ebook img

Study of the Effect of Time-Based Rate Demand Response Programs on Stochastic Day-Ahead PDF

19 Pages·2017·5.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Study of the Effect of Time-Based Rate Demand Response Programs on Stochastic Day-Ahead

applied sciences Article Study of the Effect of Time-Based Rate Demand Response Programs on Stochastic Day-Ahead Energy and Reserve Scheduling in Islanded Residential Microgrids MostafaVahedipour-Dahraie1,HamidRezaNajafi1,*,AmjadAnvari-Moghaddam2and JosepM.Guerrero2 1 DepartmentofElectrical&ComputerEngineering,UniversityofBirjand,Birjand9856,Iran; [email protected] 2 DepartmentofEnergyTechnology,AalborgUniversity,AalborgEast9220,Denmark; [email protected](A.A.-M.);[email protected](J.M.G.) * Correspondence:h.r.najafi@birjand.ac.ir;Tel.:+98-56-3220-2049 AcademicEditor:AntonioFicarella Received:8February2017;Accepted:7April2017;Published:11April2017 Abstract: Inrecentderegulatedpowersystems,demandresponse(DR)hasbecomeoneofthemost cost-effectiveandefficientsolutionsforsmoothingtheloadprofilewhenthesystemisunderstress. ByparticipatinginDRprograms,customersareabletochangetheirenergyconsumptionhabitsin responsetoenergypricechangesandgetincentivesinreturn. Inthispaper,westudytheeffectof varioustime-basedrate(TBR)programsonthestochasticday-aheadenergyandreservescheduling in residential islanded microgrids (MGs). An effective approach is presented to schedule both energy and reserve in presence of renewable energy resources (RESs) and electric vehicles (EVs). Aneconomicmodelofresponsiveloadisalsoproposedonthebasisofelasticityfactortomodelthe behaviorofcustomersparticipatinginvariousDRprograms. Atwo-stagestochasticprogramming modelisdevelopedaccordinglytominimizetheexpectedcostofMGunderdifferentTBRprograms. Toverifytheeffectivenessandapplicabilityoftheproposedapproach,anumberofsimulationsare performedunderdifferentscenariosusingrealdata;andtheimpactofTBR-DRactionsonenergy andreserveschedulingarestudiedandcomparedsubsequently. Keywords: demandresponse(DR);scheduling;time-basedrate(TBR)programs;renewableenergy resources(RESs);electricvehicles(EVs) 1. Introduction One of the major thrust areas of demand side management (DSM) is demand response (DR) which is defined as a set of actions taken to reduce users’ electricity consumptions in response to highermarketpricesormarketincentives[1]. Moreover,systemoperatorsmayapplyDRprogramsto reducetheloadtemporarilyinemergencygridconditionssuchasunitoutageorunpredictablechange inrenewablegeneration[2,3]. Therefore,themainideaofDRistoencouragecustomerstomanage theirconsumptionpatternsinawaynotonlytomaximizetheirownutility,butalsotosupportsafe operationofthepowersystem[4]. AccordingtotheFederalEnergyRegulatoryCommission(FERC),DRprogramscanbeclassified intotwomajorcategories, namely, time-basedrate(TBR)andincentive-basedprograms(IBPs)[5]. In TBR programs (also known as price-based DR programs [6]), time-varying prices are given to consumersbasedontheelectricitypriceindifferenttimeperiods,encouragingthemtochangetheir consumption level in response to the changing price signals. On the other hand, in IBP schemes, Appl.Sci.2017,7,378;doi:10.3390/app7040378 www.mdpi.com/journal/applsci Appl.Sci.2017,7,378 2of19 customersareofferedfixedortime-varyingincentives,toreducetheirelectricityconsumptionduring periodsofsystemstress,howevertheywouldbepenalizedfornoparticipationintheprogram[7]. The focus of this paper is on TBR programs which are mainly divided into three categories, real-timepricing(RTP),timeofuse(TOU),andcriticalpeakpricing(CPP)programs. Theseprograms are well-suited for implementation in residential areas (e.g., residential microgrids (MGs)) where therearemorepossibilitiesforloadmanagementpurposes[8–11]. However, thereexistanumber ofchallenges,suchasreboundpeaksduringlowcostperiodsandserviceinterruptions. Moreover, thepresenceofuncertainelementswithinanenvironmentsuchaswindandphotovoltaic(PV)power generationimposesdevelopmentofsophisticatedbalancingmechanismsbetweensupplyanddemand tomeetthesystemstability. Therefore,TBRmodelsneedtobewell-designedandimplementedto provideefficientoperatingconditionsforsuchsystemsinpresenceofuncertainties. RegardingtheMGschedulingunderuncertainty,muchresearchhasbeendonerecently[12–21]. Theeffectofwindenergyforecasterrorsonthenetwork-constrainedmarket-clearingproblem,inwhich energy and reserve are simultaneously dispatched, was investigated in [12,13] using two-stage stochasticprogrammingmodels. Basedontheproposedmethodin[12], costofMGwasminimized with regard to the uncertainty of renewable energy resources (RESs). In [13], optimal dispatch of a MG was presented with regard to emissions and fuel consumption cost minimization using heuristicoptimization. Authorsin[14,15]exploitedMGmanagementasamulti-objectiveoptimization problemtomitigateemissionlevelaswellasoperationandmaintenancecosts. Toobtainefficient energymanagement,artificialintelligencetechniqueswerealsousedwithmulti-objectiveoptimization programming[16]. However,inthereviewedliterature,theprocurementoftheMGreserve(interms of spinning and/or non-spinning reserve) for reliable operation of the system has been neglected. Toaddressthisissue,effectivemethodsforprovidingreserveintypicalMGswithhighpenetration of RESs are developed based on DR programs [17–19]. In [17], a day-ahead market structure was presentedwhereDRcanprovidecontingencyreservesthroughabiddingprocedurerepresentingthe costofloadcurtailment. Also,authorsin[18]introducedaprice-responsiveDRactionforoptimal regulationservicereserveprovisionunderhighlevelsofwindpenetration.Thesametypeofstudywas carriedoutin[19],consideringloaduncertaintyandgenerationunavailabilityasdifferentworking scenarios. In view of the problem-solving strategies, most of the reviewed research works have utilized stochastic programming techniques, however some have applied other methods such as robustoptimizationorMonteCarlosimulation[20,21]. In[22],astochasticACsecurity-constrained unitcommitmentproblemunderwindpoweruncertaintyhasbeenformulated. Also,astochastic multi-objective framework has been proposed in [23], for joint energy and reserve scheduling in day-ahead however, this reference has not considered AC network, load, EVs and wind power uncertainties. Furthermore,authorsin[24]haveproposedamulti-objectivestructurethatcanoptimize objectivefunctionsincludingoperationcostsofMG,buttheyhavenotconsidereddemandandEVs uncertaintyinday-aheadscheduling. This paper presents the effect of different types of TBR programs on the MG operation costs and shaping the load profile in presence of RESs and electrical vehicles (EVs). EVs are employed for energy scheduling or peak shaving with fast charging and discharging capabilities, while the responsiveloadsareusedtosupplyapartoftherequiredMGreservetocompensateRESsuncertainties. Monte-Carlosimulationstogetherwithk-meansclusteringtechniqueareappliedtocreateseveral scenarioscorrespondingtorenewablegenerationvariationsandEVsowners’behaviors.Thegenerated scenariosarethenreducedandfedintoatwo-stageoptimizationmodeldevelopedforminimizing the operation costs. In the first stage of optimization, the energy and reserve costs are minimized simultaneouslyandinthesecondstage,thecostassociatedwiththereschedulingofgeneratingunits (due to the variations in wind turbine (WT) and photovoltaic (PV) output powers) is minimized. Finally,simulationresultsforco-optimizationofenergyandreservesintheexaminedresidentialMG are presented and compared under different DR programs and operating conditions. As a whole, themaincontributionsofthispapercanbehighlightedas: Appl.Sci.2017,7,378 3of19 • OptimalmanagementofanislandedMGwithRTP-basedDRprogramsusingascenario-based two-stagestochasticprogrammingmodel. • Simultaneous energy and reserve scheduling of MGs with regard to different DR schemes in anuncertainenvironment. • Assessment of TBR-based DR programs under different scenarios with/without considering EVsparticipation. Theremainderofthispaperisarrangedasfollows: anetwork-constrainedday-aheadmarket clearingmodelisintroducedinSection2anditisreformulatedintoamixedintegerprogramming (MIP)modelinSection3. ThecasestudiesarepresentedinSection4andthesimulationresultsare discussedthereafter. Finally,Section5concludesthispaperwithfuturescope. 2. ModelDescription A network-constrained day-ahead market clearing model is developed under a two-stage stochastic programming framework in order to accommodate the uncertain nature of RESs and EVs. Basedon[25]theMGuncertaintiescanbecategorizedintotwogroups: (1) Normal operation uncertainties (including errors in forecasting wind data, EV operation, andreal-timemarketprices). (2) Contingency-based uncertainties (including random forced outages, unintentional islanding, andresynchronizationevents). The subject area of this paper mainly falls in the first category so the optimization model is developed in a way to effectively consider normal operation uncertainties including forecasting errors of WT and PV power production and EV owner behaviors. A set of scenarios representing MG uncertainties are generated for scheduling horizon. In order to render the problem tractable, an appropriate scenario-reduction algorithm is applied to reduce the generated scenarios into anoptimalsubsetthatrepresentswellenoughtheuncertainties. Inthenextstep,theoptimization problemissolvedintwostagesusingcommercially-availablesoftwarepackages. Inthefirststageof theproposedoptimizationmodel,energyandreservesarejointlyscheduledtobalancesupplyand demand. ThesecondstagecorrespondstooperationmanagementinseveralactualMGmodesand dealswithvariablesthatarescenario-dependentandhavedifferentvaluesforeverysinglescenario. In other words, the first stage corresponds to the optimal decision for the deterministic base case, while the second stage examines the feasibility and optimality of the first stage decisions under systemcontingencies. Intheproposedframework,differentcustomerssigncontractsforparticipatinginvariousTBR programsandsubmitthemtotheMGoperator. Basedonthetypeoftheconsumers’contributions, MGoperatorfindstheoptimalday-aheadenergyandreserveschedulingwithregardtotheminimum expected cost of operation. At the same time, optimum participation level of consumers in each DRprogramforreserveprocurementisdetermined. Also,MGoperatorschedulesthechargingand dischargingprocessoftheEVsforanytimeintervalsinthestudiedperiod. 2.1. Market-BasedDRModel Inordertoevaluatetheimpactofresidentialcustomers’participationinDRprogramsonload profilecharacteristics,aneconomicmodelofresponsiveloadsisdevelopedonthebasisofelasticity factors. Elasticityisdefinedasdemandsensitivitywithrespecttotheelectricityprices[26]. ρ (t)∂D(t) E(t,t) = 0 (1) D(t) ∂ρ(t) Appl.Sci.2017,7,378 4of19 where,D(t)andρ (t)arethenominal/initialvalueofdemandandelectricityprice,respectively.Based 0 onasingle-periodelasticloadmodel, thecustomerchangeshisdemandtoachievethemaximum benefitfromD(t)toD (t)as: DR D (t) = D(t)+∆D(t) (2) DR Thecustomerbenefitforthetthtimeintervalcanbecalculatedas: S(D (t)) = B(D (t))−D (t)·ρ(t) (3) DR DR DR where,S(D (t))andB(D (t))representcustomerbenefitandincomeattimetafterimplementing DR DR DRprograms,respectively. Inordertomaximizecustomerbenefit,thefollowingconditionmustbe met[27]: ∂S(D (t)) ∂B(D (t)) DR =0⇒ DR = ρ(t) (4) ∂D (t) ∂D (t) DR DR Therefore,thecustomerutilityfunctionwouldgetaquadraticformasfollows[27]: (cid:20) D (t)−D(t)(cid:21) B(D (t)) = B (t)+ρ (t)[D (t)−D(t)]× 1+ DR (5) DR 0 0 DR 2E(t,t)·D(t) Differentiating(5)withrespecttoD (t)andsubstitutingtheresultin(4)yields: DR (cid:20) D (t)−D(t)(cid:21) ρ(t) = ρ (t)· 1+ DR (6) 0 E(t,t)·D(t) Therefore,acustomer’sconsumptionbehavioroverthetimecanbeobtainedasfollows: (cid:20) ρ(t)−ρ (t)(cid:21) D (t) = D(t)· 1+E(t,t)· 0 (7) DR ρ (t) 0 Inamulti-periodelasticloadsmodel,thepriceelasticityofthetthperiodversusthehthperiod canbedefinedas[26]: ρ (h) ∂D(t) E(t,h) = 0 · (8) D (t) ∂ρ(h) 0 Consideringthelinearrelationshipbetweenthehourlydemandlevelandtheelectricityprices, itcanbeexpressedthat:     DDR(t) = D(t)·1+ ∑T E(t,h)· ρ(h)ρ−(hρ)0(h) (9)  t =1 0    t (cid:54)= h Combining(7)and(9),theresponsiveloadeconomicmodelcanbeextractedasfollows:     DDR(t) = D(t)·1+E(t,t)· ρ(t)ρ−(tρ)0(t)+ ∑T E(t,h)· ρ(h)ρ−(hρ)0(h) (10)  0 h =1 0    h (cid:54)= t 2.2. EVsParticipationinDRPrograms EVs can be considered in three different modes: grid-connected mode, idle mode, or driving mode. Ingrid-connectedmode,theMGoperatorcanschedulecharging/dischargingprocessofEVs batteries. EVscanexchangepowerwiththeMGbasedontheirstateofcharge(SOC),stoptimeinthe Appl.Sci.2017,7,378 5of19 parkinglot(PL)andtheelectricitypriceineachDRprogram. Inthiscase,EVsareconsideredtobe probabilisticloadsorgenerationswhichcanbeevaluatedbystochasticmethods[28]. Theexchange powerbetweeneachEVandthenetworkcanbeobtainedas[28]: Pd PEV = η Pc − k,t ∀t ∈ u (11) k,t c k,t η k d TheSOCofEVsconnectedtothenetworkisupdatedbyEquation(12)[28]. BCk·SOCk,t = BCk·SOCk,t−1+PkE,tV−1 ∀t ∈T,∀k ∈ Nk (12) whereSOCk,t−1 = SOCk,I,ift =1. BCk isbatterycapacityofEVinkWhandSOCk,I istheinitialSOC ofkthEV.Itisimportanttocontrolthechargeanddischargeenergyoftheparkedvehiclewsuchthat theSOCofthebatterycouldbekeptwithintheallowedrangeSOCminandSOCmax. k k Besides, in idle or driving mode, there is no power exchange between EV and the network, however the stored energy might decrease depending on the EV trip length (L ) and its energy k consumption rate (r ). It is assumed that each EV returns to the PL after driving L km and is k k pluggedbackintothenetwork. Thus, theSOCatthetimeofarrival(SOCent)canbeestimatedby k Equation(13)[28]. SOCent = SOCint−L ×r ∀k ∈ Nk (13) k k k k where,SOCintistheinitialSOCatthebeginningofthetrip. k 2.3. RenewableEnergyResources OutputpowerofWTandPVplantsareinherentlyintermittent. Inordertomodelthestochastic windspeed(andtheWTbehavioraccordingly),thedividedWeibullprobabilitydensityfunction(PDF) isusuallyemployed. ThegeneralWeibullPDFofwindspeedcanbeformulatedasfollows[29]: PDF(v) = k(v)k−1·e−(vc)k (14) c c wherev,kandcarewindspeed,shapefactor(dimensionless)andscalefactor,respectively. Besides,theoutputpowerofWTcanbedescribedbyEquation(15)[30]:  P (v) = Pr · v3in +0 bv3 ;0≤ v;≤v vi≤n van≤d vv ≥ vout (15) w w  v3in−v3r 1 v3r−v3in ;vin≤ v ≤ v r r out wherev ,v andv indicatetheratedspeed,cut-inspeedandcut-outspeedoftheWT,respectively, r in out andPr representsthetotalratedpowerofWT. w Thedistributionofhourlyirradianceusuallyfollowsabimodaldistribution,whichcanbeseenas alinearcombinationoftwounimodaldistributionfunctions[31,32]. ABetaPDFisutilizedforeach unimodal,asstatedinthefollowing[31]: (cid:40) Γ(α+β) ·ϕ(α−1)×(1−ϕ)β−1 for 0≤ ϕ ≤1, α ≥0, β ≥0 f (ϕ) = Γ(α)·Γ(β) (16) b 0 otherwise TheparametersoftheBetadistributionfunction(α,β)arecalculatedbasedonthemean(µ)and standarddeviation(σ)oftherandomvariable[31]. Inthispaper,tomodeltheuncertaintiesofoutputpowerforWTandPVunits,asetofpossible scenariosisgeneratedbasedonMetropolis–Hastingsalgorithmandreducedthereaftertoanumberof distinctscenariosusingthek-meansclusteringtechnique[33]. Appl.Sci.2017,7,378 6of19 3. OptimizationProblemFormulation 3.1. ObjectiveFunction Theobjectivefunctionisdefinedbasedontheminimizationofthetotalexpectedcost(EC)of anisolatedresidentialMGwhichincludescostofenergyandreserveprovisionaswellastheoperating costindifferentworkingscenarios. T Ng EC = ∑ ∑[(A ·u +B ·P )+SUC ·y +SDC ·z i i,t i i,t i i,t i i,t t=1i=1 (cid:105) +(CRD ·RD +CRU ·RU +CRNS ·RNS) i,t i,t i,t i,t i,t i,t Nw Np + ∑ C ·P + ∑ C ·P w,t w,t p,t p,t w=1 p=1 Nkd Nkc + ∑ SPR ·Pd − ∑ BPR ·Pc t k,t t k,t k=1 k=1 T Nj Nj +∑ ∑ CRD ·RD +CRU ·RU − ∑ C ·L j,t j,t j,t j,t j,t j,t t=1j=1 j=1 Ns T Ng (17) +∑ ∑ ∑[SUC ·(y −y )+SDC ·(z −z ) i i,t,s i,t i i,t,s i,t s=1t=1i=1 (cid:105) +C ·(rU +rNS −rD ) i,t i,t,s i,t,s i,t,s (cid:34) Ns T Nj +∑ ∑ ∑ C ·(rU −rD ) j,t j,t,s j,t,s s=1t=1 j=1 (cid:35) Nw Np + ∑ C ·∆P + ∑ C ·∆P w,t w,t,s p,t p,t,s w=1 p Nj +∑ VLOL·Lshed j,t,s j=1 InEquation(17), thefirstlineoftheobjectivefunctionstatesthecostsassociatedwithenergy providedfromthegeneratingunitsandthestart-upandshut-downcosts,andthesecondlineexpresses thecommitmentofthegeneratingunitstoprovidereserves. Thethirdlinedenotesthecostsassociated withenergyprovidedfromtheWTandPVunits. Thefourthlineexpressesthecostassociatedwith charge/dischargeofEVsandthefifthlineconsiderstheutilityofthedemandloadsandtheirupand downreserveprovision. Therestofthetermsintheobjectivefunctiondealwiththeoperatingcostindifferentworking scenarios. Inthisregard,thesixthandtheseventhlinesconsidercostofunitcommitmentandthe costofdeployingreservesfromthoseunitsindifferentscenarios. Theeighthlinerepresentsthecost ofdeployingreservesfromDRprogramsandtheninthlinestatesthecostsassociatedwithenergy providedfromWTandPVunits. Here, itisassumedthattheMGoperatorwouldpayforenergy providedbyWTandPV.Finally,thelasttermstandsfortheexpectedcostofenergynotservedforthe inelasticloads. 3.2. Constraints Theproblemconstraintsincludetwoparts;thefirst-stageconstraintsandsecond-stageconstraints. Thefirst-stageonesareassociatedwiththebasecasescenario(i.e.,deterministicoperatingcondition), andcanbeexpressedasfollows: • Powerbalanceinsteadystate;Equation(18)representstheactivepowerbalanceinMGinsteady state[21]. N∑gbP +N∑wbP + ∑Np P +N∑kbdPd = L +N∑kbcPc +∑Lb F ∀b,∀t (18) i,t w,t p,t k,t b,t k,t l,t i=1 w=1 p=1 k=1 k=1 l=1 Appl.Sci.2017,7,378 7of19 where,F ispowerflowthroughlinelinperiodt,(F = 1 (δ −δ )),δ isvoltageangleatnodex l,t l,t Xl ls lr x,t inperiodt. Thepowerflowthroughlinelislimitedas: −Fmin ≤ F ≤ Fmax ∀l,∀t (19) l,t l,t l,t • Realpowergenerationconstraints;TherealpowergeneratedbyDGunitsareconstrainedby(20) and(21)[21]. P ≤ Pmaxu −RU ∀i,∀t (20) i,t i i,t i,t P ≥ Pminu +RD ∀i,∀t (21) i,t i i,t i,t • Generation-sidereservelimits;Constraints(22)–(24)imposelimitsontheprovisionofspinning reserve in terms of up and down regulations, as well as non-spinning reserve from the generatingunits. 0≤ RU ≤ RU,maxu ∀i,∀t (22) i,t i,t i,t 0≤ RD ≤ RD,maxu ∀i,∀t (23) i,t i,t i,t 0≤ RNS ≤ RNS,max(1−u ) ∀i,∀t (24) i,t i,t i,t • Demand-sidereservelimits;Constraints(25)and(26)restricttheprocurementofupanddown reservesfromtheresponsiveloads. 0≤ RU ≤ RU,max ∀j,∀t (25) j,t j,t 0≤ RD ≤ RD,max ∀j,∀t (26) j,t j,t • Unitcommitmentconstraints; Equation(27)determinesthestart-upandshut-downstatusof units,while(28)statesthataunitcannotstart-upandshut-downduringthesameperiod[29]. yi,t−zi,t = ui,t−ui,t−1 ∀i,∀t (27) y +z −1≤0 ∀i,∀t (28) i,t i,t • Generating units startup cost constraint; constraints (29) and (30) represent generating units startupcostlimitations[21]. SUCi,t ≥ λiS,tU(ui,t−ui,t−1) ∀i,∀t (29) SUC ≥0 ∀i,∀t (30) i,t The second-stage constraints account for stochastic operating conditions are the same as the first-stageconstraintsandmentionedinAppendixA. 4. SimulationResultsandDiscussion 4.1. TestCase ThesimulationsareperformedoveramodifiedresidentialMGwhichispresentedinFigure1[30]. Therearedifferenttypesofdistributedgeneration(DG)unitsintheMGincludingtwomicro-turbines (MT &MT ),twofuelcell(FC &FC )units,andonegasengine(GE)unit. Also,thereareanumber 1 2 1 2 ofrenewable-basedprimemoversinthesystemincludingthreeWTs,eachwithacapacityof80kW installedatbus6,9and16,respectivelyandtwoPVplants,eachwithacapacityof70kWinstalledat buses5and10,respectively. ThewindandPVpowergenerationareafunctionofrandomwindspeed andsunradiation,respectively. Theiroutputpowerscenariosarereducedbyapplyingak-means AAApppppplll...   SSSccciii...   222000111777,,,   777,,,   333777888       888   ooofff   111999    Appl.Sci.2017,7,378 8of19 rrraaannndddooommm   wwwiiinnnddd   ssspppeeeeeeddd   aaannnddd   sssuuunnn   rrraaadddiiiaaatttiiiooonnn,,,   rrreeessspppeeeccctttiiivvveeelllyyy...   TTThhheeeiiirrr   ooouuutttpppuuuttt   pppooowwweeerrr   sssccceeennnaaarrriiiooosss   aaarrreee   rrreeeddduuuccceeeddd   bbbyyy    aaapppppplllyyyiiinnnggg   aaa   kkk‐‐‐mmmeeeaaannnsss   aaalllgggooorrriiittthhhmmm   aaasss   ssshhhooowwwnnn   iiinnn   FFFiiiggguuurrreee   222...   TTTeeeccchhhnnniiicccaaalll   ssspppeeeccciiifffiiicccaaatttiiiooonnnsss   ooofff   ttthhheee   sssiiimmmuuulllaaattteeeddd   MMMGGG    accclooogmmmorpppitooohnnnmeeennnatttssss   saaahrrroeee w  gggniiivvvieeennnnF   iiiinnng   uTTTraaaebbb2llle.ee   T111e   c[[[33h3444n]]]i...c   MaMMlooosprrreeeeooocvivvfieeecrrra,,,   ttttihhhoeeen   shhhoooofuuutrrrhlllyyye   slllooiomaaadddu   lpppartrreooodfffiiilllMeee   Gooofff c  tttohhhmeee   pMMMoGnGGe   iniissst   siiilllallluuuressstttgrrraiaavttteeeedndd   iiiinnnn    TFFFaiiigggbuuulerrreee1   333[   aa3ann4n]ddd.   iMiisss   sossuuurepppopppvoooesssreee,dddth   ttteooo   hbbboeeeu   dddriiilvvvyiiiddldoeeeadddd   iiinpnnttrtoooo   fittthhhlerrreeeoeeef   dddthiiifffefffeeeMrrreeeGnnnttti   spppeieelrrrliuiiooosdddtrsssa,,,   tnnneaaadmmmineeelllyFyy i  vvgvauaalllrllleeeeyyy3   pppaeenerrrdiiioooiddds   s(((0u00000p:::p00000o0–––s5e55:d::000000to))),,,    boooeffffffd‐‐‐pppiveeeiaaadkkke   dpppieeenrrrtiiioooodddthsss r  e(((e555:::d0000i00f–––fe111r000e:::n0000t00,,,p   e111r666i:o::000d000s–––,111n999a:::000m000e   laaaynnnvddda   ll222e222y:::000p000e–––r222i4o44:d::000000(0)))   0a:aa0nnn0ddd– 5  :ppp0ee0eaa)a,kkko   fpppf-eeeprrreiiioaookdddsssp   e(((r111i1o11::d:000s000–––(5111:5550:::0000–0001   0aaa:n0nn0ddd,       12226000::::00000000––––12229222::::00000000)))a... n  d22:00–24:00)andpeakperiods(11:00–15:00and20:00–22:00).     FFFFiiiigggguuuurrrreeee   1111....   SSSSiiiinnnngggglllleeee   lllliiiinnnneeee   ddddiiiiaaaaggggrrrraaaammmm   ooooffff   tttthhhheeee   ssssiiiimmmmuuuullllaaaatttteeeedddd   mmmmiiiiccccrrrrooooggggrrrriiiidddd   MMMMGGGG....    (((aaa)))    (((bbb))) FFFFiiiigggguuuurrrreeee   2222....   TTTThhhheeee   oooouuuuttttppppuuuutttt   ppppoooowwwweeeerrrr   ooooffff   rrrreeeennnneeeewwwwaaaabbbblllleeee   eeeennnneeeerrrrggggyyyy   rrrreeeessssoooouuuurrrrcccceeeessss   ((((RRRREEEESSSSssss))))   iiiinnnn   tttthhhheeee   rrrreeeedddduuuucccceeeedddd   ggggeeeennnneeeerrrraaaatttteeeedddd   sssscccceeeennnnaaaarrrriiiioooossss,,,,    ((((aaaa))))   eeeeaaaacccchhhh   wwwwiiiinnnndddd   ttttuuuurrrrbbbbiiiinnnneeee   ((((WWWWTTTT))))   aaaannnndddd   ((((bbbb))))   eeeeaaaacccchhhh   pppphhhhoooottttoooovvvvoooollllttttaaaaiiiicccc   ((((PPPPVVVV))))   ppppllllaaaannnntttt....    666555000 555555000 Load (kW)Load (kW)Load (kW)234234234555555555000000000 OOOffffff---PPPeeeaaakkk PPPeeeaaakkk OOOffffff---PPPeeeaaakkk PPPeeeaaakkk PPPOOOeeefaffaafffk-kk-- VVVaaalllllleeeyyy 111555000000 222 444 666 888 111000 111222 111444 111666 111888 222000 222222 222444 TTTiiimmmeee (((HHHooouuurrrsss)))     FFFiiiggguuurrreee   333...   TTToootttaaalll   dddeeemmmaaannnddd   llloooaaaddd   cccuuurrrvvveee   ooofff   MMMGGG...    Figure3.TotaldemandloadcurveofMG. AAppppl.l. SSccii.. 22001177,, 77,, 337788   99o off1 199  Table 1. Technical specifications of the simulated microgrid (MG) components.  Table1.Technicalspecificationsofthesimulatedmicrogrid(MG)components. Emission  CRNS  CRD   CRU   SDC  SUC  B ($)  A   Pmax  Pmin  DG  (kgE/kmWishs)i on C(R$)N S C(R$D)  CR($U)  SD(C$)  SUC($)  ($A/kWh)  Pm(kaxW)  Pm(kinW)  B($) DG 0(k.5g5/0k Wh) 0(.0$1)9  0(.$0)20  0($.0)21  (0$.)080 ($0).090 0.043 ($/k0W.8h51)  (kW15)0  (kW25)  MT1  0.05.5505 0 00..001199  00.0.02200  0.00.20121  0.008.0080 0.009.0090 0.004.0344 0.805.1851  150150  2525  MTMT2  1 0.03.7575 0 00..001159  00.0.02105  0.00.20115  0.008.0090 0.009.0160 0.004.0428 0.825.1552  150100  2520  MT2FC1  0.03.7377 7 00..001155  00.0.01155  0.00.10515  0.009.0090 0.106.0160 0.002.0829 2.525.2552  100100  2020  FC1FC2  0.08.9307 7 00..001175  00.0.01157  0.00.10517  0.009.0080 0.106.0120 0.002.0931 2.525.2120  100150  2035  FC2GE  0‐. 890 0.0‐ 17 0.0‐1 7 0.01‐7  0.08‐0  0.120‐  0.003.1106 2.1200  15080  35 0  GEWT  - - - - - - 0.106 0 80 0 WT ‐  ‐  ‐  ‐  ‐  ‐  0.548 0  70  0  PV  - - - - - - 0.548 0 70 0 PV In this study, it is assumed that the total signed contracts for participating customers in DR  progIrnamthsi sarsetu edqyu,aitl itso a4s0s%um oef dthteh atotttahle lotoatda ldsuigrinnegd thcoen stcrhacetdsufloinrgp apretriicoipda. tTinhge cpursicteo melearsstiicnityD Rof  pdreomgraanmd sisa srehoewquna ilnt oTa4b0l%e 2o, fwthhiechto itsa aldlooapdteddu frrionmg [t2h7e] swchitehd suolmineg mpeordioifdic.atTiohne. pItr iicse alesloa satsicsiutymoedf  dthemat athnedreis asrheo twwno iPnLTsa wbilteh2 4,0w chhiacrhgiisngad sotapttieodnsf rionm bu[s2e7s] 3w aitnhds 1o1m. Tehme oadrriifivcaalt tiiomn.e Iotfi sEValss oisa mssoudmeleedd  twhaittht hae Greaaursesitawno dPisLtsriwbuitthio4n0 wchitahrgin =g 1st9a atinodn sin2 b=u 1se0s [335a]n. dM1o1r.eTovheera, rtrhiev aElVtism ceononfeEcVtesdi stom tohdee MledG  wariteh aassGuamusesdi atno dbiset rciabpuatibolne wofi tphrµov=id1i9nagn dsloδw2=, m10e[d3i5u]m. M aonrde ofvaesrt, cthhearEgVinsgc omnnodecetse d[2t8o,3t6h]e. MFoGr athree  asstsuudmieedd MtoGb, eencearpgayb lperoicfeps raotv didififnergesnlto twar,imffse d(RiuTmP, aTnOdUfa asntdch CaPrgPi)n agrem aoldsoe sd[e2p8i,c3t6e]d. Fino rFtighuerset u4d. ied MG,energypricesatdifferenttariffs(RTP,TOUandCPP)arealsodepictedinFigure4. Table 2. Price elasticity of demand.  Table2.Priceelasticityofdemand. 23–24  20–22 16–19 11–15 6–10 1–5 Hour 0.0233 –24 0.02304– 22 01.60–31 9 101.–01354 6–010.03 1–5−0.08 Hour1–5 0.030 .03 0.004.0 34 0.00.033 00.0.0344 0.−003.11 −0.080.3 1–56–10 0.040 .03 0.001. 04 0.00.043 −00.0.149 −00.1.104 0.30.034 6–1011–15 0.04 0.01 0.04 −0.19 0.04 0.034 11–15 0.03 0.04 −0.11 0.04 0.03 0.03 16–19 0.03 0.04 −0.11 0.04 0.03 0.03 16–19 0.040 .04 −0.−190. 19 0.00.033 00..0011 0.004.04 0.0304.034 20–2220–22 −0.1−10 .11 0.004. 04 0.00.033 00..0044 0.003.03 0.030.03 23–2243–24 32 RTP 28 TOU CPP 24 20 16 12 8 4 0 2 4 6 8 10 12 14 16 18 20 22 24 Time (Hours)   Figure 4. Energy prices at different tariffs (RTP, TOU and CPP).  Figure4.Energypricesatdifferenttariffs(RTP,TOUandCPP). The optimization horizon is considered to be a day with 24 time intervals. To simulate the  The optimization horizon is considered to be a day with 24 time intervals. To simulate the environmental/behavioral uncertainties within the system, 3000 scenarios are generated based on  environmental/behavioraluncertaintieswithinthesystem,3000scenariosaregeneratedbasedon Weibull, Beta, and Gaussian PDFs to represent different values for wind speed, irradiation and EVs  Weibull,Beta,andGaussianPDFstorepresentdifferentvaluesforwindspeed,irradiationandEVs owners’ behaviors, respectively. In the next step, the k‐means algorithm is applied to reduce the  owners’ behaviors, respectively. In the next step, the k-means algorithm is applied to reduce the generated scenarios to an optimal subset that represents well enough the uncertainties. The reduced  generatedscenariostoanoptimalsubsetthatrepresentswellenoughtheuncertainties. Thereduced scenarios are then applied to the proposed mixed integer programming (MIP)‐based optimization  scenariosarethenappliedtotheproposedmixedintegerprogramming(MIP)-basedoptimizationstage stage  to  minimize  the  expected  cost  at  scheduling  time  horizon.  The  effect  of  demand‐side  tominimizetheexpectedcostatschedulingtimehorizon. Theeffectofdemand-sideparticipation participation in different TBR‐based DR programs in the MG energy and reserve scheduling is also  in different TBR-based DR programs in the MG energy and reserve scheduling is also analyzed. analyzed. The optimization is carried out by CPLEX solver using GAMS software (Release 24.7.3  TheoptimizationiscarriedoutbyCPLEXsolverusingGAMSsoftware(Release24.7.3r58181WEX-WEI r58181 WEX‐WEI x86 64bit/MS Windows, TU Braunschweig, Braunschweig, Germany) 37] on a PC  with 4 GB of RAM and Intel Core i7 @ 2.60 GHz processor (Intel, Santa Clara, CA, USA). Appl.Sci.2017,7,378 10of19 x8664bit/MSWindows,TUBraunschweig,Braunschweig,Germany)[37]onaPCwith4GBofRAM [email protected](Intel,SantaClara,CA,USA). Appl. Sci. 2017, 7, 378   10 of 19  4.2. PresentationandDiscussionofResults 4.2. Presentation and Discussion of Results  WeconsiderthefollowingthreecasesfortestingtheeffectofschedulingofDRprogramsand We consider the following three cases for testing the effect of scheduling of DR programs and  EVsonoperationcostsoftheMG,loadprofilecurvecharacteristicsandprofitofcustomersduringthe EVs on operation costs of the MG, load profile curve characteristics and profit of customers during  schedulingperiod. the scheduling period.  (cid:4) CCaassee 11:: wwiitthhoouutt ddeemmaanndd ssiiddee ppaarrttiicciippaattiioonn aanndd EEVVss ccoommmmiittmmeenntt,,  (cid:4) CCaassee 22:: wwiitthh ddeemmaanndd ssiiddee ppaarrttiicciippaattiioonn aanndd wwiitthhoouutt EEVVss ccoommmmiittmmeenntt,,  (cid:4) CCaassee 33:: wwiitthh ddeemmaanndd ssiiddee ppaarrttiicciippaattiioonn aanndd EEVVss ccoommmmiittmmeenntt..  It should be noted that Case 1 is considered to be a base case, so operating costs, load profiles  ItshouldbenotedthatCase1isconsideredtobeabasecase,sooperatingcosts,loadprofilesand and reserve scheduling in other cases are evaluated compared to the base case.  reserveschedulinginothercasesareevaluatedcomparedtothebasecase. Case 1: In this case, DR programs are not considered and there is no contribution from EVs side.  Case 1: In this case, DR programs are not considered and there is no contribution from EVs The scheduled energy and reserve capacity in this case is illustrated in Figure 5a,b, respectively.   side. ThescheduledenergyandreservecapacityinthiscaseisillustratedinFigure5a,b,respectively. AAss sshhoowwnn iinn FFigiguurree5 5a,ab, absaesdedo nonth teheec oencoonmoimcdici sdpiastpcahtcrhes ureltssu,lltosw, l-ocwos‐tcoMsTt MaTn1d aGnEd aGreE uasreed uassedba asse  1 base units to provide the energy. These generators are dispatched during the entire scheduling  unitstoprovidetheenergy. Thesegeneratorsaredispatchedduringtheentireschedulinghorizonto hreodriuzcoent htoe roevdeuracell tohpee roavteinragllc oospte,rwathinilge tchoesto, twhehriluen tihtse (oetshpeerc iuanlliytsF (CespaencdiaFllCy FdCu1 eantodt hFeCi2r dhuigeh teor  1 2 their higher operating cost) are only dispatched at peak hour periods. As shown in Figure 5b, all the  operatingcost)areonlydispatchedatpeakhourperiods. AsshowninFigure5b,allthescheduled scheduled reserve capacity is provided by dispatchable DG units, including up‐spinning reserve  reserve capacity is provided by dispatchable DG units, including up-spinning reserve (Up/DGs), (Up/DGs), down‐spinning reserve (Down/DGs), and non‐spinning reserve (Non/DGs) in this case.  down-spinningreserve(Down/DGs),andnon-spinningreserve(Non/DGs)inthiscase. Sincethe Since the output power of WT and PV are intermittent, the required reserve power is provided by  outputpowerofWTandPVareintermittent,therequiredreservepowerisprovidedbyMTs,FCsand MTs, FCs and GE. It can be observed that when RESs power productions in scenarios are relatively  GE.ItcanbeobservedthatwhenRESspowerproductionsinscenariosarerelativelydifferentfromthe different from the forecasted values, (i.e., in 10:00–14:00 and 19:00–22:00), more reserve capacity is  forecastedvalues,(i.e.,in10:00–14:00and19:00–22:00),morereservecapacityisscheduledaccordingly. scheduled accordingly. The total expected cost of MG operation as well as costs of providing energy  ThetotalexpectedcostofMGoperationaswellascostsofprovidingenergyandreserveservicesfrom and reserve services from DG units in case 1 are obtained as 897.833$, 436.622$ and 19.752$, respectively.  DGunitsincase1areobtainedas897.833$,436.622$and19.752$,respectively. (a)  (b) Figure 5. Hourly energy and reserves scheduling in case 1, (a) hourly energy and (b) reserve capacity.  Figure5.Hourlyenergyandreservesschedulingincase1,(a)hourlyenergyand(b)reservecapacity. Case 2: In this case, optimal operation of MG with demand‐side participation (i.e., TBR‐DR  Case 2: In this case, optimal operation of MG with demand-side participation (i.e., TBR-DR programs) but without EVs contribution is presented. The scheduled energy and reserve capacity in  programs)butwithoutEVscontributionispresented. Thescheduledenergyandreservecapacityin RTP programs are illustrated in Figure 6a,b, respectively. Comparing the results in Figures 5a and 6a  RTPprogramsareillustratedinFigure6a,b,respectively. ComparingtheresultsinFigures5aand6a demonstrates that with demand side participation in RTP schemes, the power provided by DG units  demonstratesthatwithdemandsideparticipationinRTPschemes,thepowerprovidedbyDGunitsis is reduced at peak hours, specifically in 10:00–14:00 and 20:00–22:00. Likewise, during the hours with  reducedatpeakhours,specificallyin10:00–14:00and20:00–22:00. Likewise,duringthehourswith relatively high energy prices, the customers also reduce their consumption levels to save energy and  relativelyhighenergyprices,thecustomersalsoreducetheirconsumptionlevelstosaveenergyand get incentives. On the other hand, customers shift most of their consumptions into the time intervals  getincentives. Ontheotherhand,customersshiftmostoftheirconsumptionsintothetimeintervals with low energy prices, specifically in 01:00–05:00 (valley period, see Figure 3) to further reduce their  withlowenergyprices,specificallyin01:00–05:00(valleyperiod,seeFigure3)tofurtherreducetheir running cost.  runningcost.

Description:
energy management, artificial intelligence techniques were also used with multi-objective optimization programming [16]. However, in the reviewed
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.