ebook img

Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept PDF

258 Pages·2008·12.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Study of aerodynamic technology for VSTOL fighter/attack aircraft: Vertical attitude concept

https://ntrs.nasa.gov/search.jsp?R=19790001855 2019-03-26T22:36:00+00:00Z - NASA CR 152131 N A S A C O N T R A C T O R R E P O R T STUDY OF AERODYNAMIC TECHNOLOGY FOR VSTOL FIGHTERIATTACK AIRCRAFT - VER TICAL A TTITUDE CONCEPT H. A. Gerhardt, W. S. Chen NOR THROP CORPaRA TION, AIRCRAFT GROUP Hawthorne, GT. for Amer Remrch Center NATIONAL AEROWAUTIC$ NO WAGE ADMINISTRATION WMHIN6TON, 0. C. * MAY 1871 e - NORTHROP CORPORTION, AIRCRAFT GROUP 11. Contrm or Gmnt No. HAWTHORNE, CAL. NAS2-9771 13. Typr of Report md Period Covered 12. S-ing AO~KV kmo .nd NASA, Ames Research Center, ' NCoovn t1rac t"7o'7r -FMinaayl R3$e,p-o $r7t 8 Moffett Field, Calif. 94035, David Taylor Naval Ship 14. Sponsoring Awcy Cock Research & Development Center, Bethesda, Md. 20084 15. Supplemmtarv Notes - Ames Research Center Technical Monitor W. P, Nelms (415) 965-5855 . - NSRDC Point of Contact R. L. Schaeffer (202) 227-1180 16. Abstract A study is made of the aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter/attack aircraft. The selected configuration features a tailless clipped delta wing with le,ading-edge extension (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained by gimballing the nozzles in combination with wing tip jets. Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed. 17. Key Words (SugggWd by Author(st I 18. Oistribution Statement 19. Security k i f .( of this report) 20. Security Classif. (of this prOal 21. No. of Pages 22. Price" Unclassified Unclassified I *For sale by th. National Technicrl Infornution Srvice. Springfield, Virginia 22161 SUMMARY A study is made of the aerodynamic technology for a vertical attitude VSTOL (VATOL) supersonic fighter /attack aircraft. The selected configuration features a tailless clipped delta wing with leading-edge extensian (LEX), maneuvering flaps, top-side inlet, twin dry engines and vectoring nozzles. A relaxed static stability is employed in conjunction with the maneuvering flaps to optimize transonic performance and minimize supersonic trim drag. Control for subaerodynamic flight is obtained . by gimballing the nozzles in combination with wing tip jets Emphasis is placed on the development of aerodynamic characteristics and the identification of aerodynamic uncertainties. A wind tunnel test program is . proposed to resolve these uncertainties and ascertain the feasibility of the conceptual design. Ship interface, flight control integration, crew station concepts, advanced weapons, avionics, and materials are discussed. Aerodynamic uncertainties which have been identified include LEX effects on lift and flow to the topside inlet, aerodynamics center shift, high angle-of-attack characteristics, supersonic wave drag estimation, supersonic maneuvering flaps, and jet spray effects on takeoff and landing. iii SYMBOLS a. c. Aerodynamic Center Aircraft Longitudinal Acceleration "1 a Aircraft Normal Acceleration n AR Aspect Ratio a Aircraft Longitudinal Acceleration X a Aircraft Lateral Acceleration Y Aircraft Vertical Acceleration az c' Mean Aerodynamic Chord c.g., C.G. Center of Gravity Drag Coefficient C~ Flat Plate Skin Friction Drag Coefficient c% Drag-Due-to-Lift Coefficient C D ~ Minimum Drag Coefficient 'Dmin Viscous Drag Coefficient Incremental Drag Due to Reynolds Number Variation Flat Plate Skin Friction Coefficient Lift Coefficient Lift at Zero Angle-of -Attack Buffet Onset Lift Coefficient Maximum Lift Coefficient Rolling Moment Coefficient Pitching Moment Coefficient Pitching Moment at Zero Lift Yawing Moment Coefficient Side Force Coefficient Oswald Spanload Efficiency Factor Net thrust F~ g Acceleration due to Gravity h Altitude Roll Moment of Inertia Ixx Pitch Moment of Inertia IYY Yaw Moment of Inertia Izz L /D Lift to Drag Ratio 1 Length M Mach Number m.a.c. Mean Aerodynamic Center n Normal Load Factor z 0.P . R. Overall Pressure Ratio Specific Excess Power Ps P¶q , r Angular Rates About Aircraft's Y, X, and Z Axes 4 Dynamic Pressure AP Pilot's Pedal Displacement Reynold1s Number R~ Force at Left and Right Wingtip Reaction Jets R ~ R'~ S Area Leading-Edge Extension Exposed Area 'LEX SM Static Margin Asp, AsR Pilot's Fore-Aft and Lateral Stick Displacement Wing Reference Area SW* 'ref Component Wetted Area 'wet T Thrust Commanded Thrust from Left and Right Engines T ~T~~~ , - AT, ,A TR Pilot's Throttle Levers Left and Right Engines Thrust from Rear Left and Right Nozzles TRL~T RR Aircraft Velocity Components Along X, Y, and Z Axes Wing Loading Pilot's Vertical Speed Command Switch Aircraft Position with Respect to an Earth Reference Stall Speed Weight Angle-of- Attack Angle-of-Sideslip Ratio of specific heats Trailing Edge Flap Deflection Leading Edge FIap Deflection Elevator, Aileron and Rudder Angles Commanded Elevator, Aileron and Rudder Angles Thrust Deflection 2 Pitch Acceleration (rad Isec ) Aircraft Pitch Attitude Leading Edge Sweep Fore-Aft Deflection Angle of Forward Nozzle Deflection Angle of Rear Nozzles Lateral Deflection Angle of Forward Nozzle Commanded Forward Nozzle Angle Commanded Rear Nozzle Angle Aircraft Roll Attitude 2 Roll Acceleration (rad lsec ) Aircraft Heading CONTENTS ................................... SUMMARY ................................... SYMBOLS ................................. TABLES viii ... ............................... ILLUSTRATIONS ................................ INTRODU CTlON .......................... 2.1 Design Philosophy .......................... 2.2 Design Guidelines ............... 2.3 Aircraft Arrangement Description .................. AERODYNAMIC CHARACTERISTICS ............................. 3.1 Wing Selection .............................. 3.2 Longitudinal ........................ 3.2.1 Minimum Drag ....... 3.2.2 Basic Lift. Drag. and Pitching Moment ............. 3.2.3 Longitudinal Stability Analysis ........................ 3.2.4 Trim Analysis 3.2.5 Longitudinal High ar Aerodynamic ....................... Characteristics .......... 3.2.6 Aerodynamic Control Effectiveness .................... 3.2.7 Wing-Body Camber ................... 3.3 Lateral /Direc tional Analysis .............. 3.3.1 Lateral/Directional Stability 3.3.2 ~ateral/DirectionalC ontrol ........................ Effectiveness .................... 3.4 Propulsion Induced Effects .......................... 3.5 Controls Blending .................... 4 PROPULSION CHARACTERISTICS ................ 4.1 Engine Selection and Description .......................... 4.2 Propulsion Trades ......................... 4.3 Air Induction System .................... 4.4 Topside Flow Field Effects ............ 4.5 Exhaust Nozzle/Aft End Design Approach .............. 4.6 Engine Installation Loss Assessment vii CONTENTS (Continued) SECTION .................. 4.7 Installed Engine Performance .. ......................... 4 8 Reaction Controls ............................ 5 AIRCRAFT DESIGN ................. 5.1 Structural Design and Analysis ...................... . 5.1.1 Design Criteria ................... 5.1.2 Structural Materials .................. 5.1.3 Structural Description .................... 5.1.4 Structural Analysis ....................... 5.2 Flight Control System - 5.2.1 Hover and Transition Regimes ..................... Normal Operation ...... 5.2.2 Engine Failure in Hover or Bansition. .............. 5.2.3 Conventional Flight Regime .......................... 5.3 Mass Properties ..................... 5.3.1 Weight Estimates ........................... 5.3.2 Balance .................... 5.3.3 Moments of Inertia ............................. 5.4 Crew Station .................... 5.4.1 Design Philosophy .................. 5.4.2 Crew Seat Positioning .............................. 5.5 Subsystems ....................... 6 AIRCRAFT PERFORMANCE ........................ 6.1 Flight Performance. ....................... 6.1.1 Data Summary 6.1.2 Thrust LoadingIWing LoadinglAircraft Sizing .................... 6.1.3 Sensitivity Studies ........................ 6.2 Takeoff and Landing ...................... 6.2.1 Control Concept .................... 6.2.2 Takeoff Transition .................... 6.2.3 Landing Transition .................... 6.2.4 Short Takeoff (STO) .......... 6.2.5 Conventional Takeoff and Landing viii CONTENTS (Continued;! . SECTION PAGE 7 AERODYNAMIC UNCERTAINTIES ................ 7.1 Wave Drag at High Mach Number ................ 7 .. 2 Leading Edge Extension Related .................... 7.3 Aerodynamic Center Shift ........................ 7.4 High Angle of Attack .......... 7.5 . Maneuvering Flaps at Supersonic Speeds ............................. 7.6 Topside Inlet ............................. 7.7 Buffetonset ......................... 7. 8 Other Uncertainties ................ 7.8.1' Inlet Effect on Wing Drag ............ 7.8.2 Inlet Effect on Afterbody Drag .......................... 7.8.3 JetSpray ................... PROPOSED RESEARCH PROGRAM ......................... 8.1 Research Objectives ...................... 8.2 Wind-Tunnel Test Plan ................ 8.3 Wind-Tunnel Test Model Design ............ 8.3.1 Powered Simulator Installation ................ 8.3.2 Wind Tunnel Installation ............... 8.3.3 Aerodynamic Force Model ..................... 8.3.4 Jet Effects Model ...................... 8.3.5 Model Support ....................... 8.3.6 Model Balance ............................... CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 10 REFERENCES LIST OF TABLES Number .Page . . . . . . . . . . . 1 1 Supersonic VSTOL Concept Differences 1-2 . . . . . . . . . . . 3-1 Minimum Drag Buildup by Component 3-21 . . . . . . . . . . . . 3-2 Viscous Drag Buildup by Component 3-22 . . . . * . * . . . . 3-3 Drag .Due to Lift with No Camber. M1 2 3-23 . . . . . . . . . . . . . . . . . 3-4 Geometry Design Modes 3-23 . . . . . . . . 3-5 Drag Due to Lift with Design Camber. M 1.2 3-24 . . . . . . . . . . . . . . . . . . . . 3-6 Spray Height Data 3-25 3-7 Nozzle Conditions for Calculating VATOL . . . . . . . . . . . . . . . . . . . . . . . Spray Height . . . . . . . . . . . . . . . . Fighter Escort Sizing Mission . . . . . . . . . . . . . . . Propulsion Loss Assessment . . . . . . . . . . . . . . . . . . Group Weight, Statement . . . . . . . . . . . . . . . . . . Baseline Avionics Suite .. . .. .. . . .. .......... . Typical Fighter Escort Mission , , , , - . ..... ... ..... . . . . .... Test Plan 11 Ft and 9 x 7 Ft Tunnels , , . . . . . . . . . . . . . . . . . . Test Plan 12 Ft Tunnel . . . . . . . . . . . Comparison Model Size to Tunnel Size

Description:
H. A. Gerhardt, W. S. Chen. NOR THROP CORPaRA TION, AIRCRAFT GROUP. Hawthorne, GT. for Amer Remrch Center. NATIONAL AEROWAUTIC$
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.