ebook img

Study and suppression of vibrations in rotary-wing Unmanned Aerial Vehicles PDF

216 Pages·2017·8.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Study and suppression of vibrations in rotary-wing Unmanned Aerial Vehicles

City Research Online City, University of London Institutional Repository Citation: Martinez Estelles, Sylvia (2016). Study and suppression of vibrations in rotary- wing Unmanned Aerial Vehicles. (Unpublished Doctoral thesis, City, University of London) This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17441/ Link to published version: Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] City University London School of Mathematics, Computer Science and Engineering PhD thesis Study and suppression of vibrations in rotary-wing Unmanned Aerial Vehicles Silvia Estell´es Mart´ınez supervised by Dr. M. Toma´s-Rodr´ıguez October 2015 London School of Mathematics, Computer Science and Engineering City University London Study and suppression of vibrations in rotary-wing Unmanned Aerial Vehicles Silvia Estell´es Mart´ınez 1st Supervisor: 2nd Supervisor: Dr. Mar´ıa Prof. George Tom´as-Rodr´ıguez Halikias Submitted as part of the requirements for the degree of Doctor of Philosophy in Aerospace Engineering October 2015 Contents Acknowledgments 21 Abstract 23 1 Introduction 33 1.1 Unmanned Aerial Vehicles (UAVs) . . . . . . . . . . . . . . . . . 33 1.2 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . 38 1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.4 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 Literature review 43 2.1 History of unmanned and rotary-wing vehicles . . . . . . . . . . . 43 2.2 Quadrotors in the modern era . . . . . . . . . . . . . . . . . . . . 51 2.3 Contribution to the state of the art . . . . . . . . . . . . . . . . . 62 3 Quadrotor modelling 65 3.1 Quadrotor dynamic and aerodynamic overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.1.1 Quadrotor dynamics description . . . . . . . . . . . . . . . 66 5 3.1.2 Aerodynamic forces involved . . . . . . . . . . . . . . . . . 72 3.2 Modelling tool: VehicleSim . . . . . . . . . . . . . . . . . . . . . . 75 3.2.1 VehicleSim modelling software, VS-Lisp . . . . . . . . . . . 77 3.2.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . 81 3.2.3 VehicleSim solvers . . . . . . . . . . . . . . . . . . . . . . 84 3.2.3.1 Overview of numerical integration methods . . . 85 3.2.3.1.1 Adams-Moulton 2nd Order Method . . . 87 3.2.3.1.2 Adams-Moulton 3rd Order Method . . . 87 3.2.3.1.3 Adams-Moulton 4th Order Method . . . 88 3.2.3.1.4 Runge-Kutta 2nd Order Method . . . . . 88 3.2.3.1.5 Adams-Bashforth 2nd Order Method . . 89 3.3 Structural modelling . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.3.1 Rigid blades’ model. . . . . . . . . . . . . . . . . . . . . . 91 3.3.2 Elastic blades’ model. . . . . . . . . . . . . . . . . . . . . . 92 3.4 Aerodynamic modelling . . . . . . . . . . . . . . . . . . . . . . . . 97 3.4.1 Aerodynamic forces as a function of the rotational speed. . 99 3.4.2 Aerodynamic forces as a function of the rotational and translational speed. . . . . . . . . . . . . . . . . . . . . . . 101 3.4.2.1 Aerodynamicforcesasafunctionoftherotational and translational speed applied at the blade’s sta- tionary pressure centre. . . . . . . . . . . . . . . 102 3.4.2.2 Aerodynamicforcesasafunctionoftherotational andtranslationalspeedappliedattheblade’spres- sure centre. . . . . . . . . . . . . . . . . . . . . . 104 6 3.4.3 Aerodynamic forces for elastic blades. . . . . . . . . . . . . 105 3.4.4 Obtaining the aerodynamic parameters . . . . . . . . . . . 108 3.5 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . . . 110 4 Control system 113 4.1 Analysis of the nonlinear mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.2 Controllability of the platform . . . . . . . . . . . . . . . . . . . . 117 4.3 Control method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.3.1 Description of the algorithm . . . . . . . . . . . . . . . . . 122 4.3.2 Control of Drag Moments . . . . . . . . . . . . . . . . . . 127 4.3.2.1 Counter Drag Moment as a function of the rota- tional speed. . . . . . . . . . . . . . . . . . . . . 128 4.3.2.2 Counter Drag Moment as a function of the rota- tional and translational speed. . . . . . . . . . . . 129 4.3.2.3 Counter Drag Moment for elastic blades. . . . . . 130 4.3.3 Predefined smooth references . . . . . . . . . . . . . . . . 131 4.4 Trajectory tracking results . . . . . . . . . . . . . . . . . . . . . . 134 4.5 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . . . 140 5 Vibrations 143 5.1 Vibrational analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.1.1 Static and dynamic characterization of elastic blades . . . 144 5.1.2 Effect of elastic blades in the quadrotor motion . . . . . . 149 7 5.2 Oscillations appearing in the angular acceleration. . . . . . . . . . 153 5.2.1 Predictor-corrector process for angular acceleration oscilla- tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.3 Different blade mass and blade fracture . . . . . . . . . . . . . . . 159 5.3.1 Controllability of a different mass blade system. . . . . . . 160 5.3.2 Behaviourofamassdefectivebladeorfracturedbladequadro- tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.3.3 Adaptive control for moderate structural damage . . . . . 165 5.3.4 Isolating control device for severe structural damage . . . . 167 5.3.4.1 Description of the isolating control device . . . . 168 5.3.4.2 Preliminary study of the isolating control device . 168 5.3.4.3 Application of the isolating control device . . . . 170 5.4 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . . . 173 6 Conclusions and future work 175 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.3 Future work guidelines . . . . . . . . . . . . . . . . . . . . . . . . 178 6.4 List of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 179 A Calculus of the representative point of the blade 181 B Calculus of the representative point of the blade’s segment for elastic blades 185 C Calculus of the pressure centre of the blade 187 8 D Calculus of the pressure centre of the blade’s segment for elastic blades. 189 E Moments’ relation to maintain the forces balance 191 Bibliography 193 9

Description:
5.1.2 Effect of elastic blades in the quadrotor motion 149. 7 .. I would also like to thank my study fellows, Salvador and Ciro, who is, reducing the energy consumption and increasing the vehicle's autonomy. on the transformation of the nonlinear system into an equivalent linear system.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.