNataf,1 Miklo´sLajko´,2 PhilippeCorboz,3 AndreasM.La¨uchli,4 KarloPenc,5,6 andFre´de´ricMila1 1InstituteofTheoreticalPhysics,EcolePolytechniqueFe´de´raledeLausanne(EPFL),CH-1015Lausanne,Switzerland 2Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan 3University of Amsterdam, Faculty of Science ITF, NL-1090 GL Amsterdam 4Institut fu¨r Theoretische Physik, Universita¨t Innsbruck, A-6020 Innsbruck, Austria 5Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B. 49, Hungary 6MTA-BMELendu¨letMagneto-opticalSpectroscopyResearchGroup, 1111Budapest, Hungary (Dated:January6,2016) 6 1 WerevisittheSU(6)Heisenbergmodelonthehoneycomblattice,whichhasbeenpredictedtobeachiralspin 0 liquidbymean-fieldtheory[G.Szirmaietal.,Phys. Rev. A84,011611(2011)]. Usingexactdiagonalizations 2 offiniteclusters,infiniteprojectedentangledpairstatessimulations,andvariationalMonteCarlosimulations basedonGutzwillerprojectedwavefunctions,weprovidestrongevidenceinfavourofthecompetingplaquette n state, whichwasreportedtobehigherbutclosebyinenergyaccordingtomean-fieldtheory. Thisisfurther a confirmedbytheinvestigationofthemodelwitharingexchangeterm,whichshowsthatthereisatransition J betweentheplaquettestateandthechiralstateatafinitevalueoftheringexchangeterm. 5 PACSnumbers:67.85.-d,71.10.Fd,75.10.Jm,02.70.-c ] s a g With the recent progress towards achieving SU(N) sym- ED: Withthestandardexactdiagonalizationapproachthat - metrywithultra-coldfermionicatoms,1–6 theinvestigationof takes into account all spatial symmetries but only an abelian t n theeffectiveSU(N)Heisenbergmodelonvarious1Dand2D subgroup of the SU(N) symmetry group (color conservation a latticeshasbecomeaveryactivefieldofresearch. Severalre- pluscycliccolorpermutations), thecurrentlylargestaccessi- u markablegroundstatepropertieshavebeenreported, includ- ble cluster with a number of sites multiple of 6 (a require- q ing long-range color order,7 algebraic correlations,8 transla- ment for having a singlet ground state) is an 18-site cluster. . at tionalsymmetrybreakingvalence-bondsolidstatesinwhich The spectrum is shown in Fig. 1(a). The plaquette state is m groups of N atoms form local singlets on plaquettes,9,10 and expected tobe 3-folddegenerate inthe thermodynamiclimit chiralgroundstates,suggestedbyHermeleetal.11,12forMott (onestateattheΓpointandtwostatesatthetwoK pointsin - d insulatorsonsquarelatticewithseveralparticlespersite. In- theBrillouinzone),butinthe18siteclustertheplaquettescan n terestingly, a mean-field calculation even predicted a chiral alsowraparoundthetorus,10artificiallyenlargingthenumber o spinliquidintheSU(6)Heisenbergmodelonthehoneycomb c lattice with only one particle per site.13 However, the rather [ naturalplaquettestateinwhichsixSU(6)spinsformsinglets 1.2 1 on nonadjacent hexagons was found to lie very close in en- ×6 Ae v ergy.Sothisresultcallsforfurtherinvestigationwithmethods 1 ×1 ΓGB2 59 thatgobeyondmean-fieldtheory. ××26 AΓAo2,ΓB1 ×4 KE ×6 9 In this paper, we have attacked this problem with state- 0.8 ×6 Ae ×2 ×4 ΓE1,KA2 0 of-the-art numerical methods: exact diagonalizations (ED), 0 infinite projected entangled pair states simulations (iPEPS), GS 0.6 1. and variational Monte Carlo (VMC) simulations based on −E 0 Gutzwiller projected wave functions. As could be expected E 0.4 ×2 6 fromthequasi-degeneracyofthemean-fieldresults,itturned 1 outtobeverydifficulttosolvetheproblem,andallmethods 0.2 : hadtobepushedtotheirlimittoreachadefinitiveconclusion, v Xi buteachmethodledindependentlytothesameconclusionthat 0 ×1 ΓB2 18 sit(eas) ×1 24 sit(ebs) thegroundstateisactuallyaplaquettestate. Thechiralstate r is not far in parameter space however, and it does not take a 0 6 0 6 a large ring-exchange term to stabilize it, as demonstrated by C2 C2 EDandVMC. TheSU(6)HeisenbergmodelisdefinedbytheHamiltonian FIG. 1. Spectrum of the 18- (left) and 24-site (right) clusters as a function of the quadratic Casimir C . The degeneracies of some (cid:88) 2 H= P , (1) statesareindicated,aswellasthespatialquantumnumbersforthe ij 18-site cluster. For the 24-site cluster, the presence of 3 low-lying (cid:104)i,j(cid:105) statesisastrongindicationofaplaquettephase(seetextfordetails). where the operator P = (cid:80) |α β (cid:105)(cid:104)β α | exchanges the Inset: broken-symmetry plaquette state reconstructed from ED. It ij α,β i j i j N = 6colorsαandβ oftheatomsonneighboringsitesi,j breaks translations, but the D6 symmetry is preserved. The bond energyis-0.81(-0.56)forthethick(thin)lines. ofahoneycomblattice. 2 (a) (b) (c) (d) FIG.2.(cid:104)P (cid:105)−1/6spin-spin(a)and(cid:104)P P (cid:105)−(cid:104)P (cid:105)(cid:104)P (cid:105)dimer-dimercorrelations(b)intheexactground-stateofthe24-sitecluster.As 0i 12 kl 12 kl areferencewepresentthedimer-dimercorrelationsofthetranslationalinvariantlinearcombinationofvariational0ππ-fluxprojectedstates with|t /t |=0.8(c),andofthevariational2π/3-fluxprojectedstate(d). Thepatternofthedimer-dimercorrelationsoftheED(b)andthe d h 0ππvariationalstates(c)isanindicationoflong-rangeplaquetteordering. of plaquette coverings to 6. By contrast , the chiral state is −0.9 iPEPS color−ordered state a) 2 × N = 2 × 6 = 12-fold degenerate in the spontaneous iPEPS plaquette state time-reversal symmetry (TRS) breaking scenario. While the −0.95 VMC chiral state first three levels ΓB , KA (2×) (plus the symmetry related e VMC plaquette state level ΓE1 particular2to Ns2= 18) are in agreement with the er sit −1 ED expectationsforaplaquettestate,10thesestatesareveryclose y p g tomanyotherexcitedstates(includingnonsinglets). Soitis ner−1.05 difficulttoprovidestrongevidenceforeitherstateonthebasis E ofthe18-sitecluster. −1.1 Togofurther,wehaveusedanewlydevelopedmethodthat allows one to take advantage of the full SU(N) symmetry, 0 0.02 0.04 0.06 0.08 0.1 hence to work directly in the irreducible representations of 1/D or 1/N s SU(N). ForthesingletandthesmallestvaluesoftheCasimir operator,thisleadstoHilbertspacesofmuchsmallerdimen- b) 0.8 c) sionthanthestandardapproach.14 Thespectrumisshownin 0.3 0.6 Fig.1(b). Interestinglyenough,on24sites,thespectrumcon- 0.2 sistsof3low-lyingstatesreasonablywellseparatedfromthe m ∆ E0.4 restofthespectrum, thefirstindicationthatthegroundstate 0.1 might have plaquette order. The spin-spin and dimer-dimer 0.2 correlations are shown in Fig. 2. The spin-spin correlations 0 0 decayquitefast,consistentwithsomekindofspinliquid,and 0 0.05 0.1 0 0.05 0.1 the dimer-dimer correlations are consistent with a plaquette 1/D 1/D or 1/Ns phase on the honeycomb lattice (see for instance the discus- sionoftheSU(3)caseinRef.[10]). FIG.3. iPEPSresultsfortheSU(6)Heisenbergmodelonthehon- eycomblattice. (a)Comparisonofthegroundstateenergyobtained Asanadditionaltest,wehavedeterminedthespatialquan- withiPEPS,VMC,andED,asafunctionofinversebonddimension tumnumbersofthefirstexciteddoubletbyapplyingoneofthe Dandinversesystemsize. TheboldsymbolsmarkimprovedVMC twoelementarytranslationsofthelattice. Thecorresponding resultsforN = 24and72(seeTableIandmaintext). Forlarge s eigenstatesbelongtothetwoK pointsintheBrillouinzone. bonddimensionwithiPEPStheplaquettestatehasthelowestvari- Thecorrelationsinthesestatesareverysimilartothoseinthe ationalenergy, inagreementwithVMC.(b)Colororderparameter groundstate,whichsuggeststhatthesethreestatescouldcor- asafunctionofinverseD. Itisfiniteforthecolor-orderedstateand respondtothedegenerategroundstateofthethermodynamic vanishes for the plaquette state. (c) Difference in energy between limitsplitbyfinitesizeeffects. Todemonstratethatthisisthe the strongest bond and the weakest bond in the unit cell, which is case,wehaveconstructedthesymmetricsumofthesestates, stronglysuppressedinthecolor-orderstate,andfiniteintheplaque- ttestate,consistentwithplaquettelong-rangeorder.Thedottedlines which corresponds to the finite-size approximation of a bro- areaguidetotheeye. ken symmetry state (a simple task since the numerical wave functions are real and not complex). In that state, the strong bonds correspond to a covering of the lattice with hexagons (seeinsetofFig.1(b)),withadifferencebetweenstrongand betweenthegroundstateandthefirstpairoflowlyingstates. weak bond energies of 0.25, in good agreement with the ex- So, in the next sections, we turn to the results obtained with trapolatediPEPSestimate(seebelowFig. 3(c)). othermethods. However,oneshouldnotforgetthatwehaveaccesstoonly iPEPS: AniPEPSisavariationaltensornetworkansatzto one cluster with the appropriate number of low-lying states, representa2Dwavefunctioninthethermodynamiclimit.15–17 and that the gap to the next levels is comparable to the gap The ansatz on the honeycomb lattice consists of a unit cell 3 of rank-4 tensors which is periodically repeated on the infi- and the artificial fluxes given by their total phase around the nitelattice, foreachtensoronephysicalindexcarriesthelo- elementary hexagons (plaquettes). An importance sampling cal Hilbert space of lattice site, and three auxiliary indices Monte Carlo method was used to calculate the energies and connecttothenearest-neighbortensors. Theaccuracyofthe correlationsoftheprojectedstates.8 Ourcalculations(shown ansatz can be systematically controlled by the bond dimen- in Fig. 4) reveal that the lowest energy states are similar to sion D of the auxiliary indices. For the experts we note that those of Ref. [13]: (i) a configuration with uniform 2π/3- the contraction of the tensor network is performed using a fluxbeforeprojection,correspondingtoachiralspin-liquid28, variant18,19 ofthecorner-transfermatrixmethod,20,21 andthe and (ii) a translation symmetry breaking configuration with optimization is done by an imaginary time evolution using a 0-flux in a center plaquette surrounded by π-flux plaquettes combined simple and (fast-) full update.22,23 To increase the with non-uniform hopping integrals, corresponding to a pla- efficiencyofthesimulationswemakeuseofabeliansymme- quetteorderedphase.Whilethemean-fieldresultsofRef.[13] tries.24,25Asimilarapproachhasbeenusedinpreviouscalcu- slightlyfavoredthechiralphase,theplaquette-orderedphase lationsofSU(N)Heisenbergmodels,seee.g. Refs.8and10. turned out, after projection, to have a slightly lower energy ForanintroductiontoiPEPSwerefertoRefs.22and23. for all studied system sizes (see Table I), in agreement with We have used a 6-site unit cell which is compatible with theothernumericalapproaches. bothaplaquettestateandauniformstate. Asinitialstateswe The energy minimum for the 0ππ-flux states, shown in startedeitherfromcompletelyrandomtensorsorfromapla- Fig. 4, occurs for t /t ≈ −0.85. Now, for t ≤ −t /2, d h d h quettestatemadeofSU(6)singletsonhexagons.Intheformer whichincludestheoptimalenergyvalue,thefermionicwave case,usingbonddimensionsuptoD =24,anewcompeting functionisgaplessattheFermi-energy: thelowestfilledband stateappears,inwhicheachsiteintheunitcellexhibitsadif- touchestheemptybandaboveitattheΓpoint.10. So,bycon- ferentdominantcolor.ForD ≤24thiscolororderedstatehas trast to the plaquette phase of the SU(3) Heisenberg on the a lower variational energy than the plaquette state, as shown honeycomblattice,whichisdescribedbyagappedfermionic inFig.3(a). However, theslopein1/D islargerforthepla- wavefunction10,theplaquettephasediscussedhereforSU(6) quettestate. Sowehavepushedthecalculationtoverylarge corresponds to a gapless spectrum before projection, hence values of D, up to D = 36. Around D = 30 the energies possibly also to a gapless spectrum after projection. Since of the two ordered states indeed cross such that the plaque- thisgaplesspointisnotprotected(thespectrumisgappedfor tte state clearly becomes energetically favored. We have not t > −t /2), we suspect that this is an artefact, and that d h found a competing uniform chiral state with iPEPS which is adding additional terms in the fermionic Hamiltonian might anindicationthatatleastforthebonddimensionsstudiedhere open a gap and further lower the variational energy of that the plaquette state is the lowest energy state, consistent with state, whichisnotasgoodasthatofthechiralstate(seebe- theVMCresult. low). However,itmightaswellbethatthespectrumisindeed InFig.3(b)wepresenttheresultsforthecolor-orderparam- gapless. Thispointdeservesfurtherinvestigation. eterofthetwocompetingstates,givenbythelocalmoment N 24 24opt 72 72opt 288 meanfield13 (cid:118) s m=(cid:117)(cid:117)(cid:116)65(cid:88)(cid:18)(cid:104)Sαβ(cid:105)− δα6β(cid:19)2, (2) p2lπaqcuheirttael --11..0003694 --11.0.015074 --11..00007797 --11..00102837 --11..00008727 --11..001205 α,β 3 averaged over all sites in the unit cell, where Sβ = |α(cid:105)(cid:104)β| α TABLEI.VMCenergiesofGutzwillerprojectedwavefunctionsfor aretheSU(6)spinoperatorsandα,β runoveralllocalbasis thecompeting0ππ(plaquette)andthe2π/3fluxconfigurationsfor states. For the color-ordered state m is large for low D. It different system sizes. The statistical error of the calculations is decreaseswithincreasingD buttendstoafinitevalueinthe smallerthanO(10−4).Theoptimizedenergiesareobtainedbycon- infinite D limit. The local moment of the plaquette state is sideringtheoverlapbetweenprojectedstateswithdifferentboundary much more strongly suppressed with increasing D, and van- conditionsbeforeprojection. ishes in the large D limit, consistent with a singlet without colororder. Ring exchange term: Since the energy difference between Figure 3(c) shows the difference between the highest and theplaquetteandchiralphasesfoundbyVMCisverysmall, lowestbondenergyintheunitcellwhichmeasuresthemag- itistemptingtospeculatethatthechiralphasemightbestabi- nitude of the plaquette order. For the color ordered state it lizedbyaringexchangetermaroundthehexagons. Wehave is strongly suppressed with increasing D and vanishes for thusconsidered large D, in contrast to the plaquette state which exhibits a H=cosθ(cid:88)P +sinθ (cid:88) i(cid:0)P −P−1(cid:1) (3) largedifferenceinbondenergy,wherethestrongbondsform ij hexagonalplaquettes. (cid:104)i,j(cid:105) plaquttes (cid:55) (cid:55) VMC: Gutzwiller projected wave functions26,27 offer a wherethesuminthesecondtermrunsoverallhexagonalpla- qualitative and potentially quantitative description for both quettes,andtheoperatorsP andP−1permutetheconfigu- typesofcompetingscenariosfoundbymean-fieldstudy.13 In rationonahexagonclockwiseandanticlockwise(alsocalled (cid:55) (cid:55) thismethodweprojectouttheconfigurationshavingmultiple ring exchange terms). The new term directly couples to the occupancyfromtheFermi-seaconstructedfromamean-field scalar chirality on the hexagons, breaks time-reversal invari- model.Thevariationalparametersarethehoppingamplitudes ance, and is a bona-fide SU(6) generalization of an SU(2) 4 -0.8 -0.98 (c) ofbehaviorbetweenthesmallθrange,withatwofoldexcited 72 288 0 0 -0.85 -1 0ππ0π0 0(π) 0(π) 0(π) state well separated from the rest of the spectrum, and the πππ 0 0 0 range above θ (cid:39) 0.2, where a manifold of 6 singlet states E/Ns -0.9 -1.02-1.2 -1 -0.8 φ0φ0φ0 00(π) 0(π) 00(π) breesctoomfethseaslmpeocsttrudmeg.eTnweroaoteftahnedsevestraytewsealrlesaetptahreatΓedpofrionmt,atnhde -0.95 theremainingfourareattheK points,inagreementwiththe (d) -1 π π momentaofthesixchiralVMCstates(discussedbelow). So, 0(π) (a) 0(π) 0(π) the ED results are clearly consistent with a phase transition -1.05 π π π 0.5 (b) 〈〈PPhd〉〉 π00 0ππ πππ 000 0π(π) 0(π) 0π(π) btheetwrienegneaxcphlaaqnugeettteerpmh.asNeoatendthaatcthhieradlepgheanseeraucpyonofinthcerecahsiirnagl stateisonlyequalto6andnot12becausetheHamiltonianof P〉d 0 (e) Eq.(3)explicitlybreaksthetimereversalsymmetry. P, 〉〈h 2π/3 2π/3 2π/3 This interpretation is further supported by the comparison 〈 -0.5 2π/3 withVMCon24sites.Toaccessthelowenergyspectrumand 2π/3 2π/3 not just the ground state, we have constructed a large family 2π/3 -1 ofGutzwillerprojectedstatesbychangingtheboundarycon- -1.5 -1 -0.5 0 0.5 1 1.5 -tthh ttddei2π/3 ditions (BC) of the fermionic wave-functions,32 considering td/th up to 30 differentBCs for the 2π/3 flux states, and upto 90 forthe0ππ-fluxstates(30foreachtranslationbreakingstate), FIG. 4. Energies of Gutzwiller projected wave functions (a) and andwehavediagonalizedtheoverlapmatrixandtheHamilto- thebondenergiesontd andth bondsafterprojectionforthediffer- nianinthisvariationalsubspace.33,34 Theresultsaresumma- entfluxconfigurationsasafunctionoft /t forN = 72. (c)-(e) d h s rized in Fig. 5. For the chiral state, this parton construction showstheconsideredfluxconfigurations,blackbondsrepresenthop- leads to 6 (and only 6) significant eigenvalues of the overlap pingamplitudet ,whiledarkandlightpurplebondsdenotehopping d matrix,whichthemselvesleadto6low-lyingstatesveryclose amplitudes t and −t , respectively. In case of the uniform 2π/3 h h in energy35, while for the plaquette states, there is not such fluxconfiguration,redarrowsrepresentcomplexhoppingamplitude ∝ei2π/3,forwhicht =t∗. a clear cutoff, and the three low-lying states are not so well ji ij splitfromtheotherstates. Althoughthevariationalplaquette andchiralstatesarehigherinenergy,theiroverallbehavioris qualitatively consistent with ED. In particular, the energy of -1 0.1 theplaquettestateisminimalatθ =0,whilethatofthechiral λ states is minimal around θ = 0.36, and their energies cross OV10-3 aroundθ =0.16. 10-5 SimilaroverlapcalculationswerecarriedoutforNs = 72 θE()/Ns-1.05 2x 5 10 15 20 sfoitrese,acwhitthra3n0sladtiifofenrebnretaBkCinsgfsotrattehe(326πi/n3tofltuaxl)cfoasret,hean0dπ1π2- fluxcase. Theenergycorrectionsforthe0ππcaseturnoutto belarger(seeTableI),againpromotingtheplaquetteordered 2x -1.1 NNs==2244 02πππ/3 phaseoverthechiralliquidphaseattheHeisenbergpoint.36 Ns=24, ED Discussion: Tosummarize,thenumericalevidenceclearly s 0 π/8 π/4 pointstoaplaquettegroundstatefortheSU(6)modelonthe θ honeycomb lattice, but with a chiral phase close by in pa- rameter space. Even if it led to the wrong conclusion, the FIG.5. ComparisonoftheEDspectrum(blackpoints)ofthemodel mean-fieldapproachshouldbegivencreditforidentifyingthe ofEq.(3)withthevariationalenergies(continuouslines)basedon right candidates with very similar energies.13 This lends fur- Gutzwillerprojectedwave-functionsforthe0ππplaquettephaseand thersupporttothemean-fieldpredictionbyHermeleetal.11,12 the2π/3chiralphase.Theinsetshowstheeigenvalues(λ )ofthe ofachiralphaseforseveralparticlespersitesincetheredoes OV overlapmatricesoftheprojectedstateswithdifferenttwistedbound- not seem to be competing VBS states too close in energy in aryconditionsbeforeprojection. thatcase. Numericalworkalongthelinesofthepresentpaper totestthispredictionisinprogress. Acknowledgements: This work has been supported by the Hamiltonian on the kagome lattice which has been shown to Swiss National Science Foundation, the JSPS KAKENHI give rise to an extended SU(2) chiral spin liquid phase29,30. GrantNumber2503802, bytheHungarianOTKAGrantNo. Alternatively it can be viewed as a drastically truncated ver- K106047, by the National Science Foundation under Grant sionofaparentHamiltonianforaSU(N)chiralspinliquid31. No. NSFPHY11-25915,bytheAustrianScienceFundFWF In the following, we will discuss the properties of that (F-4018-N23 and I-1310-N27) and by the Delta-ITP consor- model as a function of θ, noting that θ = 0 corresponds to tium(aprogramoftheNetherlandsOrganisationforScientific thepureHeisenbergmodel(1). Research(NWO)thatisfundedbytheDutchMinistryofEd- TheEDspectrumon24sites(Fig.5)showsaclearchange ucation,CultureandScience(OCW)). 5 1 C. Wu, J.-p. Hu, and S.-c. Zhang, Phys. Rev. Lett. 91, 186402 041108(2011). (2003). 19 P.Corboz,T.Rice, andM.Troyer,Phys.Rev.Lett.113,046402 2 A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, (2014). J.Ye,P.Zoller,E.Demler,M.D.Lukin, andA.M.Rey,NatPhys 20 T.NishinoandK.Okunishi,J.Phys.Soc.Jpn.65,891(1996). 6,289(2010). 21 R.Oru´sandG.Vidal,Phys.Rev.B80,094403(2009). 3 F.Scazza,C.Hofrichter,M.Ho¨fer,P.C.DeGroot,I.Bloch, and 22 P. Corboz, R. Orus, B. Bauer, and G. Vidal, Phys. Rev. B 81, S.Fo¨lling,NaturePhysics (2014),10.1038/nphys3061. 165104(2010). 4 S.Taie,R.Yamazaki,S.Sugawa, andY.Takahashi,NatPhys8, 23 H.N.Phien,J.A.Bengua,H.D.Tuan,P.Corboz, andR.Orus, 825(2012). Phys.Rev.B92,035142(2015). 5 G.Pagano, M.Mancini, G.Cappellini, P.Lombardi, F.Scha¨fer, 24 S.Singh,R.N.C.Pfeifer, andG.Vidal,Phys.Rev.B83,115125 H.Hu,X.-J.Liu,J.Catani,C.Sias,M.Inguscio, andL.Fallani, (2011). NaturePhysics10,198(2014). 25 B.Bauer, P.Corboz, R.Oru´s, andM.Troyer,Phys.Rev.B83, 6 X.Zhang,M.Bishof,S.L.Bromley,C.V.Kraus,M.S.Safronova, 125106(2011). P. Zoller, A. M. Rey, and J. Ye, Science 345, 1467 (2014), 26 H.YokoyamaandH.Shiba,J.Phys.Soc.Jpn.56,1490(1987). http://www.sciencemag.org/content/345/6203/1467.full.pdf. 27 C.Gros,AnnalsofPhysics189,53(1989). 7 T.A.To´th,A.M.La¨uchli,F.Mila, andK.Penc,Phys.Rev.Lett. 28 X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 105,265301(2010). (1989). 8 P.Corboz,M.Lajko´,A.M.La¨uchli,K.Penc, andF.Mila,Phys. 29 B. Bauer, L. Cincio, B. P. Keller, M. Dolfi, G. Vidal, S. Trebst, Rev.X2,041013(2012). andA.W.W.Ludwig,NatCommun5(2014). 9 P.Corboz,K.Penc,F.Mila, andA.M.La¨uchli,Phys.Rev.B86, 30 A.Wietek,A.Sterdyniak, andA.M.La¨uchli,Phys.Rev.B92, 041106(2012). 125122(2015). 10 P.Corboz,M.Lajko´,K.Penc,F.Mila, andA.M.La¨uchli,Phys. 31 H.-H.Tu,A.E.Nielsen, andG.Sierra,NuclearPhysicsB886, Rev.B87,195113(2013). 328 (2014). 11 M. Hermele, V. Gurarie, and A. M. Rey, Phys. Rev. Lett. 103, 32 Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vish- 135301(2009). wanath,Phys.Rev.B85,235151(2012). 12 M.HermeleandV.Gurarie,Phys.Rev.B84,174441(2011). 33 T.LiandF.Yang,Phys.Rev.B81,214509(2010). 13 G. Szirmai, E. Szirmai, A. Zamora, and M. Lewenstein, Phys. 34 J.-W. Mei and X.-G. Wen, ArXiv e-prints (2014), Rev.A84,011611(2011). arXiv:1407.0869[cond-mat.str-el]. 14 P.NatafandF.Mila,Phys.Rev.Lett.113,127204(2014). 35 P. Nataf, M. Lajko´, A. Wietek, K. Penc, F. Mila, and A. M. 15 F. Verstraete and J. I. Cirac, Preprint (2004), arXiv:cond- La¨uchli,ArXive-prints (2016),arXiv:1601.xxxxx. mat/0407066. 36 Note that while the diagonal energies depend on the value of 16 T.Nishino,Y.Hieida,K.Okunishi,N.Maeshima,Y.Akutsu, and t /t , the spanned subspace of the projected states with differ- d h A.Gendiar,Prog.Theor.Phys.105,409(2001). entboundaryconditionsbeforeprojectionremainsthesame,thus 17 J.Jordan,R.Oru´s,G.Vidal,F.Verstraete, andJ.I.Cirac,Phys. theoptimizedenergiesareindependentofsmallchangesoft /t . d h Rev.Lett.101,250602(2008). 18 P.Corboz,S.R.White,G.Vidal, andM.Troyer,Phys.Rev.B84,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.