ebook img

study on equal channel angular extrusion of circular cross section components and its application PDF

180 Pages·2016·3.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview study on equal channel angular extrusion of circular cross section components and its application

STUDY ON EQUAL CHANNEL ANGULAR EXTRUSION OF CIRCULAR CROSS SECTION COMPONENTS AND ITS APPLICATION FOR JOINING DISSIMILAR METALS DAVOUD MASHHADI JAFARLOU FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR 2016 STUDY ON EQUAL CHANNEL ANGULAR EXTRUSION OF CIRCULAR CROSS SECTION COMPONENTS AND ITS APPLICATION FOR JOINING DISSIMILAR METALS DAVOUD MASHHADI JAFARLOU THESIS SUBMITTED IN FULFILMENTOF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR 2016 UNIVERSITY OF MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: Davoud Mashhadi Jafarlou (I.C/Passport No: H95659360) Matric No: KHA130066 Name of Degree: Doctor of Philosophy (PhD) Title of Thesis: Study on equal channel angular extrusion of circular cross section components and its application for joining dissimilar metals Field of Study: Engineering Design I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This Work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM. Candidate’s Signature Date: Subscribed and solemnly declared before, Witness’s Signature Date: Name: Designation: ABSTRACT In the last two decades, significant focus has been directed toward severe plastic deformation (SPD) as a direct method to produce bulk metals with superior mechanical properties. Numerous researches have been conducted in order to develop SPD methods for grain refinement of metallic structure with various geometrical shapes and chemical compositions. Among these methods, equal channel angular extrusion (ECAE) is the most developed SPD technique due to its capability of processing structural components. The mechanical properties of wide range of pure metals and alloys have been investigated in different research works; however there is a lack of study on mechanical properties of AA 6063 processed by ECAE. Moreover the ECAE technique is used mostly for grain refinement of components with circular (rod) or rectangular (beam) cross sections and there is no robust study on developing this technique for the processing of tubular components. Therefore, the current study focused on developing ECAE for processing tubular components. Additionally, in this research a developed method for solid state joining of dissimilar metals was proposed. In the first phase of this study, the mechanical properties of ECAE treated AA 6063 were investigated. Following the ECAE process, samples were subjected to heat treatment (HT), hard anodizing (HA), and a combination of HT and HA. From the experimental fatigue and fretting fatigue tests, it was apparent that the ECAE treatment improves fatigue and fretting fatigue lives of the samples at low and high-cyclic loads and post ECAE heat treatment (ECAE+HT) more effectively improves the fatigue endurance. HA of AA6063 increased the fatigue and fretting fatigue lives of ECAE + HT-processed samples at low cycle; however, at high cycle, HA had reverse effects, whereby the fatigue and fretting fatigue lives of ECAE + HT-processed samples reduced. iii In the second part of this research ECAE was utilized to produce metal tubes with ultrafine grain (UFG) structures. To mitigate plastic instability effects such as tube buckling and fracture during processing, hydraulic oil was used to fill the tube cavity. Finite element analysis (FEA) was carried out to examine the feasibility of the proposed method and deformation mechanism during ECAE. Experimental test results indicated that the resultant 60% reduction in grain size led to significant mechanical properties improvements including yield shear strength, ultimate shear strength, and microhardness. In the third phase ECAE was applied for the solid state joining of tubular AA 6061 components and SAE 1018 steel rods. The influence of using a 0.1 mm thick 60Ag- 30Cu-10Sn interlayer in addition to annealing at 220, 320, 420 and 520 °C for 60 min was investigated as well. FEA was performed in order to evaluate the deformation behavior of the workpieces during the ECAE joining process. The FEA outcome showed remarkable accumulation of equivalent plastic strain with relatively low strain inhomogeneity. Experimental results revealed that by increasing annealing temperature and using interlayer, the joint strength was improved. According to the results, shear strength of up to 32 MPa is feasible by having an interlayer and with subsequent annealing at 520 °C. iv ABSTRAK Dalam tempoh dua dekad yang lalu, tumpuan ketara telah diarahkan ke arah ubah bentuk plastik yang teruk (SPD) sebagai kaedah langsung untuk menghasilkan logam pukal dengan sifat-sifat mekanik yang unggul. Banyak kajian telah dijalankan untuk membangunkan kaedah SPD untuk penghalusan bijian struktur logam dengan pelbagai bentuk geometri dan komposisi kimia. Di antara kaedah-kaedah ini, penyemperitan sudut saluran yang sama (ECAE) adalah teknik SPD yang paling maju disebabkan oleh keupayaan pemprosesan komponen struktur. Sifat-sifat mekanik Pelbagai logam tulen dan aloi telah disiasat kerja penyelidikan yang berbeza; namun ada kekurangan kajian mengenai sifat-sifat mekanik AA 6063 diproses oleh ECAE. Lebih-lebih lagi teknik ECAE digunakan kebanyakannya untuk penghalusan bijian komponen dengan bulat (rod) atau segi empat tepat (rasuk) keratan rentas dan tidak ada kajian yang kukuh kepada pembangunan teknik ini untuk memproses komponen tiub. Oleh itu, kajian semasa memberi tumpuan kepada membangunkan ECAE untuk memproses komponen tiub. Selain itu dalam kajian ini satu kaedah yang dibangunkan untuk keadaan pepejal penyambungan logam yang berbeza telah dicadangkan. Dalam fasa pertama kajian ini, sifat-sifat mekanik ECAE dirawat AA 6063 telah disiasat. Berikutan proses ECAE, sampel juga telah tertakluk kepada rawatan haba (HT), fosforik keras (HA), dan gabungan HT dan HA. Keletihan eksperimen dan ujian keletihan retak, ia adalah jelas bahawa rawatan ECAE bertambah baik keletihan dan retak kehidupan keletihan sampel pada beban rendah dan tinggi berkitar dan rawatan haba selepas ECAE (ECAE + HT) lebih berkesan meningkatkan ketahanan lesu. HA daripada AA6063 meningkat keletihan dan keletihan retak kehidupan sampel ECAE + HT-diproses pada kitaran yang rendah; Walau bagaimanapun, pada kitaran yang tinggi, HA mempunyai kesan terbalik, di mana keletihan dan retak kehidupan keletihan sampel ECAE + HT-diproses dikurangkan. v Dalam bahagian kedua kajian ini ECAE telah digunakan untuk menghasilkan tiub logam dengan ultrafine bijirin (UFG) struktur. Bagi mengurangkan kesan ketidakstabilan plastik seperti tiub lengkokan dan patah semasa pemprosesan, minyak hidraulik telah digunakan untuk mengisi rongga tiub. Analisis unsur terhingga (FEA) telah dijalankan untuk mengkaji kemungkinan mekanisme kaedah dan ubah bentuk yang dicadangkan semasa ECAE. Keputusan ujian eksperimen menunjukkan bahawa pengurangan 60% yang dihasilkan dalam saiz butiran membawa kepada peningkatan mekanikal harta ketara termasuk kekuatan alah ricih, kekuatan ricih muktamad, dan microhardness. Dalam fasa ketiga ECAE dipohon keadaan pepejal penggabungan tiub AA 6061 komponen dan SAE 1018 rod keluli. Pengaruh menggunakan 0.1 mm tebal 60Ag-30Cu- 10Sn interlayer di samping penyepuhlindapan pada 220, 320, 420 dan 520 °C selama 60 minit telah disiasat juga. FEA telah dilakukan untuk menilai tingkah laku ubah bentuk bahan kerja semasa proses menyertai ECAE. Hasil FEA menunjukkan pengumpulan luar biasa terikan plastik bersamaan dengan ketakhomogenan tekanan rendah. Keputusan eksperimen menunjukkan bahawa dengan meningkatkan suhu penyepuhlindapan dan menggunakan interlayer, kekuatan bersama telah bertambah baik. Menurut hasil, kekuatan ricih sehingga 32 MPa boleh dilaksanakan dengan mempunyai interlayer dan dengan penyepuhlindapan berikutnya pada 520 °C. vi ACKNOWLEDGMENT Though only my name appears on the cover of this dissertation, a great many people have contributed to its production. I owe my gratitude to all those people who have made this dissertation possible and because of whom my graduate experience has been one that I will cherish forever. I would like to thank my supervisors Professor Mohsen Abdel Naeim Hassan Mohammad and Dr. Noor Azizi Bin Mardi for their invaluable assistance in planning and executing this work, and for their patient advice and support through all my research. I wish to thank my parents, without whom I would never have been able to acquire this degree. Their support and inspiration during my educations provided the foundation for this work. Finally, my heartfelt thanks go to my brothers for their encouragement during the last few years. vii TABLE OF CONTENTS Abstract ............................................................................................................................ iii Abstrak .............................................................................................................................. v Acknowledgment ............................................................................................................ vii Table of contents ............................................................................................................ viii List of figures ................................................................................................................... xi List of tables .................................................................................................................. xvii List of symbols and abbreviation ................................................................................. xviii CHAPTER 1: INTRODUCTION .................................................................................. 1 1.1. Background ........................................................................................................ 1 1.2. Problem statement .............................................................................................. 3 1.3. Objectives ........................................................................................................... 5 1.4. Scope of the thesis .............................................................................................. 6 1.5. Thesis outline ..................................................................................................... 6 CHAPTER 2: LITERATURE REVIEW ...................................................................... 8 2.1. Introduction ........................................................................................................ 8 2.2. Metals strengthening mechanisms ...................................................................... 8 2.3. Severe plastic deformation methods ................................................................. 13 2.3.1. High pressure torsion ................................................................................ 14 2.3.2. Accumulative roll bonding ........................................................................ 15 2.4. Equal channel angular extrusion ...................................................................... 16 2.4.1. Equal channel angular extrusion derivative methods and applications .... 20 2.4.2. Application of ECAE for possessing tubular components ........................ 22 2.4.3. Application of ECAE for joining dissimilar materials .............................. 24 2.5. Process parameters ........................................................................................... 26 2.5.1. Effect of die geometry ............................................................................... 26 2.5.2. Extrusion pressure ..................................................................................... 31 2.5.3. Effect of friction ........................................................................................ 32 2.5.4. Effect of pressing speed and temperature rise effect ................................ 36 2.6. Numerical simulation of ECAE process .......................................................... 39 2.7. Mechanical properties of ECAE-treated metals ............................................... 42 2.8. Research gap and aim of the present work ....................................................... 49 CHAPTER 3: RESEARCH METHODOLOGY ....................................................... 51 3.1. Introduction ..................................................................................................... 51 viii 3.2. Evaluation of the mechanical properties of ECAE-treated AA 6063-O .......... 52 3.2.1. Base material and Experimental details .................................................... 53 3.2.2. The ECAE processing and heat treatment ................................................ 54 3.2.3. Sample preparation for plain and fretting fatigue testing.......................... 56 3.2.4. Hard anodizing procedure ......................................................................... 57 3.2.5. Fretting fatigue test ................................................................................... 58 3.3. ECAE treatment of tubular components .......................................................... 60 3.3.1. The principle of tube-ECAE ..................................................................... 61 3.3.2. Base materials ........................................................................................... 62 3.3.3. Tube-ECAE processing and heat treatment .............................................. 63 3.4. The application of ECAE to join dissimilar metals .......................................... 65 3.4.1. The principle of ECAE joining ................................................................. 65 3.4.2. ECAE joining process and heat treatment ................................................ 66 3.4.3. Base materials ........................................................................................... 67 3.4.4. Interlayer selection and joinability ............................................................ 68 3.5. Sample preparation for mechanical and metallurgical analyses....................... 69 3.6. ECAE performance criteria .............................................................................. 72 CHAPTER 4: FINITE ELEMENT ANALYSIS ........................................................ 74 4.1. Introduction ...................................................................................................... 74 4.2. Finite element modelling of ECAE .................................................................. 75 4.3. Finite element modelling of tube-ECAE .......................................................... 77 4.4. Finite element modelling of dissimilar joining using ECAE ........................... 78 4.5. Models verification and validation ................................................................... 80 CHAPTER 5: RESULTS AND DISCUSSION ....................................................... 85 5.1. Introduction ...................................................................................................... 85 5.2. Evaluation of the mechanical properties of ECAE-treated AA 6063-O .......... 85 5.2.1. FE-simulation ............................................................................................ 85 5.2.2. Mechanical properties ............................................................................... 87 5.2.3. Fretting fatigue life .................................................................................... 91 5.3. ECAE treatment of tubular components ........................................................ 101 5.3.1. FE-simulation results .............................................................................. 101 5.3.1.1. Evolution of equivalent plastic strain .............................................. 101 5.3.1.2. Hydrostatic stress and thickness distribution analysis ..................... 103 5.3.1.3. Plastic instability .............................................................................. 107 ix

Description:
fosforik keras (HA), dan gabungan HT dan HA. Keletihan twisting (HPTT) (Tóth et al., 2009), tube cyclic extrusion compression (TCEC) (Babaei 5291. Wang, Y., Chen, M., Zhou, F., & Ma, E. (2002). High tensile ductility in a.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.