ebook img

Study of the fatigue strength in the gigacycle regime of metallic alloys used in aeronautics and off PDF

263 Pages·2017·31.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Study of the fatigue strength in the gigacycle regime of metallic alloys used in aeronautics and off

Study of the fatigue strength in the gigacycle regime of metallic alloys used in aeronautics and off-shore industries Perez Mora Ruben To cite this version: Perez Mora Ruben. Study of the fatigue strength in the gigacycle regime of metallic alloys used in aeronautics and off-shore industries. Mechanics of materials [physics.class-ph]. Arts et Métiers ParisTech, 2010. English. ￿NNT: 2010ENAM0027￿. ￿pastel-00671657￿ HAL Id: pastel-00671657 https://pastel.archives-ouvertes.fr/pastel-00671657 Submitted on 18 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°: 2009 ENAM XXXX 2010-ENAM-0027 Éccoollee ddooccttoorraallee nn°° 432 : SScciieenncceess eett MMééttiieerrss ddee ll’’iinnggéénniieeuurr DDooccttoorraatt PPaarriissTTeecchh T H È S E eenn ccoottuutteellllee iinntteerrnnaattiioonnaallee aavveecc le CIATEQ, A.C. ((CCentro de Tecnología AAvvaannzzaaddaa) ppoouurr oobbtteenniirr llee ggrraaddee ddee ddoocctteeuurr ddéélliivvrréé ppaarr lll’’’ÉÉÉcccooollleee NNNaaatttiiiooonnnaaallleee SSSuuupppééérrriiieeeuuurrreee ddd'''AAArrrtttsss eeettt MMMééétttiiieeerrrsss SSppéécciiaalliittéé ““ Mécanique ” pprréésseennttééee eett ssoouutteennuuee ppuubblliiqquueemmeenntt ppaarr Rubén PEREZ MORA le 8 septembre 2010 SSStttuuudddyyy ooofff ttthhheee fffaaatttiiiggguuueee ssstttrrreeennngggttthhh iiinnn ttthhheee gggiiigggaaacccyyycccllleee rrreeegggiiimmmeee ooofff mmmeeetttaaalllllliiiccc aallllooyyss uusseedd iinn aaeerroonnaauuttiiccss aanndd ooffff-sshhoorree iinndduussttrriieess Directeurs de thèse : TThhiieerrrryy PPAALLIINN-LLUUCC eett GGoonnzzaalloo MMaarriiaannoo DDOOMMIINNGGUUEEZZ AALLMMAARRAAZZ Co-encadrement : Claude BATHIAS Jury M. Pedro GARNICA GONZALEZ,, DDrr..,, PPoossggrraaddoo eenn MMeettaalluurrggiiaa,, IInnssttiittuuttoo TTeeccnnoollóóggiiccoo ddee MMoorreelliiaa Président, Rapporteur T M. Gérard MESMACQUE,, PPrrooffeesssseeuurr,, LLaabboorraattooiirree ddee MMééccaanniiqquuee ddee LLiillllee,, UUnniivv.. ddee LLiillllee Rapporteur M. Claude BATHIAS, Professeur, LEME, UUnniivveerrssiittéé PPaarriiss XX Examinateur H M. Thierry PALIN-LUC,, PPrrooffeesssseeuurr,, LLAAMMEEFFIIPP,, AArrttss eett MMééttiieerrss PPaarriissTTeecchh BBoorrddeeaauuxx Examinateur MM.. GGoonnzzaalloo MMaarriiaannoo DDOOMMIINNGGUUEEZZ AALLMMAARRAAZZ, Dr., Facultad de Ingeniería Mecánica, UMSNH Examinateur È M. José MARTINEZ TRINIDAD, DDrr..,, EESSIIMMEE,, IInnssttiittuuttoo PPoolliittééccnniiccoo NNaacciioonnaall ddee MMééxxiiccoo Examinateur M. Oscar César De SANTIAGO DURAN,, DDrr..,, CCIIAATTEEQQ AA..CC Examinateur S E AArrttss et Métiers ParisTech - Centre de Bordeaux LAMEFIP Acknowledgements This work would not have had a good end without the strong support of several people and institutions that I want to acknowledge in these few words. I would first like to acknowledge my wife Elsa and my daughter Regina, who have been my greatest motivation for being with me these past three years. I appreciate your love and your patience throughout this time. To my parents, my brothers and sisters, I want to say thanks for your support and your strength because I was not able to be with you in several important moments or I was far away during a lot of time. I want to thank Mr. Thierry Palin-Luc for his invaluable supervision of this thesis, I appreciate your teaching and your drive to succeed, you always encouraged me to have an attitude of leadership and autonomy and I really appreciate that. In the same way, I thank Mr. Gonzalo Dominguez for his supervision of this thesis, I am grateful for having included me in this project since its inception. It was really a great experience having worked on it. I appreciate also the helpful support of the co-supervisors of this work, Mr. Claude Bathias in France and Mr. Carlos Poblano in Mexico. I want to thank specially to Mr. Paul C. Paris, who contributed in some parts of my work always with enthusiasm even when he was not my supervisor. I want to acknowledge Arts et Métiers ParisTech through its director Mr. Jean Paul Hautier, to the Doctoral School of Arts et Métiers ParisTech through its director Mr. Gerard Coffignal and to the LAMEFIP laboratory through its director Mr. Ivan Iordanoff; I acknowledge for allowing me to develop this thesis work in their facilities using the multiple experiences of their people. I acknowledge CIATEQ, A.C., Centro de Tecnología Avanzada, for its financial support during my doctoral stays in Mexico. I thank its director Mr. Victor Lizardi Nieto, the coordinator of the PICYT postgrade program, Mr. Guillermo Frades Castedo and to the manager of the Turbomachinery Department of CIATEQ, Mr. Fernando Aboites Dávila, for accepting me in his workgroup as PhD student and more recently as engineer. Special thanks to my immediate chief, Mr. Oscar De Santiago, for his encouragement for finishing the PhD. I thank also to the French Program of Cooperation for Postgraduates (PCP France-Mexico) and the Mexican Council of Science and Technology (Conacyt) for their financial support of the exchange program. I appreciate the confidence of the French company Turbomeca and the Spanish Vicinay Cadenas with the LAMEFIP laboratory, to be considered for the study of their special materials which allowed to have matter of study for this thesis. Specially thanks to Mr. José Luis Arana from the Basque Country University, for his friendship and his strong support. i Acknowledgements I want to recognize the help of the technicians in the French side, Christophe Lemaire, Jonathan Merzeau, Jean-Marie Medard and Mathieu Lasserre, who helped me a lot when several technical problems, not always easy, arrived. To the staff of LAMEFIP in general, I want to say thanks for their friendly reception and for their help in diverse aspects, such as the French language, because you were patient with me during my learning. Thanks to my colleagues at CIATEQ in Mexico who helped me in many technical and administrative aspects; to Maritza Robles Gómez, Helen Zuñiga Osorio, Guadalupe López Quintana, Conin Arcega Escobedo, José Saul Sosa, José Bernabé Hernández, Vicente Rangel Fajardo, José Guadalupe Rico, Mariano Pérez Mora, Manuel Luna Tovar, Rómulo Hernández Ferrer and Carlos Aguilar Barrón. I want to thank the staff of CIATEQ in general, particularly the people of the Turbomachinery Department, for your friendship, your encouragement and the nice working environment that has made my stay enjoyable. ii Table of notations a Crack length. A Parameter of the Wöhler or Basquin curve. α Exponent of the slope in the threshold of the da/dN curve following the Paris-Hertzberg crack growth law. b Burgers’ vector B Parameter of the Wöhler or Basquin curve. c Wave velocity C Constant of the Paris law equation C Parameter of calibration of the strain gauge A d Distance between two pits da/dN Crack growth rate ρ Density E Elastic modulus E Dynamic elastic modulus d e, ε Engineering or true strain (cid:1)(cid:2) Strain rate f Frequency F Force F Diameter of crack initiation specimen Hz Hertz Kt Stress concentration factor k Stiffness K Stress intensity ∆K, ∆K , ∆K Stress intensity range, threshold and effective th eff ω Frequency M Modal mass m Exponent of the Paris law equation N Number of cycles to failure f ν Poisson’s ratio P Static load Pa, MPa Pascal, megapascal p Probability of failure S R Stress ratio iii Table of Symbols R Radius of pit R Static strength m R Average roughness a S, S , S , S Stress, maximum, minimum and mean max min m s Standard deviation or seconds s S Alternating stress a, a s s s Maximum, minimum and mean stress max, min, m U , A Displacement amplitude of the ultrasonic amplifier 0 0 T Temperature V, V Tension voltage, root mean square RMS Y(a/w) Dimensionless correction function of Wu’s Equation w Width of crack growth specimen w Weight √(cid:4)(cid:5)(cid:6)(cid:4) Square root of the area of a defect iv Table of Contents Introduction ………………………………………………………………………………………………………………………….5 CHAPTER I: Literature review…..……………………………………………………………………………………..7 1. General concepts of fatigue...................................................................................................................................... 8 1.1. Fatigue crack initiation .................................................................................................................................. 10 1.2. Fatigue crack growth ...................................................................................................................................... 11 1.3. Regimes of fatigue ............................................................................................................................................ 13 1.4. Influence of mean stress on fatigue .......................................................................................................... 14 2. Gigacycle fatigue ........................................................................................................................................................ 16 2.1. Gigacycle fatigue interpretations ............................................................................................................... 18 2.2. Gigacycle fatigue testing machines ........................................................................................................... 20 2.3. Ultrasonic fatigue principles ........................................................................................................................ 23 2.4. Gigacycle fatigue of steel and aluminium alloys .................................................................................. 29 3. Effect of corrosion on fatigue ............................................................................................................................... 31 3.1. Corrosion fatigue crack initiation .............................................................................................................. 31 3.2. Corrosion crack initiation interpretations ............................................................................................. 37 3.3. Corrosion fatigue crack propagation ........................................................................................................ 38 3.4. Corrosion fatigue crack propagation interpretations ....................................................................... 40 4. Effects of defects on fatigue .................................................................................................................................. 44 References of Chapter I................................................................................................................................................. 51 CHAPTER II: Experimental conditions, materials and tests results …………..……………55 1. Gigacycle fatigue testing device .......................................................................................................................... 56 1.1. Crack initiation tests features ..................................................................................................................... 57 1.1.1 Specimen generalities............................................................................................................................... 57 1.1.2. Tension-compression tests (R=–1) .................................................................................................... 58 1.1.3. Tension-tension tests (R>0) ................................................................................................................. 58 1.1.4. Tests with imposed temperature ....................................................................................................... 59 1.1.5. Tests in sea water flow............................................................................................................................ 61 1.1.6. How to carry out crack initiation tests ............................................................................................. 61 1 Contents 1.2. Crack growth tests features ......................................................................................................................... 62 1.2.1. Specimen generalities.............................................................................................................................. 62 1.2.2. Crack growth observation ..................................................................................................................... 63 1.2.3. How to carry out crack growth tests ................................................................................................. 64 1.3. Machine components calculations ............................................................................................................ 67 1.3.1. Horns .............................................................................................................................................................. 67 1.3.2. Elongation bars .......................................................................................................................................... 69 1.4. Calibration ........................................................................................................................................................... 71 2. Fatigue tests on AS7G06 cast aluminium alloy ............................................................................................. 75 2.1. AS7G06 characteristics .................................................................................................................................. 75 2.2. Specimen geometry ......................................................................................................................................... 78 2.3. Temperature measurement of AS7G06 during tests ......................................................................... 80 2.4. AS7G06 fatigue results ................................................................................................................................... 82 2.4.1. Crack initiation tests at room temperature .................................................................................... 83 2.4.1.1. Tension-compression: R=-1 at room temperature ............................................................... 83 2.4.1.2. Tension-tension: R=0.01 at room temperature ..................................................................... 85 2.4.1.3. Tension-tension: R=0.5 at room temperature ........................................................................ 86 2.4.2. Crack initiation tests at 150 °C ............................................................................................................ 87 2.4.2.1. Tension-compression: R=-1 at 150 °C ........................................................................................ 87 2.4.2.2. Tension-tension: R=0.01 at 150 °C .............................................................................................. 89 2.4.3. Synthesis of the results on AS7G06 ................................................................................................... 90 3. Fatigue tests on R5 steel ........................................................................................................................................ 93 3.1. R5 steel characteristics .................................................................................................................................. 94 3.2. Specimen geometry ......................................................................................................................................... 97 3.3. Temperature measurement of R5 steel during testing .................................................................... 98 3.4. R5 steel fatigue results ................................................................................................................................... 101 3.4.1. Crack initiation tests without any corrosion .................................................................................. 101 3.4.1.1. Tension-compression: R=–1........................................................................................................ 101 3.4.1.2. Tension-tension: R=0.3 ................................................................................................................. 103 3.4.2. Effect of corrosion on fatigue crack initiation................................................................................ 104 3.4.2.1. Crack initiation with pre-corrosion: R=-1 ............................................................................. 104 3.4.2.2. Crack initiation with artificial sea water in situ: R=-1 ...................................................... 105 3.4.2.3. Surface roughness effect on fatigue strength under sea water flow .......................... 107 3.4.2.4. Corrosion with and without cyclic loading. .......................................................................... 108 3.4.3. Synthesis of crack initiation results ................................................................................................... 115 3.4.4. Crack growth tests results ..................................................................................................................... 117 References of chapter II............................................................................................................................................. 118 2 Contents CHAPTER III: Fractography analysis and discussion ………………………………………………119 1. Analysis of AS7G06 cast aluminium alloy results ............................................................................. 120 1.1. Fractography of specimens tested at room temperature .................................................... 120 1.1.1. Tension-Compression (R=-1) at room temperature ................................................. 120 1.1.2. Tension-Tension (R=0.01) at room temperature ....................................................... 121 1.1.3. Tension-Tension (R=0.5) at room temperature ......................................................... 124 1.2. Fractography of specimens tested at 150 °C ......................................................................... 126 1.2.1. Tension-Compression: R=-1 at 150 °C ............................................................................ 126 1.2.2. Tension-Tension (R=0.01) at 150 °C ............................................................................... 129 1.3. Discussion ............................................................................................................................................ 131 2. Analysis of R5 steel results ........................................................................................................................ 134 2.1. Fractography of specimens tested without any corrosion ............................................. 134 2.1.1. Tension-Compression (R=–1)............................................................................................. 134 2.1.2. Tension-Tension (R=0.3) ...................................................................................................... 136 2.2. Fractography of specimens with corrosion ........................................................................... 138 2.2.1. Tension-Compression (R=-1) with pre-corrosion ..................................................... 139 2.2.2. Tension-Compression (R=-1) under sea water flow ................................................. 142 2.3. Discussion ............................................................................................................................................ 147 References of Chapter III...................................................................................................................................... 151 CHAPTER IV: Assessment of the fatigue crack initiation and propagation duration …..….153 1 Paris-Hertzberg crack growth law .................................................................................................................. 154 2 Application of the Paris-Hertzberg law to corrosion pits ..................................................................... 158 2.1 Assumptions ............................................................................................................................................... 159 2.2 Short crack initiation ............................................................................................................................... 160 3 Determination of the propagation stages duration ................................................................................. 165 3.1 From a to a (microstructural short crack growth regime) ................................................ 166 int 0 3.2 From a to a (physical short crack growth regime) .................................................................. 167 0 i 3.3 From a to a (long crack growth) .................................................................................................. 168 i final 3.4 Calculation of total propagation duration ...................................................................................... 170 4 Calculation for R5 steel with pre-corrosion................................................................................................ 172 5 Calculation for R5 steel with sea water corrosion ................................................................................... 174 6 Discussion ................................................................................................................................................................. 176 References of chapter IV ........................................................................................................................................... 178 3

Description:
Spécialité “. Jury strength because I was not able to be with you in several important materials which allowed to have matter of study for this thesis.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.