ebook img

SU(2)-symmetry in a realistic spin-fermion model for cuprate superconductors PDF

9.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SU(2)-symmetry in a realistic spin-fermion model for cuprate superconductors

SU(2)symmetryinarealisticspin-fermionmodelforcupratesuperconductors T. Kloss1,2, X. Montiel1,2, C. Pépin1 1IPhT, L’Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette, France and 2IIP,UniversidadeFederaldoRioGrandedoNorte,Av.OdilonGomesdeLima1722,59078-400Natal,Brazil (Dated:May22,2015) WeconsiderthePseudo-Gap(PG)stateofhigh-Tc superconductorsinformofacompositeorderparameter fluctuating between 2p -charge ordering and superconducting (SC) pairing. In the limit of linear dispersion F and at the hotspots, both order parameters are related by a SU(2) symmetry and the eight-hotspot model of Efetov et al. [Nat. Phys. 9, 442 (2013)] is recovered. In the general case however, curvature terms of the 5 dispersionwillbreakthissymmetryandthedegeneracybetweenbothstatesislifted.Takingthefullmomentum 1 dependenceoftheorderparameterintoaccount,wemeasurethestrengthofthisSU(2)symmetrybreakingover 0 thefullBrillouinzone. ForrealisticdispersionrelationsincludingcurvaturewefindgenericallythattheSU(2) 2 symmetry breaking is small and robust to the fermiology and that the symmetric situation is restored in the y large paramagnon mass and coupling limit. Comparing the level splitting for different materials we propose a ascenariothatcouldaccountforthecompetitionbetweenthePGandtheSCstatesinthephasediagramof M high-Tcsuperconductors. 2 PACSnumbers:74.40.Kb74.20.-z74.25.Dw74.72.Kf 2 ] I. INTRODUCTION attempttosuchaunificationhasbeentheSO(5)theorywhich n relatesthed-waveSCstatetotheAForder30.Notlessfamous o c istheSU(2)symmetrywhichrelatestheSCd-waveorderto Reflecting our rather poor understanding of the physics - the π-flux phase of orbital currents1. In both cases, the key r of cuprate superconductors, two kinds of theories are still p question was to argue that the energy splitting between the debating whether the final solution for this problem will u two orders was small enough so that thermal effects would be a “bottom-up” approach based on a strong coupling s restore the symmetry above T and below T∗, which are the . theory1–3 or rather a “top-down” approach, where symme- c t SCandthePGcriticaltemperatures.Thesamequestionholds a triesandproximity toaQuantumCritical Point(QCP)plays here for the SU(2) symmetry relating d-wave and QDW or- m a dominant role4–7. The recently proposed Eight Hot Spots der. Although the EHS model in its linearized version ver- - (EHS)modelisapromising“top-down”approachtocuprate d superconductors8,9. ItreducestheFermisurfacetoonlyeight ifies the symmetry exactly, it is not clear if a more realistic n Fermisurface,includingcurvatureandthewholebandstruc- pointsontheanti-ferromagnetic(AF)zoneboundaryandtak- o ture,willinducesmallorlargeenergysplitting.Moreover,the ing long-range AF fluctuations between them into account. c EHSmodelreliesonlong-rangeAFfluctuationswhichmedi- [ When the dispersion is linearized at the hot spots, one ob- ate the interactions, but the experimental observation points serves surprisingly that an SU(2) symmetry relating the d- 2 outtoshort-rangeAFcorrelationswhichpotentiallywillgap wave SC channel (Cooper pairing) to the d-wave bond or- v a whole part of the Fermi surface, as depicted in Fig. 1. A der, or Quadrupolar Density Wave (QDW), (charge channel) 4 theoryfor“hotregions”insteadof“hotspots”isthusneeded. 2 ispresent. Moreover,animposantpre-emptiveinstability(of 3 order of 0.6J, where J is the AF energy scale) in the form Inthispaperweaddresscarefullyalltheseissuebyevaluat- 5 ofacompositeSU(2)orderparameteremerges,thathasbeen ingtheSU(2)splittingonrealisticFermisurfaces,forthetwo 0 identifiedasagoodcandidateforthepseudo-gap(PG)stateof distinctcomponentsofthecompositeorderparameter: thed- 1. thosecompounds9–12. Motivatedbyanimpressivesetofnew waveχ-fieldinthechargesector(whichformstheQDWorder 0 experimentalresults13–22,thistheorypointsouttotheemerg- intheEHSmodel)andthed-wave∆-fielddescribingtheSC 5 ing idea that charge order is most certainly a key player in pairingsector. WefindthatthesplittingoftheSU(2)symme- 1 thephysicsofcupratesuperconductors,inadditiontoAFor- : tryincreaseswiththemassoftheparamagnons,butdecreases v der, d-wave SC state and the Mott insulator phase. Angle- withthestrengthofthecouplingconstantbetweenAFfluctu- i resolved photoemission spectroscopy (ARPES) experiments X ationsandconductionelectrons. Thisopensawideregimeof confirm as well the presence of modulations in the SC state parameters where the splitting is minimal – of the order of a ar forunderdopedBi220123,24andhasbeeninterpretedeitherin fewpercents–andwheretheSU(2)symmetryisexpectedto termsofchargeorderorPairingDensityWave(PDW)inside berecoveredthroughthermaleffectsinaregimeoftempera- thePGphase25–28. Finally, weliketomentiontherecentin- tures T <T <T∗. Above the PG temperature T∗ all traces c terpretationofRamanresonancesbyacollectiveSU(2)mode of the short-range charge and SC field have disappeared. Of whichisthefirstexperimentalresultthatsupportstheideaof course the SU(2) symmetry holds in the whole temperature acompositePG29. range between T and T∗, hence subleading charge instabil- c TheideaofanemergingSU(2)symmetrybelongstoawide ities which occur below T∗ do have their SU(2) partners in class of theories which explain the PG phase of the cuprates theformofPairingDensityWaves(PDW)31,32. Wealsostudy throughthenotionofdegeneratesymmetrystatesbetweenthe the effects of the Fermi surface shape in breaking the SU(2) d-waveSCorderandanotherpartner.Maybethemostfamous symmetry–whichisonlypreservedintheEHSmodelwitha 2 300 (cid:114) YBCO (cid:54) YBCO (cid:114) Bi2201 (cid:54) Bi2201 200 (cid:114) Bi2212 (cid:54)| (cid:54)(cid:114) HBig21221021 (cid:114)|, | (cid:54)(cid:114) eHl.g d1o2p0e1d |100 (cid:54) el. doped 0 0.001 0.01 0.05 0.1 a) m 1 FIG.1. (Coloronline)SchematicFermisurfaceofhole-dopedsu- YBCO perconductorsinthefirstBrillouinzoneofasquarelattice.Theorder 0.8 Bi2201 parametersspatiallyextentoverhotregions,thatarecenteredaround (cid:54)| Bi2212 Hg1201 cthoeuhpolitnsgpoQtstpooospitpioonssedanrdegwiohnics.harecoupledbythe2pFandtheAFM (cid:54) | / |0.6 el. dope (cid:60) (cid:114) 0.4 | 0.2 0 0.001 0.01 0.05 0.1 b) m FIG.3. (Coloronline)Panela): Variationofthemaximumvalue ofthegapfunctions|χ|and|∆|asafunctionofthemassm. Note thatinallmaterialsthe2pFpairingintermsof|χ|vanishesabruptly, whereastheSCpairingintermsof|∆|approacheszeroasymptoti- callywhentheparamagnonmassmisincreased.Panelb):Variation of the level splitting as a function of the mass m. In both panels FIG. 2. Schematic phase diagram of hole-doped cuprate super- λ =44. conductors. Theeffectivemassoftheparamagnonpropagatorm eff serves as as measure for the distance to the quantum critical point QCP.IntheSCphasem ispositiveandvanishesattheQCPtobe- eff comenegativeintheAFMphase.Thebaremassm isdefinedfar Thefermionicfieldψ describestheelectronswhicharecou- bare away from criticality at some higher temperature, indicated by the pled via Lφ to spin waves described by the bosonic field φ. dashedline. Theeffectivespin-wavepropagatorisD−1=γ|ω|+|q|2+m q wheremistheparamagnonmasswhichvanishesattheQCP andγ aphenomenologicalcouplingconstant, whichweesti- linearizeddispersion. Wefindthatthesplittingissmallaway matefromitsformintheEHSmodel9tobeoftheorder10−5. from the points where χ and ∆ are maximal. In the physi- Fornotationalreasonswealsowriteq≡(iω,q). Neglecting calsituationofalargeparamagnonmassandalsostrongcou- the spinwave interaction (u=0) one can formally integrate pling,themaximumof χ movestowardsthezoneedgelead- outthebosonicdegreesoffreedom. Inthespinbosonmodel, ing to bond order parallel to the x-y axes. All these findings thisgeneratesaneffectivespin-spininteractionoftheform pointtotherealizationthat,whilebeingasecondaryinstabil- itytoAFordering,chargeorderisakeyplayerinthephysics S =−∑J¯(cid:126)S (cid:126)S . (2) int q q −q ofthePGphaseofthecuprates. q It is convenient to use a fermionic representation of the spin operator(cid:126)Sandconsiderinthefollowingonlytheparamagnet- II. MODEL icallyorderedphaseinz-directio´n,sothatJ¯=3/2J. Thepar- tition function then writes Z = D[Ψ]exp(−S −S ) with 0 int Westartfromthespin-fermionmodel8,9,31withLagrangian L=L +L ,where ψ φ S =∑Ψ†G−1Ψ , (3a) 0 k 0,k k Lψ =ψ∗(∂τ+εk+λφσ)ψ , (1a) k,σ L = 1φD−1φ+u(cid:0)φ2(cid:1)2 . (1b) Sint =− ∑ Jqψk†,σψk+Q+q,σ¯ψk†(cid:48),σ¯ψk(cid:48)−q−Q,σ. (3b) φ 2 2 k,k(cid:48),q,σ 3 800 withk¯ =k+QandthematrixMˆ is (cid:114), m = 0.001 600 (cid:54)(cid:114)(cid:54),,, mmm === 000...000000515 Mˆk=(cid:18)mˆ†k mˆk(cid:19), mˆk=(cid:18)−−∆χ†k+kp −χ−∆kk(cid:19). (8) (cid:54)| (cid:114)(cid:54),, mm == 00..0011 ThefermionsinEq.(6)cannowbeintegratedoutsothatthe (cid:114)|, |400 (cid:114)(cid:54),, mm == 00..0055 partitionfunctionbecomes | ˆ (cid:104) 1 1 (cid:105) 200 Z= D[Mˆ]exp − ∑TrJ−1Mˆ Mˆ + ∑TrlogGˆ−1 , 4 q k¯+q k 2 k k,q k (9) 0 40 80 120 with Gˆ−1=Gˆ−01−Mˆ. After functional differentiation of the a) (cid:104) freeenergyF =−TlnZwithrespecttoMˆk weobtaintheMF 800 equationsinmatrixform (cid:114) YBCO (cid:54)(cid:114) BYiB2C20O1 Mˆk=∑Jk¯−k(cid:48)Gˆk(cid:48). (10) 600 (cid:54) Bi2201 k(cid:48) (cid:114) Bi2212 (cid:54)| (cid:54)(cid:114) HBig21221021 The matrix equation can now be projected onto the different (cid:114)|, |400 (cid:54)(cid:114) eHl.g d1o2p0e1d coordmepropnaeranmts.etWereswwihllicchoncasindenrohtebreenthoen-czaesreooaftttwheoscaommeppeotiinngt | (cid:54) el. doped in k space. Therefore, we consider the equation for ∆ with 200 χ =0andviceversa. Thegapequationsfollowas 0 40 80 120 ∆k=T ∑ Jk¯−k(cid:48)∆2 +ε∆2k(cid:48)+ω(cid:48)2, (11a) ω(cid:48),k(cid:48) k(cid:48) k(cid:48) b) (cid:104) FIG.4. (Coloronline)Panela):Variationofthemaximumvalueof χk=−ℜTω∑(cid:48),k(cid:48)Jk¯−k(cid:48)(iω(cid:48)−εk(cid:48))(iωχ(cid:48)k−(cid:48) εk(cid:48)+p)−χk2(cid:48). (11b) thegapfunctions|χ|and|∆|inYBCOasafunctionofthecoupling λ fordifferentmassesm. Panelb):Variationofthemaximumvalue To solve these equations numerically, εk is parametrized ofthegapfunctions|χ|and|∆|fordifferentcompoundsasafunction in tight-binding approximation with the following parame- ofthecouplingλ forthemassm=0.5. ters: YBCO33 (parameter set tb2), Bi220134, Bi221235 and Hg120136 and for electron doped cuprates37. The momen- tumsumsinEq.(11)arethencarriedoutbydiscretizingthe wherethebarepropagatoris k-spacebyrectangularandequidistantgrids. Tokeepthenu- merical computations tractable we neglect the frequency de- Gˆ0−k1=diag(iω−εk,iω+ε−k−p,iω−εk+p,iω+ε−k), (4) pendence of χ and ∆38. The Matsubara sums are then car- ried out exactly in the limit T →0 and the momentum sums and the spinor field Ψ = (ψ ,ψ† ,ψ ,ψ† )T. are performed over 200×200 points and over one Brillouin k k,σ −k−p,σ¯ k+p,σ −k,σ¯ Furthermore, J−1 = 4D−1/3λ2, σ ∈ {↑,↓} labels the spin, Zone (BZ). Moreover, note that the 2pF vector which con- q q Q=(π,π)T istheAFMorderingvectorandpstandsforthe nectstwoopposedFSpointsat±pF dependsontheexternal momentumkinEq.(11)andisonlyproperlydefinedonthe 2p vector, asdepictedinFig.1. Notethatthechemicalpo- F FS.Sinceweexpectthatthemaincontributiontothemomen- tential µ is implicitly subtracted from the dispersion ε . We k tumsuminEq.(11)comeshoweverfromthehot-spotregion, selecttheSCandthe2p channelbyintroducingthetwoorder F we make the approximation to take the 2p vector constant parameters F and take the 2p from the hotspot for arbitrary points in the F firstBZ,asdepictedinFig.1. Throughoutthisarticle,weuse ∆ =(cid:104)ψ† ψ† (cid:105), χ =(cid:104)ψ† ψ (cid:105). (5) k k,σ −k,σ¯ k k,σ k+p,σ 10%holefilling(respectively10%electronfillingintheelec- tron doped case) and the bandgap is 104K. To evaluate the TheinteractionS isnowdecoupledbymeansofaHubbard- 1 strength of the SU(2) symmetry, we study the level splitting Stratonovichtransformation. Thepartitionfunctionbecomes |χ−∆|/∆. Thisparameteraffordthestudyoftherelativeam- (uptoanormalizationfactor) plitudebetweentheQDWandSCorderparameter, χ and∆. ˆ ItvanishesforaperfectSU(2)symmetryandbecomescloser Z= D[Ψ]D[∆,χ]exp[−S −S ]. (6) 0 1,eff to one for a complete SU(2) symmetry breaking. From the Lagragian we find that φλ has dimension of an energy and Theeffectiveinteractionis φ ∼m−1/2. To estimate the coupling strength, we evaluate an effective energy via E =φλ ∼m−1/2λ and away from (cid:104) (cid:105) eff S1,eff = ∑ Jq−1χk†χk¯+q+Jq−1∆†k∆k¯+q −∑Ψ†kMˆkΨk, (7) criticalityE0∼m0−1/2λ wherewetakem0=1asbaremass, k,q,σ k,σ compareFig.2. 4 0.4 0.4 0.6 0.4 0.4 Π0 0.2 Π0 0.2 Π0 Π0 0.2 0.2 0 0Π 0Π 0Π 0Π FIG.5. (Coloronline)Gapfunctions|χ|,|∆|and|χ−∆|/|∆max|(fromuptodown)fordifferentmaterialsinthefirstBZ.Thecompounds are(fromlefttoright):YBCO,Bi2201,Bi2212andHg1201. Thefigurescorrespondtothesmallmassandsmallcouplinglimit(λ =40and massm=10−3;notethatthebarecouplingissmallw.r.t.therenormalizedoneE (cid:39)40KandE =1265K)thatismostunfavorableforthe 0 eff SU(2)symmetry. III. RESULTSANDDISCUSSION becomesoforderoneareclearlyseen. Withinthenonlinear σ-modelassociatedtothepresenttheory9, theSU(2)regime isasignatureofthePGofthesystem,whiletheenergysplit- A. Massandcouplingdependenceonlevelsplitting tingofthetwolevelsisassociatedtothesuperconductingT . c WeseethatFig.3a)mimicsthegenericphasediagramofthe cuprateswherethePGlineT∗abruptlyplungesinsidetheSC Inordertotesttheeffectofthecurvatureontheleveldegen- domeatsomevalueofoxygendoping. eracy,wehaveplottedinFig.3a)thevariationofthemaxima of χ and∆withtheparamagnonmassmforafixedvalueof thecouplingconstantλ. Weobserveasimilaritybetweenthe various compounds that we have tested. In a wide range at AlthoughitisveryencouragingtoseethattheSU(2)regime low value of the mass, the SU(2) degeneracy between χ and has a non-zero probability to exist, one can wonder whether ∆ is verified within a few percents. The existence of such a theparamagnonmassinholedopedcupratesuperconductors regime is an indication that a PG driven by SU(2) symme- is small, since typically the AF correlation length is of few tryispossibleincupratesuperconductors. Asthemassisin- lattice constants40. The issue is addressed in Fig. 4a), where creased we progressively lose the level degeneracy with the the values of χ and ∆ are shown for a fixed mass as a func- parameter χ abruptly dropping down while the paring ∆ is tionofthecouplingconstantλ. Hereagainagenericpattern asymptotically going down to zero when the mass increases. emerges. Forsmallλ theSU(2)symmetryisbroken,butsur- ItisinterestingtoseethattheSU(2)symmetryisweakforthe prisingly,aboveacertainthresholdofλ,theSU(2)symmetry electrondopedandHg1201compoundwhichexperimentally isalmostcompletelyrestored. AsseeninFig.4a),thebigger show much weaker signs of charge order22,39. We also find themassis,thestrongerthecouplingconstantneedstobefor that the compound Bi2212 behaves sightly different than the the symmetry to be restored. Figure 4b) shows that this be- othercompoundsinFig.3and4,althoughitisnotclearatthe haviorisquitegeneralamongthedifferentcompounds. Note currentstagewherethisdeviationcomesfrom. InFig.3b)the however that the electron -doped compound is less sensitive levelsplittingisdirectlyshownforallthecompoundsandthe totheeffectofincreasingthecouplingconstant,comparedto two regimes, the one at low mass where the SU(2) symme- the other hole-doped ones, for which the SU(2) symmetry is try is obtained and the higher mass regime where |χ−∆|/∆ restoredforlargeenoughλ. 5 B. Spacialdependenceofthesplitting The SU(2) symmetry is not only broken due to the curva- ture of the Fermi surface at the hot spots, but it is typically broken in the BZ away from the eight hot spots. Figure 5 shows the typical shape of |χ| and |∆| for four compounds underinvestigationforthemostunfavorablecaseforthesym- metry, thatisforsmallvaluesofthemassandcouplingcon- stant. The level splitting is shown as a density plot in the bottom. It is rather small almost everywhere in the BZ and 0.1 atthehotspotpositionswithmaximaoftheorderof20-40% aroundthe“shadow”Fermisurface. Themainlearningfrom Π0 0.05 theseplotsisthatthevariationsoftheFermisurfacegeometry givesarathersmalldepartingfromtheSU(2)-degeneracyfor 0 a various range of compounds. In all cases, the SU(2) sym- 0Π metryiswellrespectedatthehotspotpositions. FIG. 6. (Color online) Generic picture of the gap functions |χ|, In Fig. 6 we place ourselves in the strong coupling and |∆|and|χ−∆|/|∆max|inthefirstBZforhole-dopedcuprates,here strong mass regime and plot the variation of |χ| , |∆| and explicitlyshownforYBCO.Thefigurescorrespondtothelargemass |χ−∆|/∆. The level splitting is also shown in Fig. 6 and andlargecouplinglimit(λ =160andmassm=0.5, sothatE (cid:39) 0 foundtobemuchsmallerthanthepreviouscaseinFig.5,and 160KandEeff=226K)wheretheSU(2)symmetryiswellrespected. hasdroppedtoanorderof5-10%41. Interestingly,thetypical shapeof|χ|and|∆|intheBZhaschangedcomparedtoFig. 5, withmaximanowaroundthezoneedge. Thisisthejusti- ficationthat“hotregions”insteadof“hotspots”isthecorrect descriptionofholedopedcupratesuperconductorswithinthe spin-fermion model. Note that since the maximum of |χ| is now at the zone edge, the wave vector corresponding to the associatedchargeorderisnowparalleltothex/yaxesofthe system,insimilaritywiththefindingsofRef.[12]. 0.4 Π0 C. Globaltrendsincupratesuperconductors 0.2 The interplay between mass and coupling allows us to re- 0Π lateglobaltrendsinthephasediagramforcupratesupercon- FIG. 7. (Color online) Generic picture of the gap functions |χ|, ductors with the strength of the SU(2) symmetry breaking. |∆|and|χ−∆|/|∆max|inthefirstBZforelectrondopedmaterials. In the electron doped compounds the coupling between AF The figures correspond to the small mass and small coupling limit modesandconductionelectronsisbelievedtobeweakerthan (λ =40andmassm=10−3,sothatE (cid:39)40KandE =1265K) 0 eff fortheholedopedcase. Fromtheaboveanalysiswefindthat thatismostunfavorablefortheSU(2)symmetry. theSU(2)symmetryislessrespectedinthatcaseleadingtoa smallerPGdomeandoverallsmallerSC,seeFig.7. Forthe same reasons La compounds where the coupling is also be- IV. CONCLUSION lievedtobesmallbehavesimilarly. Ontheotherhand,hole- doped cuprates like YBCO live in the large mass and large Inconclusion,thispapergivesfirmgroundtotheintuition couplingregime. Thisresultsinbroadgappedregionsinthe thatthechargesectorisakeyplayerinthephysicsofcuprate BZwherethesymmetryiswellrespectedsothatboththePG superconductors. While the main instability is still the AF andSCdomearelarge,asshowninFig.6. ordering, the d-wave bond order relates to the d-wave pair- Finally, let us mention that a major effect of a magnetic ing through an SU(2) symmetry. We have shown that there field is to invert the order of the level splitting between the exists a wide range of parameters where the SU(2) degen- CDWandtheSCcomponents10,11. Thiswillfavorthecharge eracy is fulfilled, which gives a natural explanation for the ordercomparedtotheSCpairing. WebelievethatUmklapp large PG regime observed in certain compounds. We argue scatteringcanhaveasimilareffecttoinvertthelevelordering, that compounds like electron doped cuprates or the La com- butleavedetailedinvestigationforfurtherstudies. pounds are outside the regime of SU(2) degeneracy, and the 6 morepronouncedenergysplittingisthereasonfortheweaker Carvalho. WethanktheKITP,SantaBarbaraandtheIIP,Na- PGregime. tal for hospitality during the elaboration of this work. This workwassupportedbyLabExPALM(ANR-10-LABX-0039- PALM),oftheANRprojectUNESCOSANR-14-CE05-0007, V. ACKNOWLEDGMENTS as well as the grant Ph743-12 of the COFECUB which en- abledfrequentvisitstotheIIP,Natal. Numericalcalculations WeacknowledgediscussionswithA.Chubukov, S.Kivel- werecarriedoutwiththeaidoftheComputerSystemofHigh son, H. Alloul, P. Bourges, Y. Sidis, A. Sacuto, and V. S. de PerformanceoftheIIPandUFRN,Natal,Brazil. 1 P.A.Lee,N.Nagaosa, andX.-G.Wen,Rev.Mod.Phys.78,17 Goldman, T. Schmitt, G. Ghiringhelli, N. Barišic´, M. K. Chan, (2006). C.J.Dorow, G.Yu, X.Zhao, B.Keimer, andM.Greven,Nat. 2 E. Gull, O. Parcollet, and A. J. Millis, Phys. Rev. Lett. 110, Commun.5,5875(2014). 216405(2013). 23 R.-H.He,M.Hashimoto,H.Karapetyan,J.D.Koralek,J.P.Hin- 3 S. Sorella, G. B. Martins, F. Becca, C. Gazza, L. Capriotti, ton, J. P. Testaud, V. Nathan, Y. Yoshida, H. Yao, K. Tanaka, A.Parola, andE.Dagotto,Phys.Rev.Lett.88,117002(2002). W.Meevasana,R.G.Moore,D.H.Lu,S.-K.Mo, M.Ishikado, 4 M.R.NormanandC.Pépin,Rep.Prog.Phys.66,1547(2003). H.Eisaki,Z.Hussain,T.P.Devereaux,S.A.Kivelson,J.Oren- 5 A. Abanov, A. V. Chubukov, and J. Schmalian,Adv. Phys.52, stein,A.Kapitulnik, andZ.-X.Shen,Science331,1579(2011). 119(2003). 24 I. M. Vishik, M. Hashimoto, R.-H. He, W.-S. Lee, F. Schmitt, 6 A.Chubukov,D.Pines, andJ.Schmalian,inSuperconductivity, D. Lu, R. G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, editedbyK.BennemannandJ.Ketterson(SpringerBerlinHei- S.Uchida,K.Fujita,S.Ishida,M.Ishikado,Y.Yoshida,H.Eisaki, delberg,2008). Z.Hussain,T.P.Devereaux, andZ.-X.Shen,PNAS109,18332 7 Closetoamagneticinstability,theSpin-Fermionmodelshould (2012). capture the relevant low-energy physics of the Hubbard model 25 Y.WangandA.Chubukov,Phys.Rev.B90,035149(2014). witharbitraryinteractionstrength,seee.g.Ref.[6]. 26 D.F.Agterberg,D.S.Melchert, andM.K.Kashyap,Phys.Rev. 8 M.A.MetlitskiandS.Sachdev,Phys.Rev.B82,075128(2010). B91,054502(2015). 9 K.B.Efetov,H.Meier, andC.Pépin,Nat.Phys.9,442(2013). 27 P.A.Lee,Phys.Rev.X4,031017(2014). 10 H.Meier,M.Einenkel,C.Pépin, andK.B.Efetov,Phys.Rev.B 28 E. Fradkin, S. A. Kivelson, and J. M. Tranquada, 88,020506(2013). arXiv:1407.4480[cond-mat.supr-con] (2014). 11 M.Einenkel,H.Meier,C.Pépin, andK.B.Efetov,Phys.Rev.B 29 X. Montiel, T. Kloss, C. Pépin, S. Benhabib, Y. Gallais, and 90,054511(2014). A.Sacuto,arXiv:1504.03951[cond-mat.supr-con] (2015). 12 H.Meier,C.Pépin,M.Einenkel, andK.B.Efetov,Phys.Rev.B 30 E.Demler,W.Hanke, andS.-C.Zhang,Rev.Mod.Phys.76,909 89,195115(2014). (2004). 13 J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, 31 C.Pépin,V.S.deCarvalho,T.Kloss, andX.Montiel,Phys.Rev. H.Eisaki,S.Uchida, andJ.C.Davis,Science295,466(2002). B90,195207(2014). 14 N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. 32 Y. Wang, D. F. Agterberg, and A. Chubukov, Phys. Rev. B 91, Bonnemaison,R.Liang,D.A.Bonn,W.N.Hardy, andL.Taille- 115103 (2015); Y. Wang, D. F. Agterberg, and A. Chubukov, fer,Nature447,565(2007). arXiv:1501.07287[cond-mat.str-el] (2015). 15 W.D.Wise,M.C.Boyer,K.Chatterjee,T.Kondo,T.Takeuchi, 33 M.R.Norman,Phys.Rev.B75,184514(2007). H.Ikuta,Y.Wang, andE.W.Hudson,Nat.Phys.4,696(2008). 34 Y. He, Y. Yin, M. Zech, A. Soumyanarayanan, M. M. Yee, 16 S.E.Sebastian,N.Harrison,R.Liang,D.A.Bonn,W.N.Hardy, T.Williams,M.C.Boyer,K.Chatterjee,W.D.Wise,I.Zeljkovic, C.H.Mielke, andG.G.Lonzarich,Phys.Rev.Lett.108,196403 T. Kondo, T. Takeuchi, H. Ikuta, P. Mistark, R. S. Markiewicz, (2012). A.Bansil,S.Sachdev,E.W.Hudson, andJ.E.Hoffman,Science 17 G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, 344,608(2014). C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G. 35 K.Fujita, C.K.Kim, I.Lee, J.Lee, M.Hamidian, I.A.Firmo, Hawthorn,F.He,T.Loew,M.M.Sala,D.C.Peets,M.Salluzzo, S.Mukhopadhyay,H.Eisaki,S.Uchida,M.J.Lawler,E.A.Kim, E.Schierle,R.Sutarto,G.A.Sawatzky,E.Weschke,B.Keimer, andJ.C.Davis,Science344,612(2014). andL.Braicovich,Science337,821(2012). 36 T.Das,Phys.Rev.B86,054518(2012). 18 T. Wu, H. Mayaffre, S. Krämer, M. Horvatic´, C. Berthier, P. L. 37 D.SénéchalandA.-M.S.Tremblay,Phys.Rev.Lett.92,126401 Kuhns, A. P. Reyes, R. Liang, W. N. Hardy, D. A. Bonn, and (2004). M.-H.Julien,Nat.Commun.4,2113(2013). 38 Wehavecheckedthatthisapproximationisreliabletocalculate 19 D.LeBoeuf,S.Kramer,W.N.Hardy,R.Liang,D.A.Bonn, and thespacialdistributionofthegapfunctions. C.Proust,Nat.Phys.9,79(2013). 39 R. Comin, R. Sutarto, F. He, E. da Silva Neto, L. Chauviere, 20 M. Le Tacon, A. Bosak, S. M. Souliou, G. Dellea, T. Loew, A.Frano,R.Liang,W.N.Hardy,D.Bonn,Y.Yoshida,H.Eisaki, R. Heid, K.-P. Bohnen, G. Ghiringhelli, M. Krisch, and J.E.Hoffman,B.Keimer,G.A.Sawatzky, andA.Damascelli, B.Keimer,Nat.Phys.10,52(2014). arXiv:1402.5415[cond-mat.supr-con] (2014). 21 L.E.Hayward,D.G.Hawthorn,R.G.Melko, andS.Sachdev, 40 V.Hinkov,S.Pailhes,P.Bourges,Y.Sidis,A.Ivanov,A.Kulakov, Science343,1336(2014). C.T.Lin,D.P.Chen,C.Bernhard, andB.Keimer,Nature430, 22 W.Tabis,Y.Li,M.LeTacon,L.Braicovich,A.Kreyssig,M.Mi- 650(2004). nola,G.Dellea,E.Weschke,M.J.Veit,M.Ramazanoglu,A.I. 41 Thegapfunctionsandlevelsplittingoftheothercompoundsare verysimilarandthereforenotshowninFig.6.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.