ebook img

Student’s solutions manual : introductory mathematical analysis for business, economics, and the life and social sciences PDF

719 Pages·2011·10.77 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Student’s solutions manual : introductory mathematical analysis for business, economics, and the life and social sciences

Table of Contents Chapter 0 1 Chapter 1 35 Chapter 2 54 Chapter 3 89 Chapter 4 132 Chapter 5 160 Chapter 6 177 Chapter 7 231 Chapter 8 295 Chapter 9 333 Chapter 10 357 Chapter 11 378 Chapter 12 423 Chapter 13 469 Chapter 14 539 Chapter 15 614 Chapter 16 658 Chapter 17 670 Chapter 0 Problems 0.1 x+2 x 2 x 7. True; = + = +1. 2 2 2 2 1. True; –13 is a negative integer. ⎛b⎞ ab 2. True, because −2 and 7 are integers and 7 ≠ 0. 8. True, because a⎜ ⎟= . ⎝c⎠ c 3. False, because the natural numbers are 1, 2, 3, and so on. 9. False; the left side is 5xy, but the right side is 5x2y. 0 4. False, because 0= . 1 10. True; by the associative and commutative properties, x(4y) = (x ⋅ 4)y = (4 ⋅ x)y = 4xy. 5 5. True, because 5= . 1 11. distributive 6. False, since a rational number cannot have 12. commutative 7 denominator of zero. In fact, is not a number 13. associative 0 at all because we cannot divide by 0. 14. definition of division 7. False, because 25=5, which is a positive 15. commutative and distributive integer. 16. associative 8. True; 2 is an irrational real number. 17. definition of subtraction 9. False; we cannot divide by 0. 18. commutative 10. False, because the natural numbers are 1, 2, 3, 19. distributive and so on, and 3 lies between 1 and 2. 20. distributive 11. True 21. 2x(y − 7) = (2x)y − (2x)7 = 2xy − (7)(2x) 12. False, since the integer 0 is neither positive nor = 2xy − (7 · 2)x = 2xy − 14x negative. 22. (a − b) + c = [a + (−b)] + c = a + (−b + c) Problems 0.2 = a + [c + (−b)] = a + (c − b) 1. False, because 0 does not have a reciprocal. 23. (x + y)(2) = 2(x + y) = 2x + 2y 7 3 21 2. True, because ⋅ = =1. 24. 2[27 + (x + y)] = 2[27 + (y + x)] = 2[(27 + y) + x] 3 7 21 = 2[(y + 27) + x] 3. False; the negative of 7 is −7 because 25. x[(2y + 1) + 3] = x[2y + (1 + 3)] = x[2y + 4] 7 + (−7) = 0. = x(2y) + x(4) = (x · 2)y + 4x = (2x)y + 4x = 2xy + 4x 4. False; 2(3 · 4) = 2(12) = 24, but (2 · 3)(2 · 4) = 6 · 8 = 48. 26. (1 + a)(b + c) = 1(b + c) + a(b + c) = 1(b) + 1(c) + a(b) + a(c) = b + c + ab + ac 5. False; –x + y = y + (–x) = y – x. 6. True; (x + 2)(4) = (x)(4) + (2)(4) = 4x + 8. 1 Chapter 0: Review of Algebra ISM: Introductory Mathematical Analysis 27. x(y − z + w) = x[(y − z) + w] = x(y − z) + x(w) 51. X(1) = X = x[y + (−z)] + xw = x(y) + x(−z) + xw 52. 3(x – 4) = 3(x) – 3(4) = 3x – 12 = xy − xz + xw 53. 4(5 + x) = 4(5) + 4(x) = 20 + 4x 28. –2 + (–4) = –6 54. –(x – 2) = –x + 2 29. –6 + 2 = –4 55. 0(–x) = 0 30. 6 + (–4) = 2 31. 7 – 2 = 5 ⎛ 1 ⎞ 8⋅1 8 56. 8⎜ ⎟= = ⎝11⎠ 11 11 32. 7 – (–4) = 7 + 4 = 11 5 33. −5 − (−13) = −5 + 13 = 8 57. =5 1 34. −a − (−b) = −a + b 14x 2⋅7⋅x 2x 58. = = 35. (–2)(9) = –(2 · 9) = –18 21y 3⋅7⋅y 3y 36. 7(–9) = –(7 · 9) = –63 3 3 3 59. = =− 37. (–2)(–12) = 2(12) = 24 −2x −(2x) 2x 38. 19(−1) = (−1)19 = −(1 · 19) = −19 2 1 2⋅1 2 60. ⋅ = = 3 x 3⋅x 3x −1 ⎛ 9⎞ 39. =−1⎜− ⎟=9 −1 ⎝ 1⎠ a a(3b) 3ab 9 61. (3b)= = c c c 40. –(–6 + x) = –(–6) – x = 6 – x ⎛ 7 ⎞ 41. –7(x) = –(7x) = –7x 62. (5a)⎜ ⎟=7 ⎝5a⎠ 42. –12(x – y) = (–12)x – (–12)(y) = –12x + 12y −aby −a⋅by by (or 12y – 12x) 63. = = −ax −a⋅x x 43. –[–6 + (–y)] = –(–6) – (–y) = 6 + y 7 1 7⋅1 7 −3 3 1⋅3 1 64. ⋅ = = 44. −3÷15= =− =− =− y x y⋅x xy 15 15 5⋅3 5 2 5 2⋅5 10 −9 9 9⋅1 1 65. ⋅ = = 45. −9÷(−27)= = = = x y x⋅y xy −27 27 9⋅3 3 1 1 3 2 3+2 5 −a a 66. + = + = = 46. (−a)÷(−b)= = 2 3 6 6 6 6 −b b 5 3 5 9 5+9 14 2⋅7 7 47. 2(–6 + 2) = 2(–4) = –8 67. + = + = = = = 12 4 12 12 12 12 2⋅6 6 48. 3[–2(3) + 6(2)] = 3[–6 + 12] = 3[6] = 18 3 7 9 14 9−14 −5 5⋅1 1 49. (–2)(–4)(–1) = 8(–1) = –8 68. − = − = = =− =− 10 15 30 30 30 30 5⋅6 6 50. (−12)(−12) = (12)(12) = 144 2 ISM: Introductory Mathematical Analysis Section 0.3 4 6 4+6 10 (a3)7 a3⋅7 a21 69. + = = =2 7. = = 5 5 5 5 (b4)5 b4⋅5 b20 X Y X −Y 70. − = ⎛x2 ⎞5 (x2)5 x2⋅5 x10 5 5 5 8. ⎜ ⎟ = = = ⎜⎝ y3⎟⎠ (y3)5 y3⋅5 y15 3 1 1 18 3 2 18−3+2 17 71. − + = − + = = 2 4 6 12 12 12 12 12 9. (2x2y3)3 =23(x2)3(y3)3 =8x2⋅3y3⋅3 =8x6y9 2 3 16 15 16−15 1 2 72. − = − = = ⎛w2s3⎞ (w2s3)2 (w2)2(s3)2 w2⋅2s3⋅2 5 8 40 40 40 40 10. ⎜ ⎟ = = = ⎜⎝ y2 ⎟⎠ (y2)2 y2⋅2 y4 73. 6 =6÷ x =6⋅ y = 6y w4s6 x y x x = y y4 74. 3l = l ÷m = l ⋅ 1 = l 11. x9 =x9−5 =x4 m 3 1 3 m 3m x5 −x 6 75. y2 =− x ÷ z =− x ⋅xy =−x2 12. ⎛⎜2a4 ⎞⎟ = (2a4)6 xzy y2 xy y2 z yz ⎜⎝7b5 ⎟⎠ (7b5)6 26(a4)6 = 76. 7 is not defined (we cannot divide by 0). 76(b5)6 0 64a4⋅6 = 0 117,649b5⋅6 77. 7 =0 64a24 = 117,649b30 0 78. is not defined (we cannot divide by 0). 0 (x3)6 x3⋅6 x18 13. = = =x18−4 = x14 x(x3) x1+3 x4 79. 0 · 0 = 0 Problems 0.3 (x2)3(x3)2 x2⋅3x3⋅2 x6x6 x12 14. = = = (x3)4 x3⋅4 x12 x12 1. (23)(22)=23+2 =25(=32) x12−12 = x0 =1 2. x6x9 =x6+9 =x15 15. 25=5 3. w4w8 =w4+8 =w12 16. 481=3 4. z3zz2 =z3+1+2 =z6 17. 7−128 =−2 x3x5 x3+5 x8 5. = = 18. 0.04 =0.2 y9y5 y9+5 y14 1 41 1 19. 4 = = 6. (x12)4 =x12⋅4 =x48 16 416 2 3 Chapter 0: Review of Algebra ISM: Introductory Mathematical Analysis –8 3–8 −2 2 3 3 13 39 39 39 20. 3 = = =− 36. = ⋅ = = = 27 327 3 3 13 13 13 132 132 13 21. (49)1/2 = 49 =7 37. (9z4)1/2 = 9z4 = 32(z2)2 = 32 (z2)2 =3z2 22. (64)1/3 =364 =4 3 3 23. 93/2 =( 9)3 =(3)3 =27 38. (16y8)3/4 =⎡⎢⎣416y8⎤⎥⎦ =⎡⎢⎣4(2y2)4⎤⎥⎦ =(2y2)3 =8y6 1 1 1 1 24. (9)−5/2 = = = = (9)5/2 ( 9)5 35 243 ⎛27t3⎞2/3 ⎛⎡3t⎤3⎞2/3 ⎡3t⎤2 9t2 39. ⎜ ⎟ =⎜ ⎟ = = ⎜⎝ 8 ⎟⎠ ⎜⎝⎢⎣2⎥⎦ ⎟⎠ ⎢⎣2⎥⎦ 4 1 1 1 1 25. (32)–2/5 = = = = (32)2/5 (532)2 (2)2 4 ⎛256⎞−3/4 ⎛⎡ 4 ⎤4⎞−3/4 ⎡ 4 ⎤−3 4−3 40. ⎜ ⎟ =⎜⎢ ⎥ ⎟ =⎢ ⎥ = ⎝ x12 ⎠ ⎜⎣x3⎦ ⎟ ⎣x3⎦ (x3)−3 1 1 1 ⎝ ⎠ 26. (0.09)–1/2 = (0.09)1/2 = 0.09 = 0.3 = 4−3 = x9 = x9 x−9 43 64 1 10 = = 3 3 10 a5b−3 1 1 1 a5 41. =a5⋅b−3⋅ =a5⋅ ⋅ = c2 c2 b3 c2 b3c2 ⎛ 1 ⎞4/5 ⎛ 1 ⎞4 ⎛1⎞4 1 27. ⎜⎝32⎟⎠ =⎜⎜⎝5 32⎟⎟⎠ =⎜⎝2⎟⎠ =16 42. 5 x2y3z–10 =x2/5y3/5z–10/5 = x2/5y3/5 z2 ⎛ 64⎞2/3 ⎛ 64⎞2 ⎛ 4⎞2 16 28. ⎜⎝−27⎟⎠ =⎜⎜⎝3−27⎟⎟⎠ =⎜⎝−3⎟⎠ = 9 43. 5m−2m−7 =5m−2+(−7) =5m−9 = m59 29. 50 = 25⋅2 = 25⋅ 2 =5 2 1 44. x+y–1= x+ y 30. 354 =327⋅2 =327 32 =332 1 1 45. (3t)–2 = = 31. 32x3 =32 3x3 =x 32 (3t)2 9t2 32. 4x = 4 x =2 x 1 46. (3−z)–4 = (3−z)4 33. 16x4 = 16 x4 =4x2 47. 55x2 =(5x2)1/5 =51/5(x2)1/5 =51/5x2/5 x 4x 4x 34. 4 = = 16 416 2 48. (X3Y−3)−3 =(X3)−3(Y−3)−3 = X−9Y9 35. 2 8−5 27+3128=2 4⋅2−5 9⋅3+364⋅2 Y9 =2⋅2 2−5⋅3 3+432 = X9 =4 2−15 3+432 4 ISM: Introductory Mathematical Analysis Section 0.3 49. x− y =x1/2−y1/2 4 4 4(2x)1/2 4 2x 61. = = = 2x (2x)1/2 (2x)1/2(2x)1/2 2x u−2v−6w3 w3−(−5) w8 50. = = 2 2x vw−5 u2v1−(−6) u2v7 = x 51. x24xy–2z3 =x2(xy–2z3)1/4 =x2x1/4y–2/4z3/4 y y y(2y)1/2 y 2y 62. = = = x9/4z3/4 2y (2y)1/2 (2y)1/2(2y)1/2 2y = y1/2 2y = 2 52. 4a−3b−2a5b−4 =(a−3b−2)1/4a5b−4 =a−3/4b−1/2a5b−4 1 1 1(3x)2/3 3(3x)2 63. = = = =a17/4b−9/2 33x (3x)1/3 (3x)1/3(3x)2/3 3x a17/4 39x2 = = b9/2 3x 53. (2a−b+c)2/3 =3(2a−b+c)2 2 2 2⋅y1/3 2y1/3 23 y 64. = = = = 33 y2 3y2/3 3y2/3⋅y1/3 3y 3y 54. (ab2c3)3/4 =4(ab2c3)3 =4a3b6c9 12 12 65. = = 4 =2 1 1 55. x–4/5 = = 3 3 x4/5 5 x4 18 66. = 9 =3 56. 2x1/2−(2y)1/2 =2 x− 2y 2 57. 3w−3/5−(3w)−3/5 = 3 − 1 67. 52 = 52 = 52⋅a1/2b3/4 w3/5 (3w)3/5 4a2b a2/4b1/4 a1/2b1/4⋅a1/2b3/4 = 3 − 1 = 3 − 1 21/5a1/2b3/4 24/20a10/20b15/20 = = 5w3 5(3w)3 5w3 527w3 ab ab (24a10b15)1/20 2016a10b15 = = 58. [(x–4)1/5]1/6 =[x−4/5]1/6 =x–4/30 = x–2/15 ab ab 1 1 = x2/15 =15x2 68. 2 = 2 = 21/2⋅32/3 = 23/634/6 33 31/3 31/3⋅32/3 3 6 6 6⋅51/2 6 5 (2334)1/6 6648 59. = = = = = 5 51/2 51/2⋅51/2 5 3 3 60. 3 = 3 = 3⋅21/4 =342 = 342 69. 2x2y–3x4 =2x6y–3 = 2x6 48 81/4 81/4⋅21/4 416 2 y3 3 3⋅u1/2v1/2 3u1/2v1/2 70. = = u5/2v1/2 u5/2v1/2⋅u1/2v1/2 u3v 5 Chapter 0: Review of Algebra ISM: Introductory Mathematical Analysis 243 243 82. 75k4 =(75k4)1/2 =[(25k4)(3)]1/2 71. = = 81=9 3 3 =[(5k2)23]1/2 =5k231/2 72. {[(3a3)2]−5}−2 ={[32a6]−5}−2 (ab−3c)8 a8b−24c8 a5c14 ={3−10a−30}−2 83. = = (a−1c2)−3 a3c−6 b24 =320a60 20 1 26y6 84. 37(49) =37⋅72 =373 =7 73. = = (2–2x1/2y–2)3 2–6x3/2y–6 x3/2 2 (x2)3 ⎡ x3 ⎤ x6 (x3)2 64y6⋅x1/2 64y6x1/2 85. ÷⎢ ⎥ = ÷ = x3/2⋅x1/2 = x2 x4 ⎢⎣(x3)2⎥⎦ x4 (x6)2 x6 =x2÷ = x2÷x6−12 = x2÷x−6 s5 s5/2 s15/6 x12 74. = = =s11/6 3s2 s2/3 s4/6 =x2÷ 1 =x2⋅x6 = x8 x6 75. 3 x2yz33 xy2 =3(x2yz3)(xy2) =3 x3y3z3 86. (–6)(–6) = 36 =6 =xyz Note that (–6)2 ≠−6 since –6 < 0. 76. (43)8 =(31/4)8 =38/4 =32 =9 8s–2 4 4 87. − =− =− 77. 32(32)−2/5 =32(25)−2/5 2s3 s3s2 s5 =32(2−2) 88. (a5b−3 c)3 =(a5)3(b−3)3(c1/2)3 1 =32⋅ 22 =a15b−9c3/2 = 9 a15c3/2 = 4 b9 2/5 78. ⎛⎜5 x2y⎞⎟ =[(x2y)1/5]2/5 =(x2y)2/25 ⎛ 3x3y2 ⎞4 ⎝ ⎠ 89. (3x3y2÷2y2z−3)4 =⎜ ⎟ =x4/25y2/25 ⎜⎝2y2z−3⎟⎠ 4 ⎛3x3z3⎞ 79. (2x–1y2)2 =22x–2y4 = 4y4 =⎜⎜⎝ 2 ⎟⎟⎠ x2 (3x3z3)4 = 3 3 3⋅y2/3x3/4 (2)4 80. 3 y4 x = y1/3x1/4 = y1/3x1/4⋅y2/3x3/4 = 34x12z12 24 3x3/4y2/3 = 81x12z12 xy = 16 81. x x2y3 xy2 =x1/2(x2y3)1/2(xy2)1/2 90. 1 = 1 = 1 = 1 =8x10 =x1/2(xy3/2)(x1/2y)=x2y5/2 ( 126xx–23)2 ((1261/12/2)2)2((xx–32))22 126xx–64 8x110 6 ISM: Introductory Mathematical Analysis Section 0.4 Problems 0.4 18. −{−6a − 6b + 6 + 10a + 15b − a[2b + 10]} = −{4a + 9b + 6 − 2ab − 10a} 1. 8x – 4y + 2 + 3x + 2y – 5 = 11x – 2y – 3 = −{−6a + 9b + 6 − 2ab} = 6a − 9b − 6 + 2ab 2. 6x2−10xy+2+2z−xy+4 =6x2−11xy+2z+6 19. x2+(4+5)x+4(5)=x2+9x+20 3. 8t2−6s2+4s2−2t2+6=6t2−2s2+6 20. u2+(5+2)u+2(5)=u2+7u+10 4. x+2 x+ x+3 x =7 x 21. (w+2)(w−5)=w2+(−5+2)x+2(−5) =w2−3w−10 5. a+2 3b− c+3 3b = a+5 3b− c 22. z2+(–7−3)z+(–7)(–3)= z2−10z+21 6. 3a + 7b − 9 − 5a − 9b − 21 = −2a − 2b − 30 23. (2x)(5x)+[(2)(2)+(3)(5)]x+3(2) 7. 6x2 –10xy+ 2−2z+xy−4 =10x2+19x+6 =6x2−9xy−2z+ 2−4 24. (t)(2t) + [(1)(7) + (−5)(2)]t + (−5)(7) =2t2−3t−35 8. x+2 x− x−3 x =− x 25. X2+2(X)(2Y)+(2Y)2 = X2+4XY+4Y2 9. x+ 2y− x− 3z = 2y− 3z 26. (2x)2−2(2x)(1)+12 =4x2−4x+1 10. 8z – 4w – 3w + 6z = 14z – 7w 11. 9x + 9y – 21 – 24x + 6y – 6 = –15x + 15y – 27 27. x2−2(5)x+52 =x2−10x+25 12. u − 3v − 5u − 4v + u − 3 = −3u − 7v − 3 ( )2 28. (1⋅2) x +[(1)(5)+(–1)(2)] x+(–1)(5) 13. 5x2−5y2+xy−3x2−8xy−28y2 =2x+3 x−5 =2x2−33y2−7xy 29. ( 3x)2+2( 3x)(5)+(5)2 14. 2 – [3 + 4s – 12] = 2 – [4s – 9] = 2 – 4s + 9 = 11 – 4s =3x+10 3x+25 15. 2{3[3x2+6−2x2+10]}=2{3[x2+16]} 30. ( y)2−32 = y−9 =2{3x2+48}=6x2+96 31. (2s)2−12 =4s2−1 16. 4{3t + 15 – t[1 – t – 1]} = 4{3t + 15 – t[–t]} =4{3t+15+t2}=4t2+12t+60 32. (z2)2−(3w)2 =z4−9w2 17. −5(8x3+8x2−2(x2−5+2x)) 33. x2(x+4)−3(x+4) =−5(8x3+8x2−2x2+10−4x) =x3+4x2−3x−12 =−5(8x3+6x2−4x+10) =−40x3−30x2+20x−50 34. x(x2+x+3)+1(x2+x+3) =x3+x2+3x+x2+x+3 =x3+2x2+4x+3 7 Chapter 0: Review of Algebra ISM: Introductory Mathematical Analysis 35. x2(3x2+2x−1)−4(3x2+2x−1) 2x3 7x 4 4 46. − + =2x2−7+ =3x4+2x3−x2−12x2−8x+4 x x x x =3x4+2x3−13x2−8x+4 6x5 4x3 1 1 47. + − =3x3+2x− 36. 3y(4y3+2y2−3y)−2(4y3+2y2−3y) 2x2 2x2 2x2 2x2 =12y4+6y3−9y2−8y3−4y2+6y 3y−4−9y−5 =12y4−2y3−13y2+6y 48. 3y −6y−9 37. x{2(x2−2x−35)+4[2x2−12x]} = 3y =x{2x2−4x−70+8x2−48x} −6y 9 = − =x{10x2−52x−70} 3y 3y =10x3−52x2−70x =−2−3 y 38. [(2z)2−12](4z2+1)=[4z2−1](4z2+1) x =(4z2)2−12 =16z4−1 49. x+5 x2+5x−3 39. x(3x + 2y – 4) + y(3x + 2y – 4) + 2(3x + 2y – 4) x2+5x =3x2+2xy−4x+3xy+2y2−4y+6x+4y−8 −3 =3x2+2y2+5xy+2x−8 Answer: x+ −3 x+5 40. [x2+(x+1)]2 x−1 =(x2)2+2x2(x+1)+(x+1)2 50. x−4 x2−5x+4 =x4+2x3+2x2+x2+2x+1 x2−4x =x4+2x3+3x2+2x+1 –x+4 –x+4 41. (2a)3+3(2a)2(3)+3(2a)(3)2+(3)3 0 Answer: x – 1 =8a3+36a2+54a+27 3x2−8x+17 42. (3y)3−3(3y)2(2)+3(3y)(2)2−(2)3 51. x+2 3x3−2x2+ x− 3 =27y3−54y2+36y−8 3x3+6x2 43. (2x)3−3(2x)2(3)+3(2x)(3)2−33 –8x2+ x –8x2−16x =8x3−36x2+54x−27 17x− 3 44. x3+3x2(2y)+3x(2y)2+(2y)3 17x+34 –37 =x3+6x2y+12xy2+8y3 –37 Answer: 3x2−8x+17+ x+2 z2 18z 45. − =z−18 z z 8 ISM: Introductory Mathematical Analysis Section 0.5 x3+x2+3x+3 z+2 52. x−1 x4+0x3+2x2+0x+1 56. z2−z+1 z3+z2+ z x4− x3 z3−z2+ z x3+2x2 2z2 x3– x2 2z2−2z+2 3x2+0x 2z−2 3x2−3x Answer: z+2+ 2z−2 z2−z+1 3x+1 3x−3 Problems 0.5 4 1. 2(ax + b) 4 Answer: x3+x2+3x+3+ x−1 2. 2y(3y – 2) x2−2x+4 3. 5x(2y + z) 53. x+2 x3+0x2+0x+0 4. 3x2y(1−3xy2) x3+2x2 −2x2+0 5. 4bc(2a3−3ab2d+b3cd2) −2x2−4x 4x+0 6. 6u2v(uv2+3w4−12v2) 4x+8 −8 7. z2−72 =(z+7)(z−7) 8 Answer: x2−2x+4− x+2 8. (x + 2)(x − 3) 3x−1 9. (p+3)(p+1) 2 54. 2x+3 6x2+8x+1 10. (s – 4)(s – 2) 6x2+9x −x+1 11. (4x)2−32 =(4x+3)(4x−3) −x−3 2 12. (x + 6)(x – 4) 5 2 13. (a + 7)(a + 5) 5 1 Answer: 3x− + 2 2 2x+3 14. (2t)2−(3s)2 =(2t+3s)(2t−3s) x−2 15. x2+2(3)(x)+32 =(x+3)2 55. 3x+2 3x2−4x+3 3x2+2x 16. (y – 10)(y – 5) –6x+3 –6x−4 17. 5(x2+5x+6) =5(x+3)(x+2) 7 7 Answer: x−2+ 18. 3(t2+4t−5) 3x+2 =3(t−1)(t+5) 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.