Table of Contents Chapter 0 1 Chapter 1 35 Chapter 2 54 Chapter 3 89 Chapter 4 132 Chapter 5 160 Chapter 6 177 Chapter 7 231 Chapter 8 295 Chapter 9 333 Chapter 10 357 Chapter 11 378 Chapter 12 423 Chapter 13 469 Chapter 14 539 Chapter 15 614 Chapter 16 658 Chapter 17 670 Chapter 0 Problems 0.1 x+2 x 2 x 7. True; = + = +1. 2 2 2 2 1. True; –13 is a negative integer. ⎛b⎞ ab 2. True, because −2 and 7 are integers and 7 ≠ 0. 8. True, because a⎜ ⎟= . ⎝c⎠ c 3. False, because the natural numbers are 1, 2, 3, and so on. 9. False; the left side is 5xy, but the right side is 5x2y. 0 4. False, because 0= . 1 10. True; by the associative and commutative properties, x(4y) = (x ⋅ 4)y = (4 ⋅ x)y = 4xy. 5 5. True, because 5= . 1 11. distributive 6. False, since a rational number cannot have 12. commutative 7 denominator of zero. In fact, is not a number 13. associative 0 at all because we cannot divide by 0. 14. definition of division 7. False, because 25=5, which is a positive 15. commutative and distributive integer. 16. associative 8. True; 2 is an irrational real number. 17. definition of subtraction 9. False; we cannot divide by 0. 18. commutative 10. False, because the natural numbers are 1, 2, 3, 19. distributive and so on, and 3 lies between 1 and 2. 20. distributive 11. True 21. 2x(y − 7) = (2x)y − (2x)7 = 2xy − (7)(2x) 12. False, since the integer 0 is neither positive nor = 2xy − (7 · 2)x = 2xy − 14x negative. 22. (a − b) + c = [a + (−b)] + c = a + (−b + c) Problems 0.2 = a + [c + (−b)] = a + (c − b) 1. False, because 0 does not have a reciprocal. 23. (x + y)(2) = 2(x + y) = 2x + 2y 7 3 21 2. True, because ⋅ = =1. 24. 2[27 + (x + y)] = 2[27 + (y + x)] = 2[(27 + y) + x] 3 7 21 = 2[(y + 27) + x] 3. False; the negative of 7 is −7 because 25. x[(2y + 1) + 3] = x[2y + (1 + 3)] = x[2y + 4] 7 + (−7) = 0. = x(2y) + x(4) = (x · 2)y + 4x = (2x)y + 4x = 2xy + 4x 4. False; 2(3 · 4) = 2(12) = 24, but (2 · 3)(2 · 4) = 6 · 8 = 48. 26. (1 + a)(b + c) = 1(b + c) + a(b + c) = 1(b) + 1(c) + a(b) + a(c) = b + c + ab + ac 5. False; –x + y = y + (–x) = y – x. 6. True; (x + 2)(4) = (x)(4) + (2)(4) = 4x + 8. 1 Chapter 0: Review of Algebra ISM: Introductory Mathematical Analysis 27. x(y − z + w) = x[(y − z) + w] = x(y − z) + x(w) 51. X(1) = X = x[y + (−z)] + xw = x(y) + x(−z) + xw 52. 3(x – 4) = 3(x) – 3(4) = 3x – 12 = xy − xz + xw 53. 4(5 + x) = 4(5) + 4(x) = 20 + 4x 28. –2 + (–4) = –6 54. –(x – 2) = –x + 2 29. –6 + 2 = –4 55. 0(–x) = 0 30. 6 + (–4) = 2 31. 7 – 2 = 5 ⎛ 1 ⎞ 8⋅1 8 56. 8⎜ ⎟= = ⎝11⎠ 11 11 32. 7 – (–4) = 7 + 4 = 11 5 33. −5 − (−13) = −5 + 13 = 8 57. =5 1 34. −a − (−b) = −a + b 14x 2⋅7⋅x 2x 58. = = 35. (–2)(9) = –(2 · 9) = –18 21y 3⋅7⋅y 3y 36. 7(–9) = –(7 · 9) = –63 3 3 3 59. = =− 37. (–2)(–12) = 2(12) = 24 −2x −(2x) 2x 38. 19(−1) = (−1)19 = −(1 · 19) = −19 2 1 2⋅1 2 60. ⋅ = = 3 x 3⋅x 3x −1 ⎛ 9⎞ 39. =−1⎜− ⎟=9 −1 ⎝ 1⎠ a a(3b) 3ab 9 61. (3b)= = c c c 40. –(–6 + x) = –(–6) – x = 6 – x ⎛ 7 ⎞ 41. –7(x) = –(7x) = –7x 62. (5a)⎜ ⎟=7 ⎝5a⎠ 42. –12(x – y) = (–12)x – (–12)(y) = –12x + 12y −aby −a⋅by by (or 12y – 12x) 63. = = −ax −a⋅x x 43. –[–6 + (–y)] = –(–6) – (–y) = 6 + y 7 1 7⋅1 7 −3 3 1⋅3 1 64. ⋅ = = 44. −3÷15= =− =− =− y x y⋅x xy 15 15 5⋅3 5 2 5 2⋅5 10 −9 9 9⋅1 1 65. ⋅ = = 45. −9÷(−27)= = = = x y x⋅y xy −27 27 9⋅3 3 1 1 3 2 3+2 5 −a a 66. + = + = = 46. (−a)÷(−b)= = 2 3 6 6 6 6 −b b 5 3 5 9 5+9 14 2⋅7 7 47. 2(–6 + 2) = 2(–4) = –8 67. + = + = = = = 12 4 12 12 12 12 2⋅6 6 48. 3[–2(3) + 6(2)] = 3[–6 + 12] = 3[6] = 18 3 7 9 14 9−14 −5 5⋅1 1 49. (–2)(–4)(–1) = 8(–1) = –8 68. − = − = = =− =− 10 15 30 30 30 30 5⋅6 6 50. (−12)(−12) = (12)(12) = 144 2 ISM: Introductory Mathematical Analysis Section 0.3 4 6 4+6 10 (a3)7 a3⋅7 a21 69. + = = =2 7. = = 5 5 5 5 (b4)5 b4⋅5 b20 X Y X −Y 70. − = ⎛x2 ⎞5 (x2)5 x2⋅5 x10 5 5 5 8. ⎜ ⎟ = = = ⎜⎝ y3⎟⎠ (y3)5 y3⋅5 y15 3 1 1 18 3 2 18−3+2 17 71. − + = − + = = 2 4 6 12 12 12 12 12 9. (2x2y3)3 =23(x2)3(y3)3 =8x2⋅3y3⋅3 =8x6y9 2 3 16 15 16−15 1 2 72. − = − = = ⎛w2s3⎞ (w2s3)2 (w2)2(s3)2 w2⋅2s3⋅2 5 8 40 40 40 40 10. ⎜ ⎟ = = = ⎜⎝ y2 ⎟⎠ (y2)2 y2⋅2 y4 73. 6 =6÷ x =6⋅ y = 6y w4s6 x y x x = y y4 74. 3l = l ÷m = l ⋅ 1 = l 11. x9 =x9−5 =x4 m 3 1 3 m 3m x5 −x 6 75. y2 =− x ÷ z =− x ⋅xy =−x2 12. ⎛⎜2a4 ⎞⎟ = (2a4)6 xzy y2 xy y2 z yz ⎜⎝7b5 ⎟⎠ (7b5)6 26(a4)6 = 76. 7 is not defined (we cannot divide by 0). 76(b5)6 0 64a4⋅6 = 0 117,649b5⋅6 77. 7 =0 64a24 = 117,649b30 0 78. is not defined (we cannot divide by 0). 0 (x3)6 x3⋅6 x18 13. = = =x18−4 = x14 x(x3) x1+3 x4 79. 0 · 0 = 0 Problems 0.3 (x2)3(x3)2 x2⋅3x3⋅2 x6x6 x12 14. = = = (x3)4 x3⋅4 x12 x12 1. (23)(22)=23+2 =25(=32) x12−12 = x0 =1 2. x6x9 =x6+9 =x15 15. 25=5 3. w4w8 =w4+8 =w12 16. 481=3 4. z3zz2 =z3+1+2 =z6 17. 7−128 =−2 x3x5 x3+5 x8 5. = = 18. 0.04 =0.2 y9y5 y9+5 y14 1 41 1 19. 4 = = 6. (x12)4 =x12⋅4 =x48 16 416 2 3 Chapter 0: Review of Algebra ISM: Introductory Mathematical Analysis –8 3–8 −2 2 3 3 13 39 39 39 20. 3 = = =− 36. = ⋅ = = = 27 327 3 3 13 13 13 132 132 13 21. (49)1/2 = 49 =7 37. (9z4)1/2 = 9z4 = 32(z2)2 = 32 (z2)2 =3z2 22. (64)1/3 =364 =4 3 3 23. 93/2 =( 9)3 =(3)3 =27 38. (16y8)3/4 =⎡⎢⎣416y8⎤⎥⎦ =⎡⎢⎣4(2y2)4⎤⎥⎦ =(2y2)3 =8y6 1 1 1 1 24. (9)−5/2 = = = = (9)5/2 ( 9)5 35 243 ⎛27t3⎞2/3 ⎛⎡3t⎤3⎞2/3 ⎡3t⎤2 9t2 39. ⎜ ⎟ =⎜ ⎟ = = ⎜⎝ 8 ⎟⎠ ⎜⎝⎢⎣2⎥⎦ ⎟⎠ ⎢⎣2⎥⎦ 4 1 1 1 1 25. (32)–2/5 = = = = (32)2/5 (532)2 (2)2 4 ⎛256⎞−3/4 ⎛⎡ 4 ⎤4⎞−3/4 ⎡ 4 ⎤−3 4−3 40. ⎜ ⎟ =⎜⎢ ⎥ ⎟ =⎢ ⎥ = ⎝ x12 ⎠ ⎜⎣x3⎦ ⎟ ⎣x3⎦ (x3)−3 1 1 1 ⎝ ⎠ 26. (0.09)–1/2 = (0.09)1/2 = 0.09 = 0.3 = 4−3 = x9 = x9 x−9 43 64 1 10 = = 3 3 10 a5b−3 1 1 1 a5 41. =a5⋅b−3⋅ =a5⋅ ⋅ = c2 c2 b3 c2 b3c2 ⎛ 1 ⎞4/5 ⎛ 1 ⎞4 ⎛1⎞4 1 27. ⎜⎝32⎟⎠ =⎜⎜⎝5 32⎟⎟⎠ =⎜⎝2⎟⎠ =16 42. 5 x2y3z–10 =x2/5y3/5z–10/5 = x2/5y3/5 z2 ⎛ 64⎞2/3 ⎛ 64⎞2 ⎛ 4⎞2 16 28. ⎜⎝−27⎟⎠ =⎜⎜⎝3−27⎟⎟⎠ =⎜⎝−3⎟⎠ = 9 43. 5m−2m−7 =5m−2+(−7) =5m−9 = m59 29. 50 = 25⋅2 = 25⋅ 2 =5 2 1 44. x+y–1= x+ y 30. 354 =327⋅2 =327 32 =332 1 1 45. (3t)–2 = = 31. 32x3 =32 3x3 =x 32 (3t)2 9t2 32. 4x = 4 x =2 x 1 46. (3−z)–4 = (3−z)4 33. 16x4 = 16 x4 =4x2 47. 55x2 =(5x2)1/5 =51/5(x2)1/5 =51/5x2/5 x 4x 4x 34. 4 = = 16 416 2 48. (X3Y−3)−3 =(X3)−3(Y−3)−3 = X−9Y9 35. 2 8−5 27+3128=2 4⋅2−5 9⋅3+364⋅2 Y9 =2⋅2 2−5⋅3 3+432 = X9 =4 2−15 3+432 4 ISM: Introductory Mathematical Analysis Section 0.3 49. x− y =x1/2−y1/2 4 4 4(2x)1/2 4 2x 61. = = = 2x (2x)1/2 (2x)1/2(2x)1/2 2x u−2v−6w3 w3−(−5) w8 50. = = 2 2x vw−5 u2v1−(−6) u2v7 = x 51. x24xy–2z3 =x2(xy–2z3)1/4 =x2x1/4y–2/4z3/4 y y y(2y)1/2 y 2y 62. = = = x9/4z3/4 2y (2y)1/2 (2y)1/2(2y)1/2 2y = y1/2 2y = 2 52. 4a−3b−2a5b−4 =(a−3b−2)1/4a5b−4 =a−3/4b−1/2a5b−4 1 1 1(3x)2/3 3(3x)2 63. = = = =a17/4b−9/2 33x (3x)1/3 (3x)1/3(3x)2/3 3x a17/4 39x2 = = b9/2 3x 53. (2a−b+c)2/3 =3(2a−b+c)2 2 2 2⋅y1/3 2y1/3 23 y 64. = = = = 33 y2 3y2/3 3y2/3⋅y1/3 3y 3y 54. (ab2c3)3/4 =4(ab2c3)3 =4a3b6c9 12 12 65. = = 4 =2 1 1 55. x–4/5 = = 3 3 x4/5 5 x4 18 66. = 9 =3 56. 2x1/2−(2y)1/2 =2 x− 2y 2 57. 3w−3/5−(3w)−3/5 = 3 − 1 67. 52 = 52 = 52⋅a1/2b3/4 w3/5 (3w)3/5 4a2b a2/4b1/4 a1/2b1/4⋅a1/2b3/4 = 3 − 1 = 3 − 1 21/5a1/2b3/4 24/20a10/20b15/20 = = 5w3 5(3w)3 5w3 527w3 ab ab (24a10b15)1/20 2016a10b15 = = 58. [(x–4)1/5]1/6 =[x−4/5]1/6 =x–4/30 = x–2/15 ab ab 1 1 = x2/15 =15x2 68. 2 = 2 = 21/2⋅32/3 = 23/634/6 33 31/3 31/3⋅32/3 3 6 6 6⋅51/2 6 5 (2334)1/6 6648 59. = = = = = 5 51/2 51/2⋅51/2 5 3 3 60. 3 = 3 = 3⋅21/4 =342 = 342 69. 2x2y–3x4 =2x6y–3 = 2x6 48 81/4 81/4⋅21/4 416 2 y3 3 3⋅u1/2v1/2 3u1/2v1/2 70. = = u5/2v1/2 u5/2v1/2⋅u1/2v1/2 u3v 5 Chapter 0: Review of Algebra ISM: Introductory Mathematical Analysis 243 243 82. 75k4 =(75k4)1/2 =[(25k4)(3)]1/2 71. = = 81=9 3 3 =[(5k2)23]1/2 =5k231/2 72. {[(3a3)2]−5}−2 ={[32a6]−5}−2 (ab−3c)8 a8b−24c8 a5c14 ={3−10a−30}−2 83. = = (a−1c2)−3 a3c−6 b24 =320a60 20 1 26y6 84. 37(49) =37⋅72 =373 =7 73. = = (2–2x1/2y–2)3 2–6x3/2y–6 x3/2 2 (x2)3 ⎡ x3 ⎤ x6 (x3)2 64y6⋅x1/2 64y6x1/2 85. ÷⎢ ⎥ = ÷ = x3/2⋅x1/2 = x2 x4 ⎢⎣(x3)2⎥⎦ x4 (x6)2 x6 =x2÷ = x2÷x6−12 = x2÷x−6 s5 s5/2 s15/6 x12 74. = = =s11/6 3s2 s2/3 s4/6 =x2÷ 1 =x2⋅x6 = x8 x6 75. 3 x2yz33 xy2 =3(x2yz3)(xy2) =3 x3y3z3 86. (–6)(–6) = 36 =6 =xyz Note that (–6)2 ≠−6 since –6 < 0. 76. (43)8 =(31/4)8 =38/4 =32 =9 8s–2 4 4 87. − =− =− 77. 32(32)−2/5 =32(25)−2/5 2s3 s3s2 s5 =32(2−2) 88. (a5b−3 c)3 =(a5)3(b−3)3(c1/2)3 1 =32⋅ 22 =a15b−9c3/2 = 9 a15c3/2 = 4 b9 2/5 78. ⎛⎜5 x2y⎞⎟ =[(x2y)1/5]2/5 =(x2y)2/25 ⎛ 3x3y2 ⎞4 ⎝ ⎠ 89. (3x3y2÷2y2z−3)4 =⎜ ⎟ =x4/25y2/25 ⎜⎝2y2z−3⎟⎠ 4 ⎛3x3z3⎞ 79. (2x–1y2)2 =22x–2y4 = 4y4 =⎜⎜⎝ 2 ⎟⎟⎠ x2 (3x3z3)4 = 3 3 3⋅y2/3x3/4 (2)4 80. 3 y4 x = y1/3x1/4 = y1/3x1/4⋅y2/3x3/4 = 34x12z12 24 3x3/4y2/3 = 81x12z12 xy = 16 81. x x2y3 xy2 =x1/2(x2y3)1/2(xy2)1/2 90. 1 = 1 = 1 = 1 =8x10 =x1/2(xy3/2)(x1/2y)=x2y5/2 ( 126xx–23)2 ((1261/12/2)2)2((xx–32))22 126xx–64 8x110 6 ISM: Introductory Mathematical Analysis Section 0.4 Problems 0.4 18. −{−6a − 6b + 6 + 10a + 15b − a[2b + 10]} = −{4a + 9b + 6 − 2ab − 10a} 1. 8x – 4y + 2 + 3x + 2y – 5 = 11x – 2y – 3 = −{−6a + 9b + 6 − 2ab} = 6a − 9b − 6 + 2ab 2. 6x2−10xy+2+2z−xy+4 =6x2−11xy+2z+6 19. x2+(4+5)x+4(5)=x2+9x+20 3. 8t2−6s2+4s2−2t2+6=6t2−2s2+6 20. u2+(5+2)u+2(5)=u2+7u+10 4. x+2 x+ x+3 x =7 x 21. (w+2)(w−5)=w2+(−5+2)x+2(−5) =w2−3w−10 5. a+2 3b− c+3 3b = a+5 3b− c 22. z2+(–7−3)z+(–7)(–3)= z2−10z+21 6. 3a + 7b − 9 − 5a − 9b − 21 = −2a − 2b − 30 23. (2x)(5x)+[(2)(2)+(3)(5)]x+3(2) 7. 6x2 –10xy+ 2−2z+xy−4 =10x2+19x+6 =6x2−9xy−2z+ 2−4 24. (t)(2t) + [(1)(7) + (−5)(2)]t + (−5)(7) =2t2−3t−35 8. x+2 x− x−3 x =− x 25. X2+2(X)(2Y)+(2Y)2 = X2+4XY+4Y2 9. x+ 2y− x− 3z = 2y− 3z 26. (2x)2−2(2x)(1)+12 =4x2−4x+1 10. 8z – 4w – 3w + 6z = 14z – 7w 11. 9x + 9y – 21 – 24x + 6y – 6 = –15x + 15y – 27 27. x2−2(5)x+52 =x2−10x+25 12. u − 3v − 5u − 4v + u − 3 = −3u − 7v − 3 ( )2 28. (1⋅2) x +[(1)(5)+(–1)(2)] x+(–1)(5) 13. 5x2−5y2+xy−3x2−8xy−28y2 =2x+3 x−5 =2x2−33y2−7xy 29. ( 3x)2+2( 3x)(5)+(5)2 14. 2 – [3 + 4s – 12] = 2 – [4s – 9] = 2 – 4s + 9 = 11 – 4s =3x+10 3x+25 15. 2{3[3x2+6−2x2+10]}=2{3[x2+16]} 30. ( y)2−32 = y−9 =2{3x2+48}=6x2+96 31. (2s)2−12 =4s2−1 16. 4{3t + 15 – t[1 – t – 1]} = 4{3t + 15 – t[–t]} =4{3t+15+t2}=4t2+12t+60 32. (z2)2−(3w)2 =z4−9w2 17. −5(8x3+8x2−2(x2−5+2x)) 33. x2(x+4)−3(x+4) =−5(8x3+8x2−2x2+10−4x) =x3+4x2−3x−12 =−5(8x3+6x2−4x+10) =−40x3−30x2+20x−50 34. x(x2+x+3)+1(x2+x+3) =x3+x2+3x+x2+x+3 =x3+2x2+4x+3 7 Chapter 0: Review of Algebra ISM: Introductory Mathematical Analysis 35. x2(3x2+2x−1)−4(3x2+2x−1) 2x3 7x 4 4 46. − + =2x2−7+ =3x4+2x3−x2−12x2−8x+4 x x x x =3x4+2x3−13x2−8x+4 6x5 4x3 1 1 47. + − =3x3+2x− 36. 3y(4y3+2y2−3y)−2(4y3+2y2−3y) 2x2 2x2 2x2 2x2 =12y4+6y3−9y2−8y3−4y2+6y 3y−4−9y−5 =12y4−2y3−13y2+6y 48. 3y −6y−9 37. x{2(x2−2x−35)+4[2x2−12x]} = 3y =x{2x2−4x−70+8x2−48x} −6y 9 = − =x{10x2−52x−70} 3y 3y =10x3−52x2−70x =−2−3 y 38. [(2z)2−12](4z2+1)=[4z2−1](4z2+1) x =(4z2)2−12 =16z4−1 49. x+5 x2+5x−3 39. x(3x + 2y – 4) + y(3x + 2y – 4) + 2(3x + 2y – 4) x2+5x =3x2+2xy−4x+3xy+2y2−4y+6x+4y−8 −3 =3x2+2y2+5xy+2x−8 Answer: x+ −3 x+5 40. [x2+(x+1)]2 x−1 =(x2)2+2x2(x+1)+(x+1)2 50. x−4 x2−5x+4 =x4+2x3+2x2+x2+2x+1 x2−4x =x4+2x3+3x2+2x+1 –x+4 –x+4 41. (2a)3+3(2a)2(3)+3(2a)(3)2+(3)3 0 Answer: x – 1 =8a3+36a2+54a+27 3x2−8x+17 42. (3y)3−3(3y)2(2)+3(3y)(2)2−(2)3 51. x+2 3x3−2x2+ x− 3 =27y3−54y2+36y−8 3x3+6x2 43. (2x)3−3(2x)2(3)+3(2x)(3)2−33 –8x2+ x –8x2−16x =8x3−36x2+54x−27 17x− 3 44. x3+3x2(2y)+3x(2y)2+(2y)3 17x+34 –37 =x3+6x2y+12xy2+8y3 –37 Answer: 3x2−8x+17+ x+2 z2 18z 45. − =z−18 z z 8 ISM: Introductory Mathematical Analysis Section 0.5 x3+x2+3x+3 z+2 52. x−1 x4+0x3+2x2+0x+1 56. z2−z+1 z3+z2+ z x4− x3 z3−z2+ z x3+2x2 2z2 x3– x2 2z2−2z+2 3x2+0x 2z−2 3x2−3x Answer: z+2+ 2z−2 z2−z+1 3x+1 3x−3 Problems 0.5 4 1. 2(ax + b) 4 Answer: x3+x2+3x+3+ x−1 2. 2y(3y – 2) x2−2x+4 3. 5x(2y + z) 53. x+2 x3+0x2+0x+0 4. 3x2y(1−3xy2) x3+2x2 −2x2+0 5. 4bc(2a3−3ab2d+b3cd2) −2x2−4x 4x+0 6. 6u2v(uv2+3w4−12v2) 4x+8 −8 7. z2−72 =(z+7)(z−7) 8 Answer: x2−2x+4− x+2 8. (x + 2)(x − 3) 3x−1 9. (p+3)(p+1) 2 54. 2x+3 6x2+8x+1 10. (s – 4)(s – 2) 6x2+9x −x+1 11. (4x)2−32 =(4x+3)(4x−3) −x−3 2 12. (x + 6)(x – 4) 5 2 13. (a + 7)(a + 5) 5 1 Answer: 3x− + 2 2 2x+3 14. (2t)2−(3s)2 =(2t+3s)(2t−3s) x−2 15. x2+2(3)(x)+32 =(x+3)2 55. 3x+2 3x2−4x+3 3x2+2x 16. (y – 10)(y – 5) –6x+3 –6x−4 17. 5(x2+5x+6) =5(x+3)(x+2) 7 7 Answer: x−2+ 18. 3(t2+4t−5) 3x+2 =3(t−1)(t+5) 9