Astronomy&Astrophysicsmanuscriptno. (willbeinsertedbyhandlater) Study of measured pulsar masses and their possible conclusions C.M.Zhang1,J.Wang1,Y.H.Zhao1,H.X.Yin2,L.M.Song3,D.P.Menezes4 D.T.Wickramasinghe5,L.Ferrario5,andP.Chardonnet6 1 1 NationalAstronomicalObservatories,ChineseAcademyofSciences,Beijing100012,China, 1 e-mail:[email protected] 0 2 SchoolofSpaceScienceandPhysics,ShandongUniversityatWeihai,Weihai264209,China 2 3 AstronomicalInstitute,InstituteofHighEnergyPhysics,ChineseAcademyofSciences,Beijing100039,China n a J 4 DepartmentdeF´ısica,CFM,UniversidadeFederaldeSantaCatarinaFloriano´polis,SC,CP.476,CEP88.040-900,Brazil 9 2 5 MathematicalSciencesInstitute,TheAustralianNationalUniversity,CanberraACT0200,Australia ] 6 Lapth-Lapp,UniversitdeSavoie,B.P.110,74941-Annecy-le-VieuxCedex,France E H thedateofreceiptandacceptanceshouldbeinsertedlater . h p Abstract. Westudythestatisticsof61measuredmassesofneutronstars(NSs)inbinarypulsarsystems,including18double - NS (DNS) systems, 26 radio pulsars (10 in our Galaxy) with white dwarf (WD) companions, 3 NSs with main-sequence o companions,13NSsinX-raybinaries,andoneundeterminedsystem.Wederiveameanvalueof M =1.46±0.30M⊙.When r t the46NSswithmeasuredspinperiodsaredividedintotwogroupsat20milliseconds,i.e.,themillisecondpulsar(MSP)group as andothers,wefindthattheirmassaveragesare,respectively,M=1.57±0.35M⊙andM=1.37±0.23M⊙.Intheframeworkof [ thepulsarrecyclinghypothesis,thissuggeststhatanaccretionofapproximately∼0.2M⊙issufficienttospinupaneutronstar andplaceitinthemillisecondpulsargroup.Basedontheseestimates,anapproximateempiricalrelationbetweentheaccreting 4 mass(∆M)ofrecycledpulsaranditsspinperiodisproposedas∆M = 0.43(M⊙)(P/1ms)−2/3.IfwefocusonlyontheDNS, v the mass average of all 18 DNSs is 1.32±0.14M⊙, and the mass averages of the recycled DNSsand the non-recycled NS 9 2 companionsare,respectively,1.38±0.12M⊙and1.25±0.13M⊙.Thisisconsistentwiththehypothesisthatthemassesofboth 4 NSsinDNSsystemhavebeenaffectedbyaccretion.ThemassaverageofMSPsishigherthantheChandrasekharlimit1.44M⊙, whichmayimplythatmostofbinaryMSPsformviathestandardscenariobyaccretionrecycling.Ifweweretoassumethatthe 5 . massofaMSPformedbytheaccretioninducedcollapse(AIC)ofawhitedwarfmustbelessthan1.35M⊙,thentheportionof 0 thebinaryMSPsinvolvedintheAICswouldnotbehigherthan20%,whichimposesaconstraintontheAICoriginofMSPs. 1 Withaccretingmassfromthecompanion,thenuclearmattercompositionofMSPmayexperienceatransitionfromthe’soft’ 0 equationofstate(EOS)toa’stiff’EOSorevenneutrontoquarkmatter. 1 : v Keywords.stars:binaries:close–stars:pulsars:general–stars:fundamentalparameters–stars:neutron i X r a 1. Introduction nuclearfuel,astarundergoesasupernova(SN)explosion,and the central region of the star collapses under gravity to form Massisoneoftheimportantparametersofaneutronstar(NS), a NS in the central supernova remnant (SNR) (Haensel et al. from which we can infer the stellar evolution of its progeni- 2007). Hence, the NS mass statistics help the astronomers to tor, the nuclear matter composition of a compact object (e.g. infer the properties of its progenitor star, and its links to SN Haenseletal.2007)oritsequationofstate(EOS),andstrength and SNR. However,unlike the otherNS parameters,e.g. spin ofgravitationalfieldiftheNSradiusisknown.Inotherwords, period and magnetic field, NS mass is only measured in the theprecisemassmeasurementscanprovidesignificanttestsof binarysystem(e.g.Freire2008;Lorimer2008;Lyne&Smith studiesofstellarevolution,nuclearphysicsofsuperdensemat- 2005).Therefore,thestatisticsofthemeasuredNSmassesmay ter,andEinstein’sgeneralrelativityinthestronggravityregime provide information about the NS accretion history in the bi- (Lattimer & Prakash 2004, 2007; Kramer & Stairs 2008), as naryphases(e.g.Stairs2004;Manchester2004;Bhattacharya wellasinsightintobinaryevolutionsinceNSmassesaremea- &vandenHeuvel1991). suredinbinarysystems. A NS is one of the possible ends for a massive star with An accurate measurement of a NS mass in a pulsar bi- massgreaterthan∼4-8M⊙.Afterhavingfinishedburningthe nary system needs five relativistic post-Keplerian parameters, 2 C.M.Zhangetal.:Studyofmeasuredpulsarmassesandtheirpossibleconclusions e.g., the periastron advance, time dilation, orbital shrinking rate,and Shapirodelays,whichcan in principlebe measured. AlloftheserelativisticparametersplaceconstraintsontheNS masses, andwhenthree aremeasured,anaccuratedetermina- XRB(13) t2pi0roe0nc4ios,fe2lNy0S0i8nmaadbso,sue2bs0l0be9enc).eoumTtrheosenp-NostsSasribm(lDeasN(seeS.sg).hsLyaosvrteiemmbeser,e2ns0u0mc8he;aaFssruertiherdee 4SCLVH42XC SHVUMUAMeTaeeyE3gl1xE nr1TCaC91 8 8X EJ X5 5XJ X2X21X- C3-2-1J20-28-3-811A4 -1-0 1-332 R 5897032./01 -42 00 -S53.1086-9 5228415C5630 firstdiscoveredpulsarPSRB1913+16(Hulse&Taylor1975; DNS (18) JJ11581181+-14793064 Taylor&Weisberg1982)anddoublepulsarsystemPSRJ0737- J1829+2456 B1534+12 3039 (Burgay et al. 2004; Lyne et al. 2004; Kramer & Stairs B1913+16 B2127+11 2008), because the eccentric orbits of both systems provide J0737-3039 J1756-2251 well-measuredrelativisticparameters.UnlikeDNSs,massesof J1906+0746 mtthhiealitlrinsbeoicrnomanradylloyprubnlisotasrssaurffi(eMcsoiSePncsitr)creaulrlaeatrinv(oiostrtieocafsesyffuectcohtsldoecwtaenremcbcieenneut,sreiscdinitcytoe) NSWD(16) JJJJJJJBJBJJBJJJ0001111112011112467001789040788332514410013230507112513499738253-+++--+--+-++-++446234011502000475577770837403961041410004233 5958452777583 provideextraequationstosolvethemasses(Freire2000;Freire emteaals.u2r0e0d4w).itThhlearrgefeoerrer,otrhse,smucahssaessPoSfRMJS0P51s4yCst4e0m0s2Aare(Forfetierne GCNS(10) BBBJJJJJJJ1110111001988577700510214442211244888116---------+522422277091400002225250222IH B8422111 ACABIJ((T Teerr 5 5 I )J) etal.2004),exceptincasesofhigheccentricity.Theobserva- MSNS(3) JJ01074450--75331490 tions of relativistic parameters in pulsar binary systems have uncertain(1) JJ11970533+-20234207 presented the first application of general relativity and pro- videdthemostwidelyavailablelaboratoriesfortestingtheories 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 of gravitation (e.g. Hulse & Taylor 1975; Taylor & Weisberg List of 61 Neutron Star Masses (M ) 1982;Weisberg& Taylor 2003;Thorsettetal. 1993;Stairs et al.2002). Fig.1.Listof61measuredNSmassesinthedifferenttypesof Mass measurements are also possible in X-ray binaries, NSbinarysystems.Theirdetailsandreferencescanbeseenin where a neutron star X-ray pulsar and an optical companion Table 1-3.Verticalline M=1.4M⊙ delineatesthe mass mean reside.CarefulmonitoringofthecyclicalDopplershiftsofthe valueinferredfromGaussianfitting. pulse periodandDopplershifts of the spectralfeaturesof the opticalcompanioncanbeusedtodeterminetheorbitalperiod as well as the radial velocity, which provide/infer the mass function of the system. Both masses are known when the in- 25 clinationangleofaneclipsingbinarysystemcanbemeasured (e.g. van Kerkwijket al. 1995;Jonker et al. 2003).The accu- 20 racy of this method is not so high as that of measuring DNS mass, usually being affected by an error of about ∼ 10% or more(seeTable1). er15 b Thorsett and Chakrabarty (TC99) presented the results of um a statistical study of 19 NS binary systems, and obtained a N10 Gaussian distributionof massaround1.35M⊙, with a narrow deviation of 0.04 M⊙. The sample has increased significantly 5 since then. There are now about61 NSs with measured (esti- mated)massesinvarioustypesofbinarysystems. 0 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 Inthispaper,wepresentastatisticalanalysisofthemasses M(M ) ofNSsinbinariesusingthecurrentdataset,andinvestigatein particular the pulsar recycling hypothesis.We present a com- Fig.2.Histogramof61measuredNSmasses. A Gaussianfit- pilationofallNSmassobservationsin Sect.2. InSect. 3,we tingcurveissuperimposedonthehistogramplot,withthemass studytherelationbetweentheNSmassanditsspinperiod.Our meanvalue1.40M⊙ andstandarddeviation0.18M⊙. conclusionsaregiveninSect.4. Table 2, we first list the 18 DNSs that have masses with high 2. Statisticsofpulsarmasses accuracies, then 16 radio pulsars with WD companions,3 ra- dio pulsars with the main-sequence star companionsand one 2.1.NSmassdistribution uncertainsystem.InTable3,wealsolistthe10Galacticradio In Tables 1-3, we list all known NSs with measuredand esti- pulsarswithWDcompanions. mated masses, including their binary parameters when avail- able.InTable1,welistthe13systemsconsistingofX-rayNSs To illustrate all NS mass distributions, a histogram of NS withloworhighmasspost-main-sequencestarcompanions.In massesisplottedinFig.2,whereafittedGaussiandistribution C.M.Zhangetal.:Studyofmeasuredpulsarmassesandtheirpossibleconclusions 3 functionis shownwith a mean mass of 1.40M⊙ and a small uncertainty of 0.19 M⊙, that is slightly higher than the previ- 3.4 ous statistical mean value of 1.35± 0.04M⊙by TC99. About 3.2 ∼67%(∼90%)ofallNSsarewithintherangeof1.2M⊙–1.6M⊙ 3.0 HMXB/XB 2.8 (1.0M⊙– 1.8M⊙). The NSs with masses over 1.8M⊙ repre- 2.6 LMXB sentabout∼10%ofallsamples.Themaximumandminimum 2.4 DNS v2a0l2u1eBs)oafnNdS0.m97as±se0s.2a4reM, r⊙e(s2pAec1ti8v2e2ly-3,721.7)4. ± 0.2 M⊙(J1748- M(M) 122...802 NNGSSCWMNSSD ItisinterestingtoinvestigatewhythepresentNSmassav- 1.6 erage is higher than that measured ten years ago. The data of 1.4 1.2 NS masses by TC99 are based on the DNSs, which are gen- 1.0 erally less than the canonical value of 1.4 M⊙. The present 0.8 NSmassdataincludesalltypesofbinarysystemswithdiffer- 0.6 MSP 0.4 entevolutionaryhistories.Inparticular,therearemanyNSWD 1 10 100 1000 10000 100000 systems,whichhavesignificantlyhighNSmassesasshownin Ps(ms) Table1-3. ItisgenerallyassumedthatMSPsareformedfromthespin- Fig.3. Diagram of mass versus spin period for 39 NSs. The up of a magneticneutronstar caused by accretionin a binary horizontallineM=1M⊙(3.2M⊙)standsforthemeasuredmin- system(e.g.Alparetal.1982;Bhattacharya&vandenHeuvel imummass(theoreticalmaximummass,seeRhoades&Ruffini 1991;vandenHeuvel2004).Iftheneutronstarswerebornwith 1974).Theverticallineat20msseparatesthesamplesintotwo thestandardpulsartypefields∼ 1012 G, ithastobe assumed groups,MSP(< 20ms)andlessrecycledNS(> 20ms).Itis that the field decays to ∼ 108−9 G by accretion as well. The found that the mass averages of two groups are, respectively, MSPs are understood to be evolutionarily linked to the long- 1.57±0.35M⊙ and1.37±0.23M⊙.Thesolidcurvestandsfor lived LMXBs (e.g. van den Heuvel 2004). The evidence of a therelationbetweenaccretionmassandspinperiodofrecycled MSPthatislinkedtoanLMXBwasfoundwiththediscovery pulsarasdescribedinEq.(1)and(2),M =1.40+0.43(Ps)−2/3 ms ofthefirstaccretion-poweredX-raypulsarSAXJ1808.4-3658 (M⊙). (spin frequency of 401 Hz, Wijnands & van der Klis 1998). A consequence of the re-cycling hypothesis for the origin of byB∼∆M−7/4,whichinfersarelationas∆M ∼ P−3/2.Onthe s MSPs is that the mass of a MSP should be higher than that basisoftheaboveestimatesandarguments,weproposeanem- of non-recycled pulsar. It has long been believed that a MSP pirical relation between the accreting mass (∆M) of recycled should possess a higher mass than the canonical value of 1.4 pulsaranditsspinperiodas M⊙, e.g. ∼ 1.8M⊙, because of the significant amount of ac- cretion(e.g.vandenHeuvel&Bitzaraki1995ab;Burderietal. ∆M = M (P/ms)−2/3 , (1) a 1999;Stella&Vietri1999).Thus,ifthisrelationbetweenMSP where M is a characteristic accretion mass when a pulsar is massandaccretionexists,wemayexpecttoseeitinNSmass a spun-up to one millisecond. The mass of recycled pulsar (M) statisticstakenoverdifferentspinperiodranges. increaseswithaccretionandisroughlyexpressedas, WefirstdividedallNSsamplesintotwogroups,thosewith spin periods longer than and equal to or shorter than 20 ms. M = M +∆M , (2) 0 The20msdividinglinewastakensomewhatarbitrarilyasthe periodbelowwhichapulsarwouldbeclassifiedasaMSP.We whereM isthemassofNSatbirthwhileNSspinperiodisas 0 findthatthemassaveragesofMSPsandlessrecycledNSsare longasthoseofHMXBs. 1.57±0.35M⊙and1.37±0.23M⊙,respectively.Theexpected ExploitingEq.(1)and(2)tofittheNSmassandspinperiod trendisthereforeclearlyseeninthedata.Theabovetrendcan data as shown in Fig.3, we find that M0 = 1.40 ± 0.07 M⊙ alsobeseeninFig.3.Themasssystematicallydecreaseswith and Ma = 0.43± 0.23 M⊙. Because of the broadness of the the spin period,or alternatively,spin-up is associated with an initial NS mass distribution and the large errors in measuring increaseinmassofNS. NSmass,thefittingCODisaslowas0.07. By dividing the pulsars into three groups, the mass av- erages are, respectively, M=1.57 ±0.35 M⊙(P < 20 ms), 2.2.SpecialDNSmassspectrum M=1.38±0.23M⊙(20ms < P < 1000ms),and M=1.36±0.24 M⊙(P > 1000 ms). Here, we note that the average mass of The mass average of all eighteen DNSs in nine systems is the recycled pulsar increases with the stellar spin-up. In gen- 1.32±0.14M⊙, whichissystematicallylowerthanthatofthe eral,the spinperiodsandmagneticfields(B)of recycledpul- less recycled NS (M=1.37±0.23 M⊙). The mass averages of sarsarejustbelowthespin-uplineinB-P diagramofpulsars the nine recycled and non-recycled DNSs are, respectively, s (e.g. Bhattacharya & van den Heuvel 1991; Lorimer 2008), 1.38±0.12M⊙and1.25±0.13M⊙,wherethemassofrecycled where the B-P correlation is given by P ∼ B6/7 from the NS is generally higher than that of non-recycled one, which s s accretion-inducedmagneticevolutionmodelforrecycledpul- maybetheindicationthateithertheaccretioninducesthemass sars(Zhang&Kojima2006),themagneticfieldandaccretion increasefortherecycledNSortheevolutionofDNSprogen- mass correlation for recycled pulsars is given approximately itors makes the mass of non-recycled NS low. However, we 4 C.M.Zhangetal.:Studyofmeasuredpulsarmassesandtheirpossibleconclusions nificantphasesofaccretion.Nevertheless,theAICsystemsare 2.0 likelyonaveragetohaveaccretedlessmass. DNS mass ratio - Orbit period 1.8 In Fig.3, four of twenty-two BMSPs have masses of less 1.6 than 1.35 M⊙, which are less than Chandrasekhar mass limit 1.4 1.44 M⊙, that may be candidate AIC MSPs. Of course, for a 1.2 NS with initial mass of 1.1 M⊙, a recycled process will also BM workbyaccreting0.25M⊙ fromitscompanion.Ifweassume AM/1.0 the four MSPs to be the candidate AICs, then a constrainton 0.8 the productionof AIC can be derivedthat no more than 20% 0.6 (∼4/22)ofBMSPsareinvolvedintheAICprocesses. 0.4 0.2 2.4.Pulsar:neutronstarorquarkstar? 0.0 0.1 1 10 From the updated measured pulsar masses, we have insuffi- Porb(day) cient informationto clearly infer the nuclearmatter composi- Fig.4. Mass ratio versusorbitalperioddiagramfor 9 pairs of tionsinsidethecentralcompactobjects,sincewerequiremea- DNSs,wheretheverticalaxisMA/MBrepresentsthemassratio surements of the stellar radii to determine the nuclear matter oftherecycledNStonon-recycledone. properties given in Fig.5, a mass-radius plot of compact ob- ject.Theoretically,pulsarsmayconsistofhadronicmatteronly (Menezes & Provideˆncia 2004a), hadronic and quark matter cannot derive how much mass is accreted into these systems, (hybrid stars) either bearing or not a mixed phase (Menezes sincefortwosystems(J1811-1736andJ1518+4904)bothNS & Provideˆncia 2004b; Panda, Menezes & Provideˆncia 2004; pairmasseshavelargedifferenceswithlargeerrors,e.g.,PSR J1811-1736with1.5−+00..142M⊙ and1.06+−00..415M⊙(seeTable2). T(Matesunmezie,sY,aPsruohviirdaeˆ&nciVao&skrMeseelnrosskey22000063a);oIrvqaunaorvkemtaalt.te2r0o0n5l)y. ThemassratiosofsevenDNSsareclosetounityandthose All calculations dependon choosing of appropriateequations of the other two with longer orbital periods are higher than of state based on nuclear physics and thermodynamics re- unity, as shown in Fig.4. It is too early to draw conclusions quirements,whichenterasinputtotheTolman-Oppenheimer- aboutanyratio gap,separatedby the orbitalperiodat 2 days, Volkoff equations. The output are a family of stars, for in- sincefewerDNSsamplesarenotsufficienttoinferawarranty stance, with certain gravitational and baryonic masses, radii, statistical result. The cause of the systematically lower mass and central energy. The maximum gravitational mass and the values of DNS systems than the typical 1.4 M⊙ remains un- associatedradiusareimportantconstraintsontheequationsof known.WeproposethattheevolutionoftheDNSprogenitors state.Generallyspeaking,thehadronicmatterequationofstate mayinfluenceorinteracteachother,whichmayberesponsible (EOS) produces maximum masses higher than hybrid stars, fortheparticularmassspectrumdistributionsshownabove. which in turn, give slightly higher masses than quark stars. Radii are usually smaller for quark stars. However, these re- sultsareverymodeldependentascaneasilybeseenfromthe 2.3.OnAICmechanismforMSPformation referencesmentionedabove. Therefore, based on the present results we cannot deter- Although we have focussed on the standard formation model minereliablywhetherthepulsarisaNSoraquarkstar(QS)in (recycled NS) of MSPs which involves accretion, associated thispaper.However,wenotethattheusageoftheterminology fielddecayandspinup,othermodelsarepossible(e.g.Kiziltan NS to denote the central object of a pulsar is traditional and & Thorsett 2009abc). These include the often discussed pos- doesnotimplyanydetailofitsnuclearmattercomposition. sibility of the accretion induced collapse (AIC) of a white dwarfontoa neutronstar (e.g.vandenHeuvel1994;Verbunt Theoretically,theNSmaximummasslimitof3.2M⊙ was 1990; Fryer et al. 1999; van Paradijs et al. 1997; Ferrario & proposed by Rhoades & Ruffini (1974).The measured pulsar Wickramasinghe2007).In this model,a white dwarf of mass massesarethenfarbelowthislimit,whichwouldexcludemany >1.2M⊙ consistingO,Ne,andMg(e.g.Nomoto&Yamaoka knownEOSmodelsforthebehaviorofmatteratsupra-nuclear 1992)collapsesontoawhitedwarfbecauseoftheaccretionof densities.ThepossibleexistenceofhighmassNSobservations matterduringthecourseofbinaryevolution,whereaNSisas- favors a stiff EOS (e.g. Ozel 2006; on the NS stiffness see sumedtobebornasweaklymagneticandrapidlyspinningas Stergioulas2003).The”soft”EOSmodelspredictlowerpres- thoseobservedMSPs. suresforagivendensity,correspondingtoalessmassivestar, Hurley et al. (2010) presented a comparative study of the e.g.<1.5M⊙.RecycledNSsinbinarysystemsshouldfindthat expected propertiesof binary MSPs (BMSPs) born by means thestiffnessincreases,andthatthephasetransitionofnuclear ofNSrecyclingandAIC.Theyconcludedthatbothprocesses mattermayoccur(e.g.Glendenning&Weber 2001;Menezes produce significant populations of BMSPs that could poten- etal.2006b). tially beidentifiedwithBMSPs. Furthermore,priortothe de- ThefractionofNSswithmassesoutsiderange1.2M⊙-1.8 tachedBMSPphaseattheendofbinaryevolution,boththeNS M⊙ islessthan20%,whichwouldprovideusefulinformation recyclingand AIC binary systems may have experiencedsig- abouttheirprogenitorpropertiesinmostcases. C.M.Zhangetal.:Studyofmeasuredpulsarmassesandtheirpossibleconclusions 5 Table1.ParametersofneutronstarsinX-raybinaries System M(M⊙) Mc(M⊙) Porb(d) Pspin(ms) eccentricity type Refs 4U1538-52 1.06+0.41 16.4+5.2 3.73 5.28×105 0.08 HMXB X1 −0.34 −4.0 SMCX-1 1.05±0.09 15.5±1.5 3.89 708 <4×10−5 HMXB X2 CenX-3 1.24±0.24 19.7±4.3 2.09 4814 <8×10−4 HMXB X3 LMCX-4 1.31±0.14 15.6±1.8 1.41 1.35×104 <0.01 HMXB X2 VelaX-1 1.88±0.13 23.1±0.2 8.96 2.83×105 0.09 HMXB X4 1.86±0.16 23.8±0.2 8.96 2.83×105 0.09 HMXB X4 4U1700−37∗ 2.44±0.27 58±11 3.41 No 0.2 HMXB X5 HerX-1 1.5±0.3 2.3±0.3 1.70 1240 <3×10−4 XB X6 4U1820-30 1.29+0.19 ≤0.106 0.08 6.9×105 No XB X7 −0.07 2A1822-371 0.97±0.24 0.33±0.05 0.23 590 <0.03 LMXB X8 XTEJ2123-058 1.46+0.30 0.53+0.28 0.25 3.9 No LMXB X9 −0.39 −0.39 CygX-2 1.78±0.23 0.60±0.13 9.84 No 0.0 LMXB X10 1.5±0.3 0.63±0.16 9.84 No 0.0 LMXB X10 V395CAR/2S0921C630 1.44±0.10 0.35±0.03 9.02 No No LMXB X11 SaxJ1808.4-3658 <1.4 <0.06 0.08 2.49 <0.0005 LMXB X12 HETEJ1900.1-2455 <2.4 <0.085 0.06 2.65 <0.005 LMXB X13 *Thecompactobjectmaybeablackhole(Lattimer&Prakash2007).LMXB—Low-massX-raybinary,HMXB—High-massX-raybinary. X1—vanKerkwijketal.1995(M, M ,P ,eccentricity);Robbaetal.2001(P ).X2—vanKerkwijketal.1995(P ,eccentricity);van c orb s orb derMeeretal.2005(M, M );vanderMeeretal.2007(P ).X3—vanKerkwijketal.1995;Ashetal.1999(P ,eccentricity);vander c s orb Meeretal.2005(M,Mc);vanderMeeretal.2007(Ps).X4—Quaintrelletal.2003(M=2.27,1.88M⊙,Mc,Porb,eccentricity,Ps);Barzivet al.2001(M=1.86M⊙).X5—Clarketal.2002(M, Mc);Hammerschlag-Hensbergeetal.2003(Porb,eccentricity).X6—Chengetal.1995 (P ,eccentricity);Reynoldsetal.1997(M,M );Martinetal.2001(P );vanderMeeretal.(2007)(P ).X7—Wangetal.2010(M,M , orb c s s c eccentricity,P );Shaposhnikovetal.2004(M,P );Dibetal.2004(P ).X8—Jonker&vanderKlis2001(P ,eccentricity,P );Jonker s orb orb orb s etal.2003(M,M ).X9—Tomsicketal.1999(P );Tomsicketal.2002(M,M ,P ,eccentricity).X10—Cowley,Crampton&Hutchings c s c orb 1979(P );Orosz&Kuulkers1999(M, M , P ,eccentricity);Elebert,Callanan&Torres,etal.2009a. X11—Steeghs&Jonker 1996; s c orb 2007(1.44M⊙);Shahbaz,&Watson2007(1.370.13M⊙).X12—Elebertetal.2009b;Chakrabarty&Morgan1998;Jain,Dutta&Paul (P ).X13—Elebertetal.2008;Kaaret,Morgan&Vanderspeketal.2006(P ). orb orb 3. Summaryandconclusions 3.5 m=3.2 )mass3.0 Rs Casuality siWnugerehcmoavennectlssutsuoidfoinpesdulatshnaedrsmitmaatpsislsiteciscaatiilnodnbissintarairrbeyuotsbiyotsantisenmoefdst:,haenudptdhaetefdolmloewa-- s (solar 22..05 UU M Stiff EOS mas(s1a)vFeorarg6e1orfeMlia=b1ly.4m6±ea0s.3urMed⊙(iesstoimbtaatiende)d,pwulhsiacrhmisashsiegsh,ear Mas thanfound(1.35M⊙)in1999byTC99. al 1.5 (2)Ourstatisticsindicatethatthemassaverageofthemore n Soft EOS vitatio1.0 hraigphidelrythraontatthinagtoMftShPesle(sMsr=ec1y.5c7le±d0o.3n5esM(M⊙=f1o.r37P±s<02.203mMs⊙)foisr Gra0.5 SS1 Ps> 20 ms). This implies that the NS masses increase in the AFO FPS accretingspin-upbinarysystems,whileaMSPaccretingabout 0.0 ∼0.2 M⊙ fromits companionappearsto be present. The rela- 0 5 10 15 20 25 30 tion between the accretion mass (∆M) of recycled pulsar and Fig.5.NSmassversusraRdaiudisups l(okmt.)TheEOScurvesandstraight itsspinperiodisproposedtobe∆M =0.43(M⊙)(P/1ms)−2/3. (3)Thestatisticsof18DNSsindicatethattheirmassaver- linesfollowthesamemeaningsasthoseofLattimer&Prakash (2004,2007) and Miller (2002), where SS1 and AFO stand age M=1.32±0.14M⊙is systematically lower than the typical mass value of the less recycled PSRs, which seems to imply for EOSs of the quark matters. For most NSs with measured that the mass formation or evolution history of DNS should masses of 1.0-2.0 M⊙, their nuclear matter compositions are differfromthoseoftheotherbinarysystems. difficult to distinguish as those of either neutrons or quarks, (4)Apartfromthestandardrecycledprocessesforthefor- since NS radii cannotbe precisely measured in general using mation of MSPs, the mechanism by AIC of accreting white present-dayobservations(e.g.Truemperetal.2004). dwarfsisinvestigatedbytheMSPmassdistribution,sinceAIC needsthemassofMSPtobelessthantheChandrasehkarmass limit1.44M⊙.IftheAICexplodesafteraccreting∼0.1M⊙ of crust,thenfewerthan20%ofBMSPsareinferredtobeinthe AIC processes,whichprovidea quantitativeconstraintonthe formationratesofAICMSPs. 6 C.M.Zhangetal.:Studyofmeasuredpulsarmassesandtheirpossibleconclusions Table2.Parametersofradiobinarypulsars System M(M⊙) Mc(M⊙) Porb(d) Pspin(ms) eccentricity type Refs J1518+4904 1.56+0.20 1.05+1.21 8.63 40.9 0.249 DNS R1 −1.20 −0.14 J1811-1736 1.5+0.12 1.06+0.45 18.8 104.2 0.828 DNS R2 −0.4 −0.1 J1829+2456 1.15+0.1 1.35+0.46 1.176 41.0 0.139 DNS R3 −0.25 −0.15 B1534+12 1.33±0.0020 1.35±0.0020 0.421 37.9 0.274 DNS R4 B1913+16 1.44±0.0006 1.39±0.0006 0.323 59.0 0.617 DNS R5 B2127+11C 1.35±0.080 1.36±0.080 0.335 30.5 0.681 DNS R6 J0737-3039A(B) 1.34±0.010 1.25±0.010 0.102 22.7(2773) 0.088 DNS R7 J1756-2251 1.40+0.04 1.18+0.06 0.320 28.5 0.181 DNS R8 −0.06 −0.04 J1906+0746@ 1.25 1.37 0.166 144 0.085 DNS R9 J0437-4715 1.58±0.18 0.24±0.017 5.74 5.76 1.9×10−5 NSWD R10 J0621+1002 1.70+0.59(+0.32) 0.97+0.43(+0.27) 8.32 28.9 0.003 NSWD R11 −0.63 −0.29 −0.24 −0.15 J0751+1807 1.26±0.14 0.19±0.03 0.263 3.48 3×10−6 NSWD R12 2.1+0.4(corrected) 0.19±0.03 0.263 3.48 3×10−6 NSWD R12 −0.5 J1012+5307 1.7±1.0 0.16±0.02 0.605 5.26 <10−6 NSWD R13 1.64±0.22 0.16±0.02 0.605 5.26 <10−6 NSWD R13 J1045-4509 <1.48 0.13 4.08 7.47 <10−5 NSWD R14 J1141-6545 1.27±0.01 1.02±0.01 0.198 394 0.172 NSWD R15 1.3±0.02 0.986±0.02 0.198 394 0.172 NSWD R15 J1713+0747 1.53+0.08(1.6±0.24) 0.33±0.04 67.83 4.75 7.5×10−5 NSWD R16 −0.06 B1802-07 1.26+0.15 0.36+0.67 2.62 23.1 0.212 NSWD R17 −0.67 −0.15 J1804-2718 <1.73 0.2 11.1 9.34 4×10−5 NSWD R18 B1855+09 1.58+0.10 0.27+0.010 12.33 5.36 2.2×10−5 NSWD R19 −0.13 −0.014 J1909-3744 1.44±0.024 0.20±0.0022 1.53 2.95 10−7 NSWD R20 J2019+2425 <1.51 0.32−0.35 76.5 3.93 1.1×10−4 NSWD R21 B2303+46 1.34±0.10 1.3±0.10 12.34 1066 0.658 NSWD R22 J0437-4715 1.76±0.20 0.25±0.018 5.74 5.76 1.918×10−5 NSWD R23 J1023+0038 1.0-3.0 0.14-0.42 0.198 1.69 ≤2×10−5 NSWD R24 J1738+0333 1.6±0.2 0.2 0.354 5.85 1.1×10−6 NSWD R26 J0045-7319 1.58±0.34 8.8±1.8 51.17 926 0.808 NSMS R27 J1740-5340 1.53±0.19 >0.18 1.35 3.65 <10−4 NSMS R28 J1903+0327 1.67±0.01 1.05 95.17 2.15 0.437 NSMS R29 J1753-2240 ∼1.25 ∼1.25 13.64 95.1 0.304 uncertain U DNS—doubleneutronstar;NSWD—pulsar-whitedwarfbinary; NSMS—neutronstar/main-sequence binary; @ TherecycledNSshouldbe thecompanionbecauseofthestrongmagneticfieldofPSRJ1906+0746∼1012G.R1—Niceetal.1995(P ,P ,eccentricity);TC99(M,M ); orb s c Janssenetal.2008(mp < 1.17andmc > 1.55M⊙).R2—Lyneetal.2001(Porb,Ps,eccentricity);Lorimeretal.2008(M,Mc);Breton,2009 (M,M ). R3—Champion et al. 2004 (P ,P , eccentricity); Lorimer et al. 2008 (M,M ); Breton et al. 2009 (M,M ). R4—Wolszczan 1991 c orb s c c (P ,P ,eccentricity);Stairsetal.2002(M,M ).R5—Hulse&Taylor1975 (P ,P ,eccentricity); Weisberg&Taylor2003(M,M ).R6— orb s c orb s c Andersonetal.1990(P ,P ,eccentricity);Jacoby,Cameron&Jenetetal.2006;TC99(M,M ).R7—Burgayetal.2003(P ,P ,eccentricity); orb s c orb s Lyneetal.2004(M,M ).R8—Manchesteretal.2001(P ,P ,eccentricity);Faulkneretal.2005(M,M ).R9—Lorimer&Stairs2006(P , c orb s c orb P ,eccentricity);Kasianetal.2007;Lorimeretal.2008(M,M );Bretonetal.2009(M,M ).R10—Johnstonetal.1993(P ,P ,eccentricity); s c c orb s vanStratenetal.2001(M,M ).R11—Camiloetal.1996(P ,P ,eccentricity);Splaveretal.2002(M,M ).R12—Lundgrenetal.1995(P , c orb s c orb P ,eccentricity);Niceetal.2004(M,M );Niceetal.2005,Niceetal.2008(M,M ).R13—Nicastroetal.1995(P ,P ,eccentricity);van s c c orb s Kerkwijketal.1996,2005;Callananetal.1998;TC99(M,M ).R14—Bailesetal.1994(P ,P ,eccentricity);TC99(M,M ).R15—Kaspi c orb s c etal.2000(P ,P ,eccentricity);Burgayetal.2003(M,M );Bailesetal.2003;Bhat&Bailes,2008(M,M ).R16—Fosteretal.1993(P , orb s c c orb P ,eccentricity);Splaveretal.2005(M,M ).R17—DAmicoetal.1993(P ,P ,eccentricity);TC99(M,M );Lorimeretal.2008(M,M ); s c orb s c c Bretonetal.2009(M,M );Freire2000.R18—Lorimeretal.1996(P ,P ,eccentricity);TC99(M,M );Bretonetal.2009(M,M ).R19— c orb s c c Segelsteinetal.1986(P , P ,eccentricity);Nice,Splaver&Stairs2003(M,M ).R20—Jacobyetal.2003(P , P ,eccentricity);Jacoby orb s c orb s etal.2005(M,M ).R21—Niceetal.1993(P ,P ,eccentricity);Niceetal.2001(M,M ).R22—Deweyetal.1985(P ,P ,eccentricity); c orb s c orb s Kerkwijk&Kulkarni1999(M,M ).R23—Johnstonetal.1993(P ,P ,eccentricity);vanBeverenetal.2008(M,M ).R24—Archibaldetal. c orb s c 2009(P ,P ,eccentricity,M,M ).R26—Jacoby,PhDthesis,(2004);FreirePhDthesis,2000.R27—Bell&Besselletal.1995(M,M );Kaspi, orb s c c Bailes&Manchesteretal.1996(P ,P ,eccentricity).R28—Kaluznyetal.2003(P ,M);D”Amicoetal.2001(P ,eccentricity,M ).R29— orb s orb s c TC99(P ,P ,eccentricity,M ).R29—Championetal.2008(P ,P ,eccentricity,M,M );Freireetal.2009.U—uncertaincompaniontype, orb s c orb s c Keithetal.2009ab(P ,P ,eccentricity,M,M ). orb s c (5) The nuclear matter compositions of the less massive maybepossible(Menezes2006b),whichwouldprovideclas- DNSs and heavier MSPs may be different. During accretion, sificationsofthenuclearmatterinsideDNSsandMSPs. thematterphasetransitionfromthe’soft’EOSto’stiff’EOS, or even the matter transition between the neutron and quark Moreover, the newly measured mass 1.97± 0.04 M⊙of a MSPPSRJ1614C2230withaspinperiodof3.15milliseconds C.M.Zhangetal.:Studyofmeasuredpulsarmassesandtheirpossibleconclusions 7 Table3.ParametersofGalacticclusterpulsars System M(M⊙) Mc(M⊙) Porb(d) Pspin(ms) eccentricity type Refs J0024-7204I(B0021-72I) 1.44 0.15 0.23 3.49 6.3×10−5 GC G1 J0024-7204H(B0021-72H) 1.41+0.04 0.18+0.086 2.380 3.21 0.071 GC G1 −0.08 −0.016 J1518+0204B(B1516+02B) 2.08±0.19 >0.13 6.860 7.95 0.14 GC G2 J1911-5958A 1.40+0.16 0.18 0.837 3.48 <10−5 GC G2 −0.10 J1802-2124 1.21±0.1 >0.81 0.699 12.65 3.2×10−6 GC G3 J1824-2452C <1.367 >0.26 8.078 4.158 0.847 GC G4 J0514-4002A <1.52 >0.96 18.79 4.99 0.888 GC G5 J1748-2021B 2.74±0.2 >0.11 20.55 16.76 0.57 GC G6 J1748-2021I(Ter5I) 1.3±0.02 0.24 1.328 9.57 0.428 GC G7 J1748-2021J(Ter5J) 1.88+0.02 0.38 1.102 80.34 0.35 GC G7 −0.08 GC—Globularclusterpulsars.G1—Manchesteretal.1991;Freireetal.2003;Lorimeretal.2008.G2—Wolszczanetal.1989;Bassaet al.2006;Cocozzaetal.2006;Freireetal.2007;Lorimeretal.2008;Freireetal.2008b.G3—Lorimeretal.2008;Lorimeretal.2008; Faulkner et al. 2004; Ferdman etal. 2010 (1.24±0.11M⊙).G4—Ransom and Freire,2009. G5—Freire&Ransom 2007. G6—Freire& Ransom,2008;Freireetal.2008a;Freire2009.G7—Ransometal.2005. seemstohintthateitherMSPaccretesmoremassfromitscom- J. M., Camilo F., Kalogera V., Kim C., LorimerD. R. 2003, panionor a highmass of pulsaris broughtin born(Demorest Nature,426,531 etal.2010). CamiloF.,NiceD.J.,ShraunerJ.A.,TaylorJ.H.1996,ApJ, 469,819 ChakrabartyD.&MorganE.H.1998,Nature,393,346 Acknowledgements ChakrabartyD.,MorganE.H.,MunoM.P.,GallowayD.K., Wijnands R., van der Klis M., & Markwardt C. B. 2003, This research has been supported by NSFC (10773017), Nature,424,42 NBRPC (2009CB824800),and CNPq/Brazil. Thanks are due Champion D. J., Lorimer D. R., McLaughlin M. A., et al. tothediscussionswithP.C.Freire.Theauthorsareverygrate- 2004,MNRAS,350,L61 fulforJ.Lattimer,C.BassaandG.Janssenforcriticcomments Champion D. J., Ransom S. M., Lazarus P., et al. 2008, whichimprovethequalityofpaper. Science,320,1309 ChengF. H., Vrtileck S. D.£RaymondJ. C. 1995,ApJ, 452, References 825 ClarkJ.P.,GoodwinS.P.,CrowtherP.A.,KaperL.,Fairbairn Alpar M. A., Cheng A. F. & Ruderman M. A. et al. 1982, M.,LangerN.,BrocksoppC.2002,A&A,392,909 Nature,300,728 CallananP.J.,etal.1998,MNRAS,298,207 AndersonS.B.,GorhamP.W.,&KulkarniS.R.1990,Nature, CottamJ.,PaerelsF.&MendezM.2002,Nature,420,51 436,42 CowleyA.P.,CramptonD.,HutchingsJ.B.1979,ApJ.,231, Archibald A. M., Stairs I. H., Ransom S. M. et al., 2009, 539 Science,324,1411 D’Amico N., Bailes M., Lyne A. G., et al. 1993, MNRAS , AshT.D.C.,ReynoldsA.P.,RocheP.,NortonA.J.,StillM. 260,L7 D.,Morales-RuedaL.1999,MNRAS,307,357 DemorestP. B., PennucciT.,Ransom, S. M., Roberts,M. S. BailesM.,HarrisonP.A.,&LorimerD.R.,etal.1994,ApJ, E.,&HesselsJ.W.T.2010,Nature,467,1081 425,L41 DeweyR.J.,TaylorJ.H.,WeisbergJ.M.,StokesG.H.1985, BailesM.,OrdS.M.,KnightH.S.&HotanA.W.2003,ApJ ApJ.,294,L25 ,595,L49 DibR.,RansomS.M.,RayP.S.,KaspiV.M.,andArchibald BarzivO.,KaperL.,vanKerkwijkM.H.,etal.2001,A&A, A.M.2005,ApJ.,626,333 377,925 Elebert P., Callanan P. J., Filippenko A. V., et al. 2008, Bassaetal.2006,A&A456,295 MNRAS,383,1581 BeginS.,RansomS.M.,FreireP.C.,etal.2009,ApJ,inpress Elebert P., Callanan P. J., Torres M. A. P. & Garcia M. Bell J. F., Bessell M. S., StappersB. W., Bailes M. & Kaspi R.2009a,MNRAS,395,2029 V.M.1995,ApJ,447,L117 ElebertP.,ReynoldsM.T.,CallananP.J., HurleyD.J. etal. BhatN.D.R.,BailesM.&VerbiestJ.P.W.2008,Phys.Rev. 2009b,MNRAS,395,884 D,77,124017 FaulknerA.J.,KramerM.,LyneA.G.,etal.2005,ApJ.,618, BhattacharyaD.&vandenHeuvelE.P.J.1991,Phys.Rep., L119 203,1 FaulknerA.J.,StairsI.H.,KramerM.,etal.2004,MNRAS, BretonR.P.2009,PhDthesis,arXiv:0907.2623 355,147 BurderiL.,PossentiA.,ColpiM.etal.1999,ApJ,519,285 FerdmanR.D., Stairs I.H.,and KramerM., etal. 2010,ApJ, BurgayM.,DAmicoN.,PossentiA.,ManchesterR.N.,Lyne 711,764 A.G.,JoshiB.C.,McLaughlinM.A.,KramerM.,Sarkisian 8 C.M.Zhangetal.:Studyofmeasuredpulsarmassesandtheirpossibleconclusions FerrarioL.&WickramasingheD.2007,MNRAS,375,1009 KiziltanB.&ThorsettS.E.2009c,arXiv:0909.1562 FosterR.S.,WolszczanA.&CamiloF.1993,ApJ,410,L91 KramerM.&StairsI.H.2008,ARAA,46,541 FreireP.C.2000,PhDthesis LattimerJ.M.&PrakashM.2004,Science,304,536 FreireP.C.,CamiloF.,KramerM.etal.2003,MNRAS,340, LattimerJ.M.&PrakashM.2007,Phys.Rep.,442,109 1359 LorimerD.2008,LivingRev.Relativity,11,8 FreireP.C.etal.2004,ApJ,606,L53 LorimerD.R.,LyneA.G.,BailesM.,etal.1996,MNRAS, FreireP.C.,RansomS.M.&GuptaY.2007,ApJ,662,1177 283,1383 FreireP.C.,RansomS.M.,BeginS.etal.2008a,ApJ.,675, LorimerD.R.,StairsI.H.&FreireP.C.etal.2006,ApJ,640, 670 428 FreireP.C.,WolszczanA.,BergM.&HesselsJ.W.T.2008b, LundgrenS. C., Zepka A. F., Cordes J. M. 1995,ApJ., 453, ApJ,679,1433 419 Freire P. C. 2009, appear in proceedings of ”Neutron Stars LyneA.G.&BailesM.1990,MNRAS,246,15 and Gamma Ray Bursts: Recent Developments and Future LyneA.G.,BurgayM.,KramerM.etal.2004,Science,303, Directions”,arXiv:0907.3219 1153 FryerC.etal.1999,ApJ,516,892 LyneA.G.,CamiloF.,ManchesterR.N.etal.2001,MNRAS GlendenningN.K.&WeberF.2001,ApJ,559,L119 ,312,698 Haensel P.,PotekhinA.Y.& YakovlevD.G. 2007,Neutron LyneA.G.&SmithF.G.2005,PulsarAstronomy,3rdedition Stars:EquationofStateandStructure(Springer,Berlin) (CambridgeUniversityPress) Hammerschlag-HensbergeG., van KerkwijkM. H. & Kaper ManchesterR.N.,LyneA.G.,CamiloF.etal.2001,MNRAS L.2003,A&A,407,685 ,328,17 Hessels J. W. T., Ransom S. M., Stairs I. H. et al. 2006, Manchester R. N., Lyne A. G., Robinson C., D’Amico N., Science,311,1901 BailesM.,LimJ.1991,Nature,352,219 HulseR.A.&TaylorJ.H.1975,ApJ,195,L51 ManchesterR.N.2004,Science,304,542 IvanovY.B.,KhvorostukhinA.S.,KolomeitsevE.E.,Skokov MakishimaK.,MiharaT.,NagaseF.&TanakaY.1999,ApJ, V.V.,ToneevV.D.,VoskresenskyD.N.2005,Phys.Rev.C72, 525,978 025804 McClintockJ.E.etal.1976,ApJ,206,L99 JacobyB.A.,BailesM.,vanKerkwijkM.H.,OrdS.,Hotan Menezes D.P., Provideˆncia C., 2004a, Phys. Rev. C 70, A.,KulkarniS.R.,&AndersonS.B.2003,ApJ.,599,L99 058801 Jacoby B. A. 2004, PhD thesis, Calfornia Institute of Menezes D.P., Provideˆncia C., 2004b, Phys. Rev. C 69, Technology 045801 Jacoby B. A., Hotan A., Bailes M., Ord S., Kulkarni S. R. MenezesD.P., ProvideˆnciaC., Melrose D.B., 2006a,J.Phys. 2005,ApJ,629,L113 G:Nucl.Part.Phys.32,1081 Jacoby B. A., Cameron P. & Jenet F. et al. 2006, ApJ, 644, MenezesD.P.,MelroseD.B.,ProvideˆnciaC.&WuK.,2006b, L113 Phys.Rev.C73,025806 JainC.,DuttaA.&PaulB.2008,JA&A,28,197 MillerM.C.2002,Nature,420,31 Janssen G.H., B.W. Stappers, M. Kramer et al. A&A 2008, NicastroL.,LyneA.G.,LorimerD.R.,HarrisonP.A.,Bailes 490,753 M.,SkidmoreB.D.1995,MNRAS,273,L68 Johnston S., Lorimer D. R., & Harrison P. A., et al. 1993, NiceD.J.,SayerR.W.,TaylorJ.H.1995,BAAS,27,879 Nature,361,613 NiceD.J.,SplaverE.M.,StairsI.H.2001,ApJ,549,516 JonkerP.G.,&vanderKlisM.2001,ApJ,553,L43 NiceD. J.,SplaverE.M.,StairsI.H.2003,ASPConf.Ser., JonkerP. G., vanderKlis M. & GrootP. J. 2003,MNRAS , 30275 339,663 NiceD. J.,SplaverE.M.,StairsI.H.2004,ASPConf.Ser., HurleyJ. R.,ToutC.A.,WickramasingheD.T.,Ferrario,L. 49 &KielP.D.2010,MNRAS,402,1437 Nice D. J., Splaver E. M., Stairs I. H. et al. 2005,ApJ, 634, Kaaret P., Morgan E. H., Vanderspek R. & Tomsick J. A. 1242 2006,ApJ,639,963 NiceD.J.,StairsI.H.&KasianL.E.2008,AIPProc.,983, Kaluzny J., Rucinski S. M., Thompson I. B. 2003, AJ, 125, 453 1546 NiceD.J.,TaylorJ.H.&FruchterA.1993,ApJ,402,L49 KasianL.2008,AIPConf.Proc.,983,485 Nomoto K. & Yamaoka H. 1992, in X-ray Binaries and KaspiV.M.,BailesM.,ManchesterR.N.,StappersB.W.,& Recycled Pulsars, E.P.J. van den Heuvel & S.A. Rappaport BellJ.F.1996,Nature,381,584 (Eds),(KluwerAcademicPublishers),p.189 KaspiV.M.,LyneA.G.&ManchesterR.N.etal.2000,ApJ, O¨zelF.2006,Nature,441,1115 543,321 OroszJ.A.&KuulkersE.1999,MNRAS,305,1320 KeithM.J.etal.2009a,MNRAS,393,623 PandaP.K.,MenezesD.P.,&ProvideˆnciaC,2004,Phys.Rev. KeithM.J.,EatoughR.P.,LyneA.G.,KramerM.,Possenti C69,058801 A.,CamiloF.&Manchester,R.N.2009b,MNRAS,395,837 Possenti A., Colpi M., D’Amico N., Burderi L. 1998, ApJ , KiziltanB.&ThorsettS.E.2009a,ApJ,693,L109 497,L97 KiziltanB.&ThorsettS.E.2009b,arXiv:0905.2183 C.M.Zhangetal.:Studyofmeasuredpulsarmassesandtheirpossibleconclusions 9 Possenti A., Colpi M., Geppert U., Burderi L., D’Amico N. vanKerkwijkM.H.,vanParadijsJ.&ZuiderwijkE.J.1995, 1999,ApJ,125,463 A&A,303,497 QuaintrellH.,NortonA.J.&AshT.D.C.,etal.2003,A&A, vanKerkwijkM.H.etal.1996,ApJ,467,89 401,313 vanKerkwijkM.H.etal.2005,ASPC,328,357 Ransom S. M., Hessels J. W. T. & Stairs I. H., et al. 2005, vanKerkwijkM.H.&KulkarniS.R.1999,ApJ,516,L25 Science,307,892 vanParadijsJ., vanden HeuvelE. P. J. & KouveliotouC. et RappaportS.etal.1976,ApJ,206,L103 al.1997,A&A,317,L9 Reynolds A. P., Quaintrell H. & Still M. D., et al. 1997, vanStratenW.,BailesM.,BrittonM.C.etal.2001,Nature, MNRAS,288,43 412,158 RhoadesC.E.&RuffiniR.1974,Phys.Rev.Lett.,32,324 VerbuntF.1990,inNeutronStarsandTheirBirthEvents,eds. Robba N. R., BurderiL., Di Salvo T., Iaria R. & Cusumano KundtW.(KluwerDordrecht),p.179 G.2001,ApJ,562,950 WangZ.&ChakrabartyD.2010,ApJ,712,653 ShahbazT.&WatsonC.A.2007,A&A,474,969 WeisbergJ.M.&TaylorJ.H.2003,ASPConf.Ser.,302,93 SegelsteinD.J.,RawleyL.A.,StinebringD.R.,FruchterA. WolszczanA.1991,Nature,350,688 S.,TaylorJ.H.1986,Nature,322,714 WolszczanA.,AndersonS.,KulkarniS.,PrinceT.1989,IAU ShaposhnikovN.&TitarchukL.2004,ApJ.,606,L57 circular,4880 Sigurdsson S., Richer H. B., Hansen B. M., Stairs I. H., ZhangC.M.&KojimaY.2006,MNRAS,366,137 Thorsett,S.E.2003,Science,301,193. Zhang C. M., Yin H. X. & Kojima Y. et al. 2007, MNRAS, SplaverE. M., Nice D. J., ArzoumanianZ., CamiloF., Lyne 374,232 A.G.,StairsI.H.2002,ApJ.,581,509 SplaverE.M.,NiceD.J.,StairsI.H.,LommenA.N.,Backer D.C.2005,ApJ.,620,405 StairsI.H.2004,Science,304,547 StairsI.H.,ThorsettS.E.,TaylorJ.H.,WolszczanA.2002, ApJ,581,501 SteeghsD.andJonkerP.G.2007,ApJ,669L,85S StellaL.&VietriM.1999,Phys.Rev.Lett.,82,17 StergioulasN.2003,LivingReviewsinRelativity,6,3 StillM.,etal.2001,ApJ.,553,776 TaamR.E.2004,RevMexAA(SeriedeConf.),20,97 Tatsumi T.,Yasuhira M., Voskresensky D.N., 2003, Nucl. Phys.A718,359 TaylorJ.H.&WeisbergJ.M.1982,ApJ,253,908 ThorsettS.E.etal.1993,ApJ,405,L29 ThorsettS.E.&ChakrabartyD.1999,ApJ,512,288(TC99) ThorsettS.E.,ArzoumanianZ.&CamiloF.1999,ApJ.,523, 763 TitarchukL.&ShaposhnikovN.2002,ApJ,570,L25 TomsickJ.A.,HalpernJ.P.,KempJ.&KaaretP.1999,ApJ., 521,341 Tomsick J. A., Heindl W. A., Chakrabarty D. & Kaaret P. 2002,ApJ.,581,570 Truemper J. E., Burwitz V., Haberl F. & Zavlin V. E. 2004, Nucl.Phys.,132,156 vanBeverenE.,KleefeldF.,RuppG.&ScadronM.D.2008, Phys.Rev.D,79,098501 vandenHeuvelE.P.J.1994,A&A,291,L39 vandenHeuvelE.P.J.1995,A&A,16,255 vandenHeuvelE.P.J.&BitzarakiO.1995a,A&A,297,L41 van denHeuvelE. P. J., & BitzarakiO. 1995b,in The Lives of Neutron Stars, M. A. Alpar, U. Kiziloglu, J. van Paradijs (Eds.),(KluwerAcademicPublishers),p.421 vandenHeuvelE.P.J.2004,Science,303,1143 vanderKlisM.2000,ARA&A,38,717 van der Meer A., Kaper L., vanKerkwijk M. H. etal. 2007, A&A,473,523,arXiv:0707.2802 van der Meer A., Kaper L., van Kerkwijk M. H., van den HeuvelE.P.J.2005,AIP,623