UNIVERSITE NICE SOPHIA ANTIPOLIS - UFR Sciences EcoleDoctoraleenSciencesFondamentalesetAppliquees THESE pourobtenirletitrede Docteur en Sciences del’UNIVERSITENiceSophiaAntipolis Discipline: (ouspe´cialite´)AsrophysiqueRelativiste pre´sente´eetsoutenuepar AUTEURAnastasiaFILINA tudying explosive phenomena in astrophysics by the S example of gamma ray bursts and supernovae - The`sedirige´eparPascalCHARDONNET soutenuele01/07/2015 Jury: ChardonnetPascal LAPTH,Annecy-le-Vieux,France Directeur ChechetkinValery KIAM,Moscow,Russia Co-directeur ChetverushkinBoris KIAM,Moscow,Russia Membredejury DellaValleMassimo OACN-INAF,Naples,Italy Rapporteur NarozhnyNikolay MEPhI,Moscow,Russia Membredejury PozanenkoAlexei IKI,Moscow,Russia Membredejury TitarchukLev GMU-SPACS,Virginia,USA Rapporteur VakiliFarrokh OCA,Nice,France Membredejury i Contents Contents ii ListofFigures iv ListofTables vii Abstract viii 1 Introduction 1 1.1 Supernovaeandgamma-raybursts . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Physicalprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.3 Nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Thesisoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Explosivephenomenainstellarphysics 12 2.1 Differentmodesofcombustion . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Theroleofinstabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.1 Rayleigh-Taylorinstability . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Landau-Darrieusinstability . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.3 Thermal-pulsationalinstability . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4 Pairinstability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Asphericalnucleosynthesisinacore-collapsesupernovawith25 M standardpro- ⊙ genitor 28 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 PiecewiseParabolicMethodonaLocalstencilforhydrodynamics . . . 29 3.2.2 Conjugategradientsforself-gravity . . . . . . . . . . . . . . . . . . . 30 3.2.3 Tracerparticlesmethodfornucleosynthesis . . . . . . . . . . . . . . . 30 3.3 Explosivenucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Networkofnuclearreactions . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2 Nuclearabundances . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.3 Solvingreactionnetworkfornucleosynthesis . . . . . . . . . . . . . . 34 3.4 SNmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ii Contents iii 4 Multidimensionalsimulationsofpair-instabilitysupernovae 49 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Pair-instabilitysupernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 Numericalapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1 Modellingin1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 Numericalexplosioninmulti-D . . . . . . . . . . . . . . . . . . . . . 54 4.4 Discussionsandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5 OnGRBSpectra 59 5.1 Introduction: snapshotofGRBspectrum . . . . . . . . . . . . . . . . . . . . . 59 5.2 Black-bodyandThermalBremsstrahlungemission . . . . . . . . . . . . . . . 61 5.2.1 OurModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3 Analysisofgamma-raybursts . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.1 AnalysisofGRB090618 . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 AnalysisofsomeotherGRBs. . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.5 Discussionsandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 CosmologywithGRBs 74 6.1 Generalintroductiontocosmology . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2 CosmologywithGRBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 NumberofGRBsperredshift . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.1 Luminosityfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.2 RateofGRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7 Generalconclusions 89 AnalysisofsomeGRBs 91 Abbreviations 100 PhysicalConstants 101 Symbols 102 Bibliography 103 Acknowledgements 115 List of Figures 1.1 Supernovaspectraltypes. Credit:DanielKasen . . . . . . . . . . . . . . . . . 5 1.2 A mosaic of HST images of the hosts of forty-two bursts (left) and the super- novaehosts(right)(Fruchteretal.2006) . . . . . . . . . . . . . . . . . . . . 6 1.3 Illustrationofthelightcurvesofavarietyofsupernovaeontheleft(Smithetal. 2007)andcomparisonitwithGRBsontheright(Bloometal.2009). . . . . . 7 1.4 SampleoflightcurvesofbrightBATSEbursts,showinghighdiversity. . . . . 9 2.1 Curvesofconstantshockwavevelocity,calledRayleighlines. . . . . . . . . . . 14 2.2 TheshockadiabaticortheHugoniotadiabaticandRayleighline(dashed).. . . 16 2.3 The detonation adiabatic (continuous line) and the ordinary shock adiabatic (dashedline). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Therelationbetweenthedifferentmodesofcombustion . . . . . . . . . . . . . 22 2.5 Example of Rayleigh-Taylor instability simulations by the PPML code Popov (2012). Thedensitymapisshown . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Example of Landau-Darrieus instability simulations for the C/O flame (Bell et al.2004). Inflowboundaryconditionsinjectfuelintothebottomofthedomain. They-velocityofthematerialwithrespecttotheplanarflameisshownincolor fordifferentmomentsoftime. . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 Asimplifiednetworkofnuclearreactionsfrom12C to56Ni. . . . . . . . . . . . 32 3.2 Comparisonofournucleosynthesiscomputingcode(onthetop)andnucleosyn- thesis computing code from Timmes et al. (2000) (on the bottom). As an ex- ample we take evolution of the mass fractions under adiabatic expansion. The initial conditions are T = 3 109 K, ρ = 1 109 g cm 3 and an initially half − × × 12C -half16Ocompositionforthe13isotopeα-chainnetwork. . . . . . . . . 35 3.3 Presupernovaconfiguration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Densitydistributionfort = 60.5safterinducingtheexplosion. Thecoordinates areshownintheunitsofsolarradius. Colorrepresentsthelogarithmofdensity intheunitsofρ = 4.5 105 g/cm3. . . . . . . . . . . . . . . . . . . . . . . . 39 c × 3.5 Temperaturedistributionforthesamemomentandinthesamecoordinateunits asonfig.3.4. Colorrepresentsthelogarithmoftemperatureintheunitsof109 K. 39 3.6 Tracer locations and the density map for t = 60.5 s, reconstructed from the recordedtracersdata. Colorrepresentsthetemperatureintheunitsof109 K. . . 40 3.7 Distributionof56Niand52Femassfractionsinvelocitymapfort = 60.5s. . . 41 3.8 Distributionof48Crand44Timassfractionsinvelocitymapfort = 60.5s.. . . 42 3.9 Distributionof40Caand36Armassfractionsinvelocitymapfort = 60.5s. . . 42 3.10 Distributionof32S and28Simassfractionsinvelocitymapfort = 60.5s. . . . 43 3.11 Distributionof24Mgand20Nemassfractionsinvelocitymapfort = 60.5s. . . 43 3.12 Distributionof16Oand12C massfractionsinvelocitymapfort = 60.5s. . . . 44 iv ListofFigures v 3.13 Distributionof4Hemassfraction fort = 60.5s. Thenumbersshow thevalues insomeregions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.14 Theschematicplotofmainregionsintheejectaafterexplosion . . . . . . . . . 45 3.15 Comparison between the yields in our SN model (red line) and in a SN model ofMaedaetal. (2002)(blueline). Thetotalmassoftheproducednucleiinthe unitsof M inlogarithmicscaleisshown. . . . . . . . . . . . . . . . . . . . . 47 ⊙ 4.1 Fate of a star depending on its mass, M , and binding energy, E . Explosion c bind ismarkedbydiamondsandcollapseismarkedbycircles. . . . . . . . . . . . . 54 4.2 Nuclearenergyreleaseasafunctionofmaximumtemperature(diamonds). The slope E T2 is shown. For comparison data from Arnett (1996) (stars) and ∝ Oberetal.(1983)(triangles)areshown. . . . . . . . . . . . . . . . . . . . . . 55 4.3 SN model with central ignition for t = 28 sec. Logarithm of density (a) is shown in units of ρ = 2.65 105 g/cm3. Temperature (b) is shown in units of c × T = 2.36 109 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 c × 4.4 SN model with multicore ignition for t = 28 sec. Logarithm of density (a) is shown in units of ρ = 2.65 105 g/cm3. Temperature (b) is shown in units of c × T = 2.36 109 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 c × 5.1 Time-integratedspectraGRB090618 . . . . . . . . . . . . . . . . . . . . . . 64 5.2 Time-integrated spectra for the different time intervals: from 0 to 50 s, from 50 to 59 s, from 59 to 69 s after the trigger time of GRB 090618. Blue line showsthefitwiththeBandfunction(Eq5.1),orangelineshowstheblackbody +bremsstrahlung(Eq.5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 Time-integrated spectra for the different time intervals: from 69 to 78 s, from 79 to 105 s after the trigger time of GRB 090618. Blue line shows the fit with the Band function (Eq 5.1), orange line shows the fit with blackbody + bremsstrahlung(Eq.5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4 ThetemperatureevolutionwithtimeT(t)ofGRB090618 . . . . . . . . . . . . 67 5.5 ExampleoflightcurveofGRB090618(Izzoetal.2012) . . . . . . . . . . . . 67 5.6 Hot spots randomly appear on the surface of exploding star. Each spot pro- ducesspikeofemission. Signalsfromthesespotsarriveatdifferenttimes,soan observerseesthesuperpositionofthespikes. . . . . . . . . . . . . . . . . . . 70 5.7 2Dsimulationofanexplosionofa100solarmasspairinstabilitysupernovaeex- plosioninthemulticoreexplosionscenariousingPPMLmethods. Thispicture showsthefragmentationofthecoreandhotspotregionsofveryhightempera- ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.8 Cartoon representation of a possible emission mechanism with Black-Body + Bremmstrahlungemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1 Amatirelationwithredshiftdistribution . . . . . . . . . . . . . . . . . . . . . 82 6.2 IsotropicequivalentradiatedenergyfromredshiftE (z) . . . . . . . . . . . . 82 iso 6.3 Comparison of luminosity distance computed from Amati relation” and from cosmologicalredshiftbyeq.6.42 . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.4 ”Volumetricfactor” dV/dz(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 1+z 6.5 IntegralofLuminosityFunctionfrom Campisietal.(2010)and Wanderman& Piran(2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.6 RateGRBfrom Hopkins&Beacom(2006)andratePISNfrom Hummeletal. (2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 ListofFigures vi 6.7 NumberofobservedGRBswithredshiftin(z,z+dz)overaredshiftinterval . . 87 1 ThetemperatureevolutionwithtimeT(t)ofGRB101023 . . . . . . . . . . . . 91 2 LightcurveofGRB101023(Penacchionietal.2012) . . . . . . . . . . . . . . 91 3 Spectral analysis of GRB 101023 for different intervals of time: [0-45 s] and [45-89 s]. Blue line shows the fit with the Band function (Penacchioni et al. 2012),orangelineshowsthefitwithblackbody+bremsstrahlung . . . . . . . 92 4 Time-integratedspectraofGRB970111forthetimeintervalfrom21to24saf- terthetriggertime. BluelineshowsthefitwiththeBandfunction(Eq5.1)(Fron- tera et al. 2012), orange line shows the fit with blackbody + bremsstrahlung (Eq.5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5 ThetemperatureevolutionwithtimeT(t)ofGRB970111 . . . . . . . . . . . . 93 6 LightcurveofGRB970111detectedwithBATSE(Fronteraetal.2012) . . . . 93 7 GRB 970111. Time-integrated spectra for different intervals of time: 4-7 s, 7- 13 s, 13-16 s, 16-21 s, 21-24 s, 24-28s, 28-32s, 32-45 s. Blue line shows the fit with the Band function (Eq 5.1), orange line shows the fit with blackbody + bremsstrahlung(Eq.5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8 Time-integrated spectraof GRB090926A forthe time intervalfrom 9.8 to10.5 s after the trigger time. Blue line shows the fit with the Band function (Eq 5.1) (Tierneyetal.2013),orangelineshowsthefitwithblackbody+bremsstrahlung (Eq.5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9 ThetemperatureevolutionwithtimeT(t)ofGRB090926A . . . . . . . . . . . 95 10 LightcurveofGRB090926A(Tierneyetal.2013) . . . . . . . . . . . . . . . 95 11 GRB090926A.Time-integratedspectrafordifferentintervalsoftime: form0.0 to 3.3 s, 3.3 to 9.8 s, 9.8 to 10.5 s and 10.5 to 21.6 s. Blue line shows the fit with the Band function (Eq 5.1), orange line shows the fit with blackbody + bremsstrahlung(Eq.5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 12 ThetemperatureevolutionwithtimeT(t)ofGRB990510 . . . . . . . . . . . . 96 13 LightcurveofGRB990510(Fronteraetal.2012) . . . . . . . . . . . . . . . . 96 14 Time-integrated spectra of GRB990510 for the time intervals. Blue line shows thefitwiththeBandfunction(Eq5.1),orangelineshowsthefitwithblackbody +bremsstrahlung(Eq.5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 15 ThetemperatureevolutionwithtimeT(t)ofGRB980329 . . . . . . . . . . . . 98 16 LightcurveofGRB980329(Fronteraetal.2012) . . . . . . . . . . . . . . . . 98 17 Time-integrated spectra of GRB980329 for the time intervals. Blue line shows thefitwiththeBandfunction(Eq5.1),orangelineshowsthefitwithblackbody +bremsstrahlung(Eq.5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 List of Tables 3.1 Detailednucleosynthesisyields. . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1 Presupernovamodelsandparametersofexplosion . . . . . . . . . . . . . . . . 53 5.1 SpectralanalysisofGRB090618 . . . . . . . . . . . . . . . . . . . . . . . . . 68 vii UNIVERSITENICE-SOPHIAANTIPOLIS-UFRSciences Abstract EcoleDoctoraleenSciencesFondamentalesetAppliquees DoctorofRelativisticAstrophysics Studyingexplosivephenomenainastrophysicsbytheexampleofgamma-rayburstsand supernovae byAnastasiaFilina The formation of the first stars hundreds of millions of years after the Big-Bang marks the end of the so-called Dark Ages. Currently, we have no direct observations on how the primordial stars (Population III stars) formed, but according to modern theory of stellar evolution these stars should be very massive (about 100 M ). Population III stars also have a potential to ⊙ produce probably most energetic flashes in the Universe – gamma-ray bursts (GRBs). GRBs mayprovideoneofthemostpromisingmethodstoprobedirectlyfinalstageoflifeofprimordial stars. Today’stelescopescannotlookfarenoughintothecosmicpasttoobservetheformationof thefirststars,butthenewgenerationoftelescopeswilltesttheoreticalideasabouttheformation ofthefirststars. Thanks to many years of observations and number of successful space missions we have good GRB’sdata–statisticsofoccurrence,spectrum,lightcurves. Buttherearestillalotofquestions inthetheoryofGRBs. WeknowthatasignificantfractionofGRBs,thesocalledlong-duration GRBs,arerelatedtothedeathofstarsandthattheyareconnectedwithsupernovae. Sogamma- rayburstsareoneoftheclassesofexplosiveprocessesinstellarphysicsthatshouldhavealotof commonwithsupernovaeexplosions. InthatcaseGRBsshouldfollowthesamephysicallaws of explosion as supernovae. This work tries to approach the problem of GRBs as a problem of stellarexplosion. Necessary instruments of studying stellar explosion were developed as a part of doctoral re- search: code for solving systems of nuclear reaction equations was incorporated into hydro- dynamical code. These tools were applied for supernovae simulations in order to find possible connectionwithGRBs. BasingonanalysisofsupernovaesimulationsspectralanalysisofGRBs wasperformed. Chapter 1 Introduction Thecharacteristictimescalesofthelifeofstars,frommillionstobillionsyears,don’tallowus to trace the entire life cycle of any concrete star. But huge number of observed stars gives us an opportunity to observe them at different stages of their existence - from initial formation by condensation of molecular clouds and up to their death, which for some stars is marked by the brightestflashes-supernovaeexplosions. Supernovaeexplosionsareoneofthemostpowerful events in the universe. The fact that the supernovae explosions occur with a certain regularity and that regularities were found between different events suggests that this phenomenon is a naturalterminationofstellarevolution. Anotherexampleofpromptenergeticprocessintheuniversearegamma-raybursts,whichwere discoveredfewdecadesafterintroductionoftheconceptofsupernovae. Apparentlythesepow- erful flashes of gamma-ray emission are also associated with explosions of stars. However, there are significant differences between gamma-ray bursts and usual supernovae. Most of the radiation is emitted in gamma rays, and the total energy radiated may be one or two orders of magnitudelargerthaninusualsupernovae. (Assumingthattheradiationisisotropic). Thesephenomenaaretwoexamplesofexplosiveprocessesinastrophysics,whichplayasignif- icantroleinthehistoryandevolutionoftheuniverse. 1.1 Supernovae and gamma-ray bursts The transient appearance of a ”new star” (nova) in place of sky where none had been observed previously,wasknownbyastronomersforalongtime. Butdramaticshiftinourunderstanding thescaleofthesephenomenaoccurredinthebeginningoftheXX-thcentury. Itwasrealizedthat someofthesestarsarelocatedinothergalaxies,thereforetheirluminosityshouldbefeworder ofmagnitudeshigherthaninusualnovae. Intheearly1930sFritzZwicky,whocoinedtheterm 1
Description: