ebook img

Study of $B_{s}\to πρ$ decays in the perturbative QCD approach PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Study of $B_{s}\to πρ$ decays in the perturbative QCD approach

Study of B πρ decays in the perturbative QCD approach s → Xian-Qiao Yu∗, Ying Li† Institute of High Energy Physics, P.O.Box 918(4), Beijing 100049, China; and Graduate School of the Chinese Academy of Sciences, Beijing 100049, China Cai-Dian Lu¨ CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China; and Institute of High Energy Physics, P.O.Box 918(4), Beijing 100049, China‡ (Dated: February 2, 2008) In this note, we calculate thebranching ratio and CP asymmetry parameters of Bs →πρ in the framework of perturbative QCD approach based on kT factorization. This decay can occur only via annihilation diagrams in the Standard Model. We find that (a) the charge averaged Br(Bs → 6 π+ρ−+π−ρ+) isabout (9−12)×10−7; Br(Bs→π0ρ0)≃4×10−7;and (b) thereare sizable CP asymmetriesintheprocesses, whichcan betested inthenear futureLargeHadronCollider beauty 0 experiments(LHC-b) at CERN. 0 2 PACSnumbers: 13.25.Hw,12.38.Bx n a J The B meson rare decays provide a good place for testing the Standard Model (SM), studying CP violation and 1 looking for possible new physics beyond the SM. A lot of theoretical studies have been done in recent years, which 1 are strongly supported by the running B factories in KEK and Stanford Linear Accelerator Center (SLAC). Looking forwardtothefutureCERNLargeHadronColliderbeautyexperiments(LHC-b),alargenumberofBs andBc mesons 2 can also be produced. So the studies of B meson rare decays are necessary in the next a few years. v s In this paper, we study the rare decays B πρ in Perturbative QCD approach (PQCD) [1]. Comparing with 9 s → QCD factorization approach [2], PQCD approach can make a reliable calculation for pure annihilation diagrams in 6 2 kT factorization. TheendpointsingularityoccurredinQCDfactorizationapproachcanbecuredherebythe Sudakov 1 factor from resummation of double logarithms. 1 In PQCD approach, the decay amplitude can be written as: 5 0 h/ Amplitude∼ d4k1d4k2d4k3 Tr C(t)ΦBs(k1)Φπ(k2)Φρ(k3)H(k1,k2,k3,t) e−S(t). (1) Z p (cid:2) (cid:3) - In our following calculations, the Wilson coefficient C(t), Sudakov factor Si(t)(i=Bs,π,ρ) and the non-perturbative p but universal wave function Φ can be found in the Refs. [3, 4, 5, 6, 7]. The hard part H are channel dependent but e i fortunately perturbative calculable, which will be shown below. h : Likethe Bs π+π− decay[8],the Bs πρ decaysarepureannihilationtype raredecays,whicharedifficulttobe v → → calculated in method other than PQCD approach. Fig. 1 shows the lowest order Feynman diagrams to be calculated i X in PQCD approach where the big dots denote the quark currents in four quark operators for B π+ρ− according s → to the effective hamiltonian of b quark decay [9]. First for the usual factorizable diagram (a) and (b), the sum of r a (V-A)(V-A) current contributions is given by 1 ∞ M [C]=16πC M2 dx dx b db b db [x φA(x )φ (x )+2r r (1+x )φP(x )φs(x ) a F B 2 3 2 2 3 3 3 π 2 ρ 3 π ρ 3 π 2 ρ 3 Z0 Z0 +2r r (x 1)φP(x )φt(x (cid:8))]α (t1)h (x ,x ,b ,b )exp[ S (t1) S (t1)]C(t1) π ρ 3− π 2 ρ 3 s a a 2 3 2 3 − π a − ρ a a [x φA(x )φ (x )+2r r (1+x )φP(x )φs(x )+2r r (x 1)φT(x )φs(x )] − 2 π 2 ρ 3 π ρ 2 π 2 ρ 3 π ρ 2− π 2 ρ 3 α (t2)h (x ,x ,b ,b )exp[ S (t2) S (t2)]C(t2) , (2) s a a 3 2 3 2 − π a − ρ a a where r =m /m =m2/[m (m +m )], r =m /m . C =4/3 is the group factor of the SU(3) gauge(cid:9)group. π 0π B π B u d ρ ρ B F c φ is light cone distribution amplitude, which describes the momentum distribution of the meson wavefunction. The i ∗ [email protected][email protected] ‡ Mailingaddress 2 ρ − u¯ u¯ ρ− ¯b d ¯b d B B s s d¯ d¯ s u π+ s u π+ (a) (b) u¯ ρ d u¯ ρ d − − ¯b ¯b B B s s s s u π+ d¯ u π+ d¯ (c) (d) FIG. 1: The lowest orderdiagrams for Bs →π+ρ− decay function πi h (x ,x ,b ,b )=S (x ) H(1)(M √x x b ) a 2 3 2 3 t 3 2 0 B 2 3 2 πi θ(b b )J (M √x b ) H(1)(M √x b )+(b b ) (3) × 2− 3 0 B 3 3 2 0 B 3 2 2 ↔ 3 (cid:2) (cid:3) comes fromthe Fouriertransformationof propagatorsof virtualquarkandgluonin the hardpartcalculations. S (x) t resultsfromthethresholdresummationofQCDradiativecorrectionstohardamplitudes[10]. H1(z)=J (z)+iY (z), 0 0 0 J and Y are Bessel functions. The sum of (V-A)(V+A) current contributions of diagrams (a) and (b) is M [C]. 0 0 a − For the non-factorizable annihilation diagrams (c) and (d), all three meson wave functions are involved. The (V-A)(V-A) operator’s contribution is: 1 1 ∞ M [C]= − 64πC M2 dx dx dx b db b db φ (x ,b ) c √2N F B 1 2 3 1 1 2 2 B 1 1 c Z0 Z0 [ x φ (x )φA(x )+r r (x x )φt(x )φP(x ) r r (x +x )φs(x )φP(x ) × − 2 ρ 3 π 2 ρ π 3− 2 ρ 3 π 2 − ρ π 2 3 ρ 3 π 2 (cid:8) −rπrρ(x2+x3)φtρ(x3)φTπ(x2)+rπrρ(x3−x2)φsρ(x3)φTπ(x2)] C(t1)α (t1)h(1)(x ,x ,x ,b ,b )exp[ S (t1) S (t1) S (t1)] [ x φ (x )φA(x ) c s c c 1 2 3 1 2 − B c − π c − ρ c − − 3 ρ 3 π 2 +r r (x x )φt(x )φP(x ) r r (2+x +x )φs(x )φP(x ) ρ π 2− 3 ρ 3 π 2 − ρ π 2 3 ρ 3 π 2 +r r (2 x x )φt(x )φT(x )+r r (x x )φs(x )φT(x )] π ρ − 2− 3 ρ 3 π 2 π ρ 2− 3 ρ 3 π 2 C(t2)α (t2)h(2)(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)] . (4) c s c c 1 2 3 1 2 − B c − π c − ρ c (cid:9) 3 For the penguin operators, there are also (V A)(V +A) type operators, whose contribution is given as − 1 1 ∞ MP[C]= 64πC M2 dx dx dx b db b db φ (x ,b ) c √2N F B 1 2 3 1 1 2 2 B 1 1 c Z0 Z0 [ x φ (x )φA(x ) r r (x x )φt(x )φP(x ) r r (x +x )φs(x )φP(x ) × − 3 ρ 3 π 2 − ρ π 3− 2 ρ 3 π 2 − ρ π 2 3 ρ 3 π 2 (cid:8) −rπrρ(x2+x3)φtρ(x3)φTπ(x2)−rπrρ(x3−x2)φsρ(x3)φTπ(x2)] C(t1)α (t1)h(1)(x ,x ,x ,b ,b )exp[ S (t1) S (t1) S (t1)] [ x φ (x )φA(x ) c s c c 1 2 3 1 2 − B c − π c − ρ c − − 2 ρ 3 π 2 r r (x x )φt(x )φP(x ) r r (2+x +x )φs(x )φP(x ) − ρ π 2− 3 ρ 3 π 2 − ρ π 2 3 ρ 3 π 2 +r r (2 x x )φt(x )φT(x ) r r (x x )φs(x )φT(x )] π ρ − 2− 3 ρ 3 π 2 − π ρ 2− 3 ρ 3 π 2 C(t2)α (t2)h(2)(x ,x ,x ,b ,b )exp[ S (t2) S (t2) S (t2)] , (5) c s c c 1 2 3 1 2 − B c − π c − ρ c where (cid:9) h(j)(x ,x ,x ,b ,b )= c 1 2 3 1 2 πi θ(b b ) H(1)(M √x x b )J (M √x x b ) 2− 1 2 0 B 2 3 2 0 B 2 3 1 (cid:26) K (M F b ), for F2 >0 0 B (j) 1 (j) +(b b ) , (6) 1 ↔ 2 (cid:27)× π2iH(01)(MB |F(2j)| b1), for F(2j) <0! q K is modified Bessel function and F ’s are defined by 0 (j) F2 =x x x x ; F2 =x +x +x x x x x . (7) (1) 1 2− 2 3 (2) 1 2 3− 1 2− 2 3 The hardscale t′s in Eqs.(2, 4, 5) are chosenas the largestenergyscale appearingin eachdiagramto kill the large i logarithmic corrections: t1 = max(M √x ,1/b ,1/b ), a B 3 2 3 t2 = max(M √x ,1/b ,1/b ), a B 2 2 3 t1 = max(M F2 ,M √x x ,1/b ,1/b ), c B | (1)| B 2 3 1 2 q t2 = max(M F2 ,M √x x ,1/b ,1/b ). c B | (2)| B 2 3 1 2 q The total decay amplitude is then 1 2 2 1 1 1 1 (B π+ρ−)=f M V∗V (C + C ) V∗V (2C + C 2C C C C + C + C ) A s → B a ub us 1 3 2 − tb ts 3 3 4− 5− 3 6− 2 7− 6 8 2 9 6 10 (cid:20) (cid:21) 1 1 +M V∗V C V∗V (2C + C ) V∗V MP 2C + C , . (8) c ub us 2− tb ts 4 2 10 − tb ts c 6 2 8 (cid:20) (cid:21) (cid:18) (cid:19) and the decay width is expressed as Γ(B π+ρ−)= G2FMB3 (B π+ρ−) 2. (9) s s → 128π A → (cid:12) (cid:12) Themostimportantcontributionhereisthefactorizablepen(cid:12)guindiagram,w(cid:12)hichisCKMenhanced. Ifweexchange the π andρ in Fig. 1,by the same method, we cancompute the B π−ρ+ decay. The expressionsare similar. The s → decay amplitude for B π0ρ0 is s → (B π0ρ0)= (B π+ρ−)+ (B π−ρ+), (10) s s s A → A → A → and the decay width can be written as Γ(B π0ρ0)= G2FMB3 (B π0ρ0) 2. (11) s s → 512π A → (cid:12) (cid:12) (cid:12) (cid:12) 4 Inthefollowing,wefirstgivethebranchingratiosofB πρ. JustasinRef. [8],weleavetheCKMangleγasafree s parameter in our numerical calculations. Because there a→re four decay channels: B /B¯ π+ρ−, B /B¯ π−ρ+, it s s s s is not possible to distinguish the initial state by detecting the final states. We averageth→e sum of B /B¯ → π+ρ− as s s one channel,and B /B¯ π−ρ+ as another, whichis distinguishable by experiments. Using the same par→ametersas s s → refs. [4, 7], we get Br(B /B¯ π+ρ−)=(5.1+0.8) 10−7, s s → −0.5 × Br(B /B¯ π−ρ+)=(5.4+0.5) 10−7, s s → −0.8 × Br(B /B¯ π0ρ0)=(4.2+0.6) 10−7, (12) s s → −0.7 × where all channels are averagedfor B and B¯ . s s In Ref. [11], Beneke etal have estimated the branching ratio of B¯ π+ρ− in the QCD factorization approach. s → Weak annihilation diagrams are power suppressed in the heavy quark limit and, in general, not calculable in QCD factorization approach. In order to avoid the end-poind singularities, they introduced phenomenological parameters to replace the divergent integral. With those parameters they estimated that the branching ratio of B¯ π+ρ− s is (0.03 0.14) 10−7. In PQCD approach, the annihilation amplitude is calculable. In the rest frame o→f the B s meson, t−he d or×d¯quark included in ρ or π has momentum (M /4), and the gluonproducing them has momentum B O q2 = (M2/4). This is a hard gluon, the PQCD can be safely used because of asymptotic freedom of QCD [12]. We O B have tested that the bulk of the result comes from the region with α /π <0.2, where a figure was show in Ref. [13]. s Our predicted result is larger than their estimation, which can be tested by the future experiments. Using the same definition in Ref. [8], we study the CP violation parameters AdCiPr and aǫ+ǫ′ in the process of B π0ρ0 decay. We find the direct CP violation parameter Adir(B π0ρ0) is about 2% when γ is near 100◦, s → CP s → the small direct CP asymmetry is also a result of small tree level contribution. The mixing CP violation parameter aǫ+ǫ′(Bs →π0ρ0) is large, whose peak is close to 16% (see Fig. 2). 0.15 0.125 0.1 ’ + a 0.075 0.05 0.025 0 0 25 50 75 100 125 150 175 (degree) FIG. 2: Mixing CP violation parameter of Bs →π0ρ0 decay as a function of CKM angle γ The CP violations of B /B¯ π±ρ∓ are very complicated. There are four decay amplitudes, which can be s s → expressed as: g = π+ρ− H B ; h= π+ρ− H B¯ ; eff s eff s h | | i h | | i g¯= π−ρ+ H B¯ ; h¯ = π−ρ+ H B . (13) eff s eff s h | | i h | | i We introduce four parameters to describe the CP asymmetries in the processes, which are given by [14] 1 1 Cπρ = 2(aǫ′ +aǫ¯′), ∆Cπρ = 2(aǫ′ −aǫ¯′), 1 1 Sπρ = 2(aǫ+ǫ′ +aǫ+ǫ¯′), ∆Sπρ = 2(aǫ+ǫ′ −aǫ+ǫ¯′), (14) 5 where g 2 h2 2Im(h/g) aǫ′ = |g|2−+|h|2, aǫ+ǫ′ = −1+ h/g 2 , | | | | | | h¯ 2 g¯2 2Im(g¯/h¯) aǫ¯′ = |h¯|2−+|g¯|2, aǫ+ǫ¯′ = −1+ g¯/h¯ 2 . (15) | | | | | | We calculate the above four CP asymmetry parameters and show the CKM angle γ dependence in Fig. 3. We do not plot the C in this figure, since its value is near zero. The decay branching ratios depends heavily on the shape πρ ofwavefunctions anddecayconstantsetc. Butthe CPasymmetryshouldnotsince the dependence willbe cancelled. ThedirectCPasymmetrycanbeaffectedbythepowercorrectionsandnext-to-leadingordercontributionseasily. We investigate the CP asymmetry parameters’sdependence on the hardscale t in Eq. (1), which characterizethe size of next-to-leading order contribution. The CP asymmetry numbers are shown in Table I with those uncertainties. By changingthehardscaletfrom0.9tto1.3t,wefindtheCP asymmetriesofB (B¯ ) π±ρ∓ changelittle: forγ =60◦, s s → the uncertainty is less than 1% for C , 4% for ∆C , 3% for S and 7% for ∆S , respectively. The reason is that πρ πρ πρ πρ mixing induced CP is dominant here, but the direct CP of B π0ρ0 really changed much, as shown in Table I. s → TABLE I: CP asymmetry parameters using γ =60◦ with uncertainties Scale Cπρ ∆Cπρ Sπρ ∆Sπρ AdCiPr(Bs →π0ρ0) aǫ+ǫ′(Bs →π0ρ0) 0.9 t 0.1% 73% 10% 21% 0.6% 11% t 1% 77% 11% 14% 1.6% 13% 1.3 t 1.8% 79% 14% 10% 2.6% 16% 1 0.75 0.5 ) C 0.25 ( S S 0 -0.25 -0.5 -0.75 0 25 50 75 100 125 150 175 (degree) FIG. 3: CP violation parameters of Bs0(B¯s) → π±ρ∓ decays: ∆C (solid line), S (dashed line) and ∆S (dotted line) as a function of CKM angle γ In conclusion, we study the branching ratio and CP asymmetries of B πρ decays in PQCD approach. We find s the branching ratioof B π+ρ−+π−ρ+ is atorder 10−6, which is larger→than QCD factorization’sestimation. We s → also predict CP asymmetries in the process, which may be measured in the future LHC-b experiments. We thank M.-Z. Yang for useful discussions. This work is partly supported by National Science Foundation of 6 China under Grant No. 90103013,10475085and 10135060. [1] H.-n.Li and H. L.Yu,Phys. Rev.Lett. 74, 4388 (1995); Phys.Lett. B353, 301 (1995); H.-n.Li, ibid. 348, 597 (1995); H.n. Li and H.L. Yu,Phys.Rev. D53, 2480 (1996). [2] M.Beneke,G.Buchalla,M.Neubert,andC.T.Sachrajda,Phys.Rev.Lett.83,1914(1999); Nucl.Phys.B591,313(2000). [3] C.-D. Lu¨, K. Ukai,and M.-Z. Yang,Phys. Rev.D63, 074009 (2001). [4] X.-Q.Yu,Y.Li and C.-D. Lu¨, Phys.Rev. D71, 074026 (2005). [5] V.M. Braun and I.E. Filyanov, Z. Phys. C44, 157 (1989); Z. Phys.C48, 239 (1990); P.Ball, J. High Energy Physics, 01, 010 (1999). [6] P.Ball, V.M. Braun, Y.Koike and K. Tanaka, Nucl. Phys.B529, 323 (1998). [7] C.-D. Lu¨ and M.-Z. Yang, Eur. Phys.J. C23, 275 (2002). [8] Y.Li, C.-D. Lu¨, Z. J. Xiao, and X.-Q.Yu,Phys. Rev.D 70, 034009 (2004). [9] G. Buchalla, A.J. Buras, and M. E. Lautenbacher, Rev.Mod. Phys.68, 1125 (1996). [10] H.-n.Li, Phys. Rev.D66, 094010(2002); T. Kurimoto, H.-n. Li, and A.I. Sanda,ibid. 65, 014007 (2002). [11] M. Beneke and M. Neubert , Nucl. Phys.B 675, 333 (2003) [12] D.Gross and F. Wilczek, Phys. Rev.Lett. 30, 1343 (1973); Phys. Rev.D.8, 3633 (1973); H.D. Politzer, Phys. Rev.Lett. 30, 1346 (1973); Phys.Rep. 14C, 129 (1974). [13] Y.Li, C.-D. Lu¨ and Z.J. Xiao, J. Phys.G 31, 273(2005). [14] M. Gronau, Phys.Lett. B 233, 479 (1989); R.Aleksan, I.Dunietz,B. Kayserand F. Le Diberder,Nucl. Phys.B 361, 141 (1991).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.