ebook img

Sturm-Liouville Theory and its Applications (Instructor Solution Manual, Solutions) PDF

69 Pages·2007·0.422 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Sturm-Liouville Theory and its Applications (Instructor Solution Manual, Solutions)

SOLUTIONS TO THE EXERCISES FOR STURM-LIOUVILLE THEORY AND ITS APPLICATIONS M.A. AL-GWAIZ 1 Chapter 1 1.1 (a)0 x=0 x+[0 x+( 0x)]=(0+0) x+( 0 x)=0 x+( 0:x)=0: (cid:1) (cid:1) (cid:1) (cid:0) (cid:1) (cid:1) (cid:0) (cid:1) (cid:1) (cid:0) (b)a 0=a 0+[a 0+( a 0)]=a (0+0)+( a 0)=a 0+( a 0)=0: (cid:1) (cid:1) (cid:1) (cid:0) (cid:1) (cid:1) (cid:0) (cid:1) (cid:1) (cid:0) (cid:1) (c) ( 1) x+x=( 1+1) x=0 x=0: (cid:0) (cid:1) (cid:0) (cid:1) (cid:1) (d) If a=0 then a x=0 implies x=a 1 (a x)=a 1 0=0: (cid:0) (cid:0) 6 (cid:1) (cid:1) (cid:1) (cid:1) 1.2 (a) Complex vector space, (b) real vector space, (c) not a vector space, (d) real vector space. 1.3 If x ;:::;x are linearly dependent then there are scalars b ;:::;b ; not all 1 n 1 n zeros, such that n b x = 0: Assuming b = 0 for some k 1;:::;n , i=1 i i k 6 2 f g wecanmultiplybPyb(cid:0)k1 toobtainxk = i=kaixi,whereai =(cid:0)b(cid:0)k1bi:The converse is obvious. If the set of vectors 6x ;x ;x ;::: is in…nite , then it P 1 2 3 is linearly dependent if, and only if, it has a …nite subset which is linearly dependent, and the desired conclusion follows. 1.4 Assume that x ; ;x and y ; ;y are bases of the same vector 1 n 1 m f (cid:1)(cid:1)(cid:1) g f (cid:1)(cid:1)(cid:1) g space with n = m and show that this leads to a contradiction. If m > n; 6 express each y , 0 i n, as a linear combination of x ; ;x : The i 1 n (cid:20) (cid:20) (cid:1)(cid:1)(cid:1) resulting system of n linear equations can be solved uniquely for each x , i 0 i n; as a linear combination of y , 0 i n (why?). Since each i (cid:20) (cid:20) (cid:20) (cid:20) vector y ;:::;y is also a linear combination of x ; ;x (and hence n+1 m 1 n (cid:1)(cid:1)(cid:1) of y ; ;y ), this contradicts the linear independence of y ; ;y : 1 n 1 m (cid:1)(cid:1)(cid:1) f (cid:1)(cid:1)(cid:1) g Similarly, If m<n then x ;:::;x is linearly dependent. Hence m=n: 1 n f g 1.5 Assume a xn + ::: + a x + a = 0 for all x in the interval I. We can n 1 0 di¤erentiate both sides of this identity n times to conclude that a = 0, n then n 1 times to obtain a = 0, etc. Therefore all the coe¢cients a n 1 k are zero(cid:0)s, and so 1;x;:::;xn :(cid:0)x I is linearly independent for every n: f 2 g It follows that the in…nite set 1;x;::::x I is linearly independent. f 2 g 1.6 It su¢ces to consider the case where both dimX and dimY are …nite. If is a basis of Y, then lies in X: Since the vectors in are linearly B B B independent,dimX cannotbelessthanthenumberofvectorsin ,namely B dimY: 1.7 Recallthatadeterminantiszeroif,andonlyif,oneofitsrows(orcolumns) is a linear combination of the other rows (or columns). 1.8 Since x+y 2 = x 2+2Re x;y + y 2, the equality holds if, and only k k k k h i k k if, Re x;y =0: Consider x=(1;1) and y=(i;i) in C2. h i 2 1.9 (a) Let a(x+y)+b(x y) = (a+b)x+(a b)y=0: Because x and y (cid:0) (cid:0) are linearly independent, it follows that a+b=0 and a b=0. But this (cid:0) implies a=b=0, hence the linear independence of x+y and x y: (cid:0) (b) x+y;x y = x 2+ y;x x;y y 2 = x 2 y 2.Therefore h (cid:0) i k k h i(cid:0)h i(cid:0)k k k k (cid:0)k k x+y and x y are orthogonal if x = y . (cid:0) k k k k 1.10 (a) 0, (b) 2=3, (c) 8=3, (d) p14: 1.11 ' ;' = ' ;' = ' ;' = ' ;' =0: Thus the largest orthogonal h 1 3i h 1 4i h 2 4i h 3 4i subset is ' ;' ;' : f 1 3 4g 1.12 f;f = f = (cid:25)=2; f;f = f =0; f;f = f =p(cid:25)=2: 1 1 2 2 3 3 h i k k h i k k h i k k 1.13 Let a+bx+cx2p=0 for all x [ 1;1]: Setting x=0; x=1; and x= 1; 2 (cid:0) (cid:0) the resulting three equations yield the only solution a = b = c = 0: The corresponding orthogonal functions are given by f (x)=1; 1 x;1 f (x)=x h i =x; 2 (cid:0) 1 2 k k x2;1 x2;x 1 f (x)=x2 h i h ix=x2 : 3 (cid:0) 1 2 (cid:0) x 2 (cid:0) 3 k k k k 1.14 Let a+bx+c x =0 for all x [ 1;1]: Setting x=0; x=1; and x= 1 j j 2 (cid:0) (cid:0) yields a=b=c=0: The corresponding orthogonal set is f (x)=1; 1 x;1 f (x)=x h i =x 2 (cid:0) 1 2 k k x ;1 x ;x 1 f (x)= x hj j i hj j i = x ; 3 j j(cid:0) 1 2 (cid:0) x 2 j j(cid:0) 2 k k k k and the normalized set is f (x) 1 1 = ; f1 p2 k k f (x) x 2 = ; f2 2=3 k k f (x) 1 3 = p (x 1=2): f3 p6 j j(cid:0) k k The set 1;x; x is not linearly independent on [0;1] because x = x on f j jg j j [0;1]: 3 1.15 From the result of Exercise 1.3 we know that f ;:::;f are linearly de- 1 n pendent if, and only if, there is a number k 1;:::;n such that 2 f g f = a f on I. By di¤erentiating this identity up to order n 1, k i=k i i (cid:0) we arrive6 at the system of equations f(j) = a f(j); 0 j n 1. P k i=k i i (cid:20) (cid:20) (cid:0) Writing this system in matrix form, and using t6he properties of determi- P nants, we conclude that the system is equivalent to the single equation det(f(j))=0 on I, where 1 i n and 0 j n 1: i (cid:20) (cid:20) (cid:20) (cid:20) (cid:0) 1.16 Noting that both ' and ' are even whereas ' is odd, we conclude 1 2 3 that ' ;' = ' ;' = 0: Moreover, ' ;' = 0: The corresponding h 1 3i h 2 3i h 1 2i orthonormal set is ' (x) 1 1 = ; ' p2 k 1k ' (x) 45 1 2 = x2 ; ' 8 (cid:0) 3 k 2k r (cid:18) (cid:19) ' (x) 1 3 = ' (x): ' p2 3 k 3k 1.17 Solvingthepairofequations x2+ax+b;x+1 =0and x2+ax+b;x 1 = h i h (cid:0) i 0 gives a= 1; b=1=6: (cid:0) 1.18 If f : [a;b] C is a continuous function and f = 0, then it follows that b f(x)!2dx = 0 and f(x)2 is continuous akndknonnegative on [a;b]: a j j j j But this implies f(x) = 0 for all x [a;b]: On the other hand, the non- R 2 continuous function 0; x [0;1] 1=2 f(x)= 2 nf g 1; x=1=2 (cid:26) clearly satis…es f =0; but f is not identically 0 on [0;1]: k k 1.19 From the CBS inequality, f +g 2 = f 2 +2Re f;g + g 2 f 2 + k k k k h i k k (cid:20) k k 2 f g + g 2 =( f + g )2: The triangle inequality follows by taking k kk k k k k k k k the square root of each side. 1.20 1;x =1=2; 1 =1; and x =1=p3: Clearly 1;x < 1 x : h i k k k k h i k kk k 1.21 Use the de…nition of the Riemann integral, based on Riemann sums, to show that f; and hence fg; is not integrable on [0;1], whereas f2 =1 and g2 =1 are both integrable. 1.22 (i) 1=p2, (ii) not in 2(0; ), (iii) 1, (iv) not in 2(0; ): L 1 L 1 4 1.23 If f = 0 then f, being continuous, is identically 0 and the pair f, g is k k linearly dependent. The same is true if g =0. Hence we assume f =0 k k k k6 and g =0: Now k k6 f g 2 b f2 b g2 b fg = + 2 (cid:13)kfk (cid:0) kgk(cid:13) Za kfk2 Za kgk2 (cid:0) Za kfkkgk (cid:13) (cid:13) (cid:13) (cid:13) =1+1 2=0; (cid:13) (cid:13) (cid:0) where we used f;g = f g in the second equality. The implies g =(cid:21)f h i k kk k with (cid:21)= g = f : k k k k Conversely, if g = (cid:21)f for some positive number (cid:21), then f;g = (cid:21) f 2 = h i k k f g : k kk k 1.24 In general f +g 2 = f 2 + g 2 +2Re f;g : If f +g = f + g k k k k k k h i k k k k k k then we must have Re f;g = f g ; and if, furthermore, the functions h i k kk k f and g are positive and continuous, then Re f;g = f;g = f g and h i h i k kk k (by Exercise 1.23) f and g are linearly dependent. Conversely, if the functions are linearly dependent then g = (cid:11)f for some number (cid:11), and f +g = (1+(cid:11))f = 1+(cid:11) f : For the equality k k k k j jk k f +g = f + g to hold we must therefore have 1+(cid:11) = 1+ (cid:11) ; k k k k k k j j j j which implies (cid:11) 0: (cid:21) 1.25 The norm x(cid:11) 2 = 1x2(cid:11)dx is …nite if, and only if, 2(cid:11) > 1; that is, k k 0 (cid:0) (cid:11)> 1=2: (cid:0) R 1.26 (cid:11)< 1=2: (cid:0) 1.27 Suppose lim f(x) = ` = 0, then lim f(x) = ` > 0 and there is x x !1 6 !1j j j j a positive integer n such that, for all x n; (cid:21) f ` < ` =2 jj j(cid:0)j jj j j 0< ` =2< f(x) <3 ` =2: j j j j j j But this implies 1 f(x)2dx= ; which contradicts the integrability of n j j 1 f 2 on (0; ): j j 1 R 1.28 b f(x) dx = f(x) ;1 f 1 = pb a f by the CBS inequality. a j j hj j i (cid:20) k kk k (cid:0) k k f(x)=1=px is integrable on (0;1) but f2(x)=1=x is not. R 1.29 Suppose f(x) M for all x 0: Then j j(cid:20) (cid:21) 1f2(x)dx M 1 f(x) dx< : (cid:20) j j 1 Z0 Z0 The function f(x)=(1+x) 1 is bounded on [0; ), lies in 2(0; ), but (cid:0) 1 L 1 is not integrable on [0; ): 1 5 1.30 Using familiar trigonometric identities, sin3x=sinx(1 cos2x) (cid:0) 1 =sinx cosxsin2x (cid:0) 2 1 =sinx (sin3x+sinx) (cid:0) 4 3 1 = sinx sin3x: 4 (cid:0) 4 1.31 Therearemanyanswerstothisexercise.Anyoddfunction,suchasf(x)= ax; where a is a (non-zero) constant satis…es f;x2+1 =0 since x2+1 is h i even.Forthischoiceoff,theconstantahastosatisfy ax = a 2=3=2, k k j j that is, a =p6: Thus f(x)=p6x is one possible answer. j j p 1.32 The L2(cid:26)(0;1) norm of a polynomial p is given by 01p2(x)e(cid:0)xdx 1=2: It is therefore su¢cient to show that the integral I =(cid:2)R 01q(x)e(cid:0)xdx i(cid:3)s …nite for any polynomial q: This follows from integrating by parts, noting that R q(x)e(cid:0)x ! 0 as x ! 1; to obtain I = q(0)+ 01q0(x)e(cid:0)xdx. Similarly, 01q0(x)e(cid:0)xdx=q0(0)+ 01q00(x)e(cid:0)xdx: If q haRs degree n, we can use in- ductiontoshowthat,inthen-thstep,theintegralisreducedtoaconstant R R multiple of 01e(cid:0)xdx=1. 1.33 Using the mRonotonic property of the integral, b b f 2 = f(x)2(cid:27)(x)dx f(x)2(cid:26)(x)dx= f 2: k k(cid:27) j j (cid:20) j j k k(cid:26) Za Za Therefore, if f 2(a;b) then f 2(a;b): 2L(cid:26) 2L(cid:27) 1.34 (a) The limit is the discontinuous function 1; x >1 j j xn 0; x <1 lim =8 j j n!11+xn >>< 1=2; x=1 unde…ned, x= 1: (cid:0) >>: 0; x=0 (b) lim pnx= n!1 1; x>0: (cid:26) (c) lim sinnx does not exist, except when x is an integral multiple of n !1 (cid:25): 1.35 (a) Pointwise (not uniform), by Theorem 1.17(i), since the limit (Exercise 1.34(a)) is discontinuous. 6 (b) Uniform, since x1=n 1 for all x [1=2;1] and x1=n 1 1 ! 2 (cid:0) (cid:20) (cid:0) (1=2)1=n 0: ! (cid:12) (cid:12) (cid:12) (cid:12) (c) Pointwise (not uniform), since the limit is discontinuous at x = 0 (see Exercise 1.34(b)). 0; x=0 1.36 f iscontinuousforeveryn;whereaslim f (x)= is n n!1 n 1; 0<x 1: (cid:26) (cid:20) discontinuous, hence the convergence f f is not uniform. Clearly, n ! 1 1 lim f (x)dx=1= limf (x)dx: n n Z0 Z0 1.37 Atx=0,f (0)=0foreveryn:Whenx>0,f (x)=n(1 x)=(n 1) 1: n n (cid:0) (cid:0) ! Therefore the sequence f converges pointwise to n 0; x=0 f(x)= 1 x; 0<x 1: (cid:26) (cid:0) (cid:20) Since f is not continuous the convergence is not uniform. 1.38 f (0) = f (1) = 0 and, for all x (0;1); f (x) = nx(1 x2)n n(1 n n n 2 j j (cid:0) (cid:20) (cid:0) x2)n 0 as n : Hence lim f (x)=0 on [0;1]: Since n n ! !1 !1 1 n 1 lim f (x)dx= lim = ; n n n 2n+2 2 !1Z0 !1 1 whereas lim f (x)dx = 0; the convergence f 0 is not uniform 0 n!1 n n ! (by Theorem 1.17(ii)). R x a x u 1.39 0 0, hence 0 on [0;a]: (cid:20) n+x (cid:20) n ! n+x ! x Forx 0,wealsohavelim =0pointwise.Inthiscase,assuming n (cid:21) !1 n+x x 0<"<1;theinequality <"cannotbesatis…edwhenx n"=(1 "), n+x (cid:21) (cid:0) hence the convergence is not uniform. Another approach: Since the statement f (x) f(x) " for all x I is n j (cid:0) j (cid:20) 2 equivalent to the requirement that sup f (x) f(x) ", we see that u x2Ij n (cid:0) j (cid:20) f f on I if, and only if, sup f (x) f(x) 0 as n : When n ! x2Ij n (cid:0) j ! ! 1 x [0;a];supf (x)=a=n 0;butwhenx [0; )wehavef (n)=1=2, n n 2 ! 2 1 hence supf (x) 1=290: n (cid:21) 1.40 The sequence f is de…ned by n 1=n; x n f (x)= j j(cid:20) n 0; x >n: (cid:26) j j 7 Since 0 f (x) 1=n 0 for all x R; the convergence f 0 is n n (cid:20) (cid:20) ! 2 ! uniform. 1 fn(x)dx=2; therefore (cid:0)1 R 1 1 lim f (x)dx= limf (x)dx; n n 6 Z(cid:0)1 Z(cid:0)1 the reason being that the domain of de…nition of f is not bounded. n u 1.41 Suppose f f on [a;b]. Given any ">0; it then follows that there is an n ! integer N such that 1 n N f (x) f(x) <" for all x [a;b]; 1 n (cid:21) ) j (cid:0) j 2 u whichimplies f (x) f(x) 0:Wecanalso…ndanintegerN suchthat n 2 j (cid:0) j! n N f (x) f(x) <1 for all x [a;b]: 2 n (cid:21) ) j (cid:0) j 2 If N =max N ;N , then 1 2 f g n N f (x) f(x)2 <" for all x [a;b]; n (cid:21) ) j (cid:0) j 2 which implies f (x) f(x)2 u 0: n j (cid:0) j ! 1.42 (a) f (x) 1=n2 for all x R. Since 1=n2 converges, f (x) con- n n j j (cid:20) 2 verges uniformly on R by the Weierstrasse M-test. P P (b) If x ( 1;1) then there is an integer N such that xn < 1=2 for all 2 (cid:0) j j n N; and hence (cid:21) xn xn j j =2 xn for all n N; 1+xn (cid:20) 1 1=2 j j (cid:21) (cid:12) (cid:12) (cid:0) (cid:12) (cid:12) from which we c(cid:12)onclude(cid:12)that the series converges by comparison with the (cid:12) (cid:12) geometric series. It diverges on ( ; 1] [1; ) where f (x) 9 0 (see n (cid:0)1 (cid:0) [ 1 Exercise 1.34(a)). 1.43 a sinnx a for all x R: Since a converges, a sinnx con- n n n n j j (cid:20) j j 2 j j verges uniformly. P P 1.44 (n+1)(cid:25) sinx 1 (n+1)(cid:25) j jdx sinx dx x (cid:20) n(cid:25) j j Zn(cid:25) Zn(cid:25) 1 (cid:25) = sinxdx n(cid:25) Z0 2 = 0 as n 0: n(cid:25) ! ! 8 LetA = (n+1)(cid:25)x 1 sinx dx:Becausex 1 sinx >(x+(cid:25)) 1 sin(x+(cid:25)) n n(cid:25) (cid:0) j j (cid:0) j j (cid:0) j j for every x>0, we see that A A for all n and A 0. Moreover, R n (cid:21) n+1 n ! (n+1)(cid:25) sinx k=n (k+1)(cid:25) sinx dx= ( 1)kj jdx x (cid:0) x Z0 k=0Zk(cid:25) X k=n = ( 1)kA : k (cid:0) k=0 X Hence 01x(cid:0)1sinxdx = 1k=0((cid:0)1)kAk; which converges by the alternat- ing series test. R P On the other hand, (n+1)(cid:25) sinx 1 (cid:25) 2 j jdx sinxdx= x (cid:21) (n+1)(cid:25) (n+1)(cid:25) Zn(cid:25) Z0 1 sinx 1 (n+1)(cid:25) sinx 1 2 j jdx= j jdx = : ) x x (cid:21) (n+1)(cid:25) 1 Z0 n=0Zn(cid:25) k=0 X X 1.45 Letr =R ":Then a xn a rnforallx [ r;r]:Since0<r <R,the n n (cid:0) j j(cid:20)j j 2 (cid:0) numericalseries a rn isconvergent.BytheM-test,withM = a rn, n n n j j j j the series a xn is uniformly convergent in [ r;r]: n P (cid:0) 1.46 BeingunifPormlyconvergenton[R ";R+"],theseries a xn representsa n (cid:0) continuousfunctionf on[R ";R+"]:Sincethisistrueforevery">0;the (cid:0) P series is continuous on ( R;R): Each term f (x)=a xn is di¤erentiable, n n (cid:0) fn0(x) = nanxn(cid:0)1; and the series 1n=1nanxn(cid:0)1 has the same radius of convergenceRastheoriginalseries(bytheroottest).Nowthepowerseries P 1n=1nanxn(cid:0)1; by the result of Exercise 1.45, is uniformly convergent on [R ";R+"]. Therefore Theorem 1.17(iii) applies and we conclude that P(cid:0) f0(x)=( 1n=0anxn)0 = 1n=1nanxn(cid:0)1: 1.47 With bn P= (n+1)an+1 wPe can write f0(x) = 1n=0bnxn and repeat the argument in Exercise 1.46 to conclude that fP00(x) = 1n=1nbnxn(cid:0)1 = 1n=2n(n(cid:0)1)anxn(cid:0)2; and so on to any order of di¤erenPtiation. By induc- tion we clearly have P 1 n! (k+1)! (k+2)! f(k)(x)= a xn k =k!a + a x+ a x2+ : n (cid:0) k k+1 k+2 (n k)! 1! 2! (cid:1)(cid:1)(cid:1) n=k (cid:0) X At x=0 this yields a =f(k)(0)=k!; k N: k 2 9 1.48 Let the function f(x) be continuous and di¤erentiable up to any order on R: According to Taylor’s theorem we can represent such a function at any x R by 2 f (0) f (0) f(n)(0) f(n+1)(c) f(x)=f(0)+ 0 x+ 00 x2+ + xn+ xn+1; 1! 2! (cid:1)(cid:1)(cid:1) n! (n+1)! wherecliesbetween0andx:Iff(x)=ex;thenf(n)(x)=ex andf(n)(0)= 1 for all n. Thus we obtain x x2 xn xn+1 ex =1+ + + + + ec: 1! 2! (cid:1)(cid:1)(cid:1) n! (n+1)! Since,foranyx R;xn+1=(n+1)! 0asn ,wearriveatthedesired 2 ! !1 power series representation of ex by taking the limit of the right-hand side as n : !1 If f(x) = cosx, then f(n)(0) = 0 if n is odd and f(n)(0) = ( 1)n=2 if n is (cid:0) even.Theremaindertermisboundedbyxn+1=(n+1)!whichtendsto0as n ; and we obtain cosx = 1 ( 1)nx2n=(2n)!. Similarly we arrive ! 1 n=0 (cid:0) at the given representation for sinx: P 1.49 Euler’s formula is obtained by replacing x by ix in the power series which represent ex; cosx; and sinx; and using the equations i2n = ( 1)n and (cid:0) i2n+1 =( 1)ni. (cid:0) 1.50 (a) 1: (b) 1. (c) f (0) = f (1) = 0: For every x (0;1); f (x) = nx(1 x)n 0 as n n n 2 (cid:0) ! n : Therefore f (x) 0 pointwise. n !1 ! 1 f 0 2 =n2 x2(1 x)2ndx n k (cid:0) k (cid:0) Z0 2n2 1 = x(1 x)2n+1dx 2n+1 (cid:0) Z0 n2 1 = (1 x)2n+2dx (2n+1)(n+1) (cid:0) Z0 n2 = 0 as n : (2n+1)(n+1)(2n+3) ! !1 2 Hence fn L 0: ! 1.51 (a)convergent,since k 2=3sinkx 2 = sinkx 2 k 4=3 =(cid:25) k 4=3 < (cid:0) (cid:0) (cid:0) k k . 1 (cid:13)P (cid:13) P P (cid:13) (cid:13)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.