ebook img

STUDENT'S SOLUTIONS MANUAL COLLEGE ALGEBRA: PDF

333 Pages·2011·9.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview STUDENT'S SOLUTIONS MANUAL COLLEGE ALGEBRA:

S ’ TUDENT S S M OLUTIONS ANUAL J A. P UDITH ENNA Indiana University Purdue University Indianapolis C A : OLLEGE LGEBRA GRAPHS AND MODELS F E IFTH DITION Marvin L. Bittinger Indiana University Purdue University Indianapolis Judith A. Beecher Indiana University Purdue University Indianapolis David J. Ellenbogen Community College of Vermont Judith A. Penna Indiana University Purdue University Indianapolis Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs. Reproduced by Pearson from electronic files supplied by the author. Copyright © 2013, 2009, 2005 Pearson Education, Inc. Publishing as Pearson, 75 Arlington Street, Boston, MA 02116. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. ISBN-13: 978-0-321-79125-2 ISBN-10: 0-321-79125-8 1 2 3 4 5 6 BRR 15 14 13 12 11 www.pearsonhighered.com Contents Chapter R . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . 63 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . 93 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . 181 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . 215 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . 275 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . 307 Copyright © 2013 Pearson Education, Inc. Chapter R Basic Concepts of Algebra 23. The endpoint −9 is included in the interval, so we use a Exercise Set R.1 bracket before the −9. The endpoint −4 is not included, so we use a parenthesis after the −4. Interval notation is 2 √ 1 8 [−9,−4). 1. Rational numbers: , 6,−2.45, 18. 4, −11, 327, 5 , − , √ 3 6 7 0, 16 25. Both endpoints are included in the interval, so we use √ √ √ √ brackets. Intervalnotationis[x,x+h]. 3. Irrationalnumbers: 3, 626,7.151551555...,− 35, 53 27. Theendpointpisnotincludedintheinterval,soweusea (Although there is a pattern in 7.151551555..., there is parenthesis before the p. The interval is of unlimited ex- norepeatingblockofdigits.) tentinthepositivedirection,soweusetheinfinitysymbol √ √ 5. Wholenumbers: 6, 327,0, 16 ∞. Intervalnotationis(p,∞). 7. Integersbutnotnaturalnumbers: −11,0 29. Since 6 is an element of the set of natural numbers, the statementistrue. 2 1 9. Rational numbers but not integers: , −2.45, 18.4, 5 , 31. Since3.2isnotanelementofthesetofintegers,thestate- 3 6 8 mentisfalse. − 7 11 33. Since − is an element of the set of rational numbers, 11. This is a closed interval, so we use brackets. Interval no- 5 tationis[−5,5]. thestatementistrue. √ 35. Since 11 is an element of the set of real numbers, the (cid:1)5 0 5 statementisfalse. 13. This is a half-open interval. We use a parenthesis on 37. Since 24 is an element of the set of whole numbers, the the left and a bracket on the right. Interval notation is statementisfalse. (−3,−1]. 39. Since1.089isnotanelementofthesetofirrationalnum- bers,thestatementistrue. (cid:1)3 (cid:1)1 0 41. Since every whole number is an integer, the statement is 15. This interval is of unlimited extent in the negative direc- true. tion,andtheendpoint−2isincluded. Intervalnotationis (−∞,−2]. 43. Since every rational number is a real number, the state- mentistrue. (cid:1)2 0 45. Since there are real numbers that are not integers, the statementisfalse. 17. This interval is of unlimited extent in the positive direc- tion, and the endpoint 3.8 is not included. Interval nota- 47. The sentence 3+y = y+3 illustrates the commutative tionis(3.8,∞). propertyofaddition. 49. The sentence −3·1 =−3 illustrates the multiplicative 0 3.8 identityproperty. 19. {x|7<x},or{x|x>7}. 51. Thesentence5·x=x·5illustratesthecommutativeprop- ertyofmultiplication. Thisintervalisofunlimitedextentinthepositivedirection and the endpoint 7 is not included. Interval notation is 53. Thesentence2(a+b)=(a+b)2illustratesthecommutative (7,∞). propertyofmultiplication. 55. Thesentence−6(m+n)=−6(n +m)illustratesthecom- 0 7 mutativepropertyofaddition. 21. Theendpoints0and5arenotincludedintheinterval,so 1 weuseparentheses. Intervalnotationis(0,5). 57. Thesentence8· =1illustratesthemultiplicativeinverse 8 property. Copyright © 2013 Pearson Education, Inc. 2 Chapter R: Basic Concepts of Algebra 59. Thedistanceof−8.15from0is8.15,so|−8.15| =8.15. 9. z0·z7=z0+7=z7,or 61. Thedistance295from0is295,so |295|=295. z0·z7=1·z7=z7 63. Thedistanceof−√97from0is√97,so|−√97|=√97. 11. 58·5−6=58+(−6)=52,or25 65. Thedistanceof0from0is0,so |0|=0. 13. m−5·m5=m−5+5=m0=1 (cid:1) (cid:1) 1 5 5 (cid:1)5(cid:1) 5 15. y3·y−7=y3+(−7)=y−4,or 67. Thedistanceof from0is ,so(cid:1) (cid:1)= . y4 4 4 4 4 69. |14−(−8)|=|14+8|=|22|=22,or 17. (x+3)4(x+3)−2=(x+3)4+(−2)=(x+3)2 |−8 −14|=|−22| =22 19. 3−3·38·3=3−3+8+1=36,or729 71. |−3 −(−9)|=|−3+9|=|6|=6,or 21. 2x3·3x2=2·3·x3+2=6x5 |−9 −(−3)|=|−9+3|=|−6| =6 23. (−3a−5)(5a−7)=−3 ·5·a−5+(−7)=−15a−12,or 73. |12.1−6.7|=|5.4|=5.4,or 15 − |6.7−12.1|=|−5.4| =5.4 a12 (cid:1)(cid:1) (cid:1)(cid:1) (cid:1)(cid:1) (cid:1)(cid:1) (cid:1)(cid:1) (cid:1)(cid:1) 25. (6x−3y5)(−7x2y−9)=6(−7)x−3+2y5+(−9)= 75. (cid:1)(cid:1)− 3 − 15(cid:1)(cid:1)=(cid:1)(cid:1)− 6 − 15(cid:1)(cid:1)=(cid:1)(cid:1)− 21(cid:1)(cid:1)= 21, or 42 (cid:1) 4 (cid:2) 8 (cid:3)(cid:1) (cid:1)8 8 (cid:1) (cid:1) 8 (cid:1) 8(cid:1) (cid:1) −42x−1y−4,or− (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) xy4 (cid:1)(cid:1)15 − − 3 (cid:1)(cid:1)=(cid:1)(cid:1)15 + 3(cid:1)(cid:1)=(cid:1)(cid:1)15 + 6(cid:1)(cid:1)=(cid:1)(cid:1)21(cid:1)(cid:1)= 21 8 4 8 4 8 8 8 8 27. (2x)4(3x)3=24·x4·33·x3=16·27·x4+3=432x7 77. |−7 −0|=|−7| =7, or 29. (−2n)3(5n)2=(−2)3n3·52n2=−8·25·n3+2= |0−(−7)|=|0+7|=|7|=7 −200n5 79. A0.n12sw41e2rs44m12ay44v4a.r.y...Onesuchnumberis 31. y35 =y35−31=y4 y31 1 81. Answersmayvary. Since −101 =0.0099and 33. b−7 =b−7−12=b−19,or 1 − 1 =−0.01,onesuchnumberis−0.00999. b12 b19 100 35. x2y−2 =x2−(−1)y−2−1=x3y−3,or x3 83. Since12+32=10,thehypotenuseofarighttri√anglewith x−1y y3 legsoflengths1unitand3unitshasalengthof 10units. ✏✏✏✏c✏✏✏✏1 cc22 ==√1120+32 3379.. (3422xxx−2−y54)yy483==243(42xx2)−44y−4(−=5)1y63x−28·4=y48=xy1−65x,8oyr48yx5 3 c= 10 41. (−2x3)5=(−2)5(x3)5=(−2)5x3·5=−32x15 Exercise Set R.2 43. (−5c−1d−2)−2=(−5)−2c−1(−2)d−2(−2)= (cid:2) (cid:3) c2d4 c2d4 = 1. 3−7= 1 a−m= 1 , a(cid:9)=0 (−5)2 25 37 am 45. (3m4)3(2m−5)4=33m12·24m−20= 3. Observe that each exponent is negative. We move each 432 factortotheothersideofthefractionbarandchangethe 27·16m12+(−20)=432m−8,or m8 signofeachexponent. (cid:2) (cid:3) x−5 y4 2x−3y7 3 (2x−3y7)3 23x−9y21 y−4 = x5 47. z−1 = (z−1)3 = z−3 = 8x−9y21 8y21z3 5. Observe that each exponent is negative. We move each , or z−3 x9 factortotheothersideofthefractionbarandchangethe (cid:2) (cid:3) signmof−e1anc−h1e2xponent6t. t6 49. 2142aa160bb−−38cc57 −5=(2a4b−5c2)−5=2−5a−20b25c−10, = ,or t−6 m1n12 mn12 b25 or 7. 230=1 (Foranynonzerorealnumber,a0=1.) 32a20c10 Copyright © 2013 Pearson Education, Inc. Exercise Set R.2 3 51. Convert16,500,000toscientificnotation. 71. (4.2×107)(3.2×10−2) We want the decimal point to be positioned between the =(4.2×3.2)×(107×10−2) 1 and the 6, so we move it 7 places to the left. Since =13.44×105 Thisisnotscientificnotation. 16,500,000 is greater than 10, the exponent must be posi- =(1.344×10)×105 tive. 16,500,000=1.65×107 =1.344×106 Writingscientificnotation 73. (2.6×10−18)(8.5×107) 53. Convert0.000000437toscientificnotation. =(2.6×8.5)×(10−18×107) We want the decimal point to be positioned between the 4 and the 3, so we move it 7 places to the right. Since =22.1×10−11 Thisisnotscientificnotation. 0.000000437 is a number between 0 and 1, the exponent =(2.21×10)×10−11 mustbenegative. =2.21×10−10 0.000000437=4.37×10−7 6.4×10−7 6.4 10−7 55. Convert 234,600,000,000 to scientific notation. We want 75. 8.0×106 = 8.0 × 106 the decimal point to be positioned between the 2 and the =0.8×10−13 Thisisnotscientific 3,sowemoveit11placestotheleft. Since234,600,000,000 notation. isgreaterthan10,theexponentmustbepositive. =(8×10−1)×10−13 234,600,000,000=2.346×1011 =8×10−14 Writingscientific notation 57. Convert 0.00104 to scientific notation. We want the deci- malpointtobepositionedbetweenthe1andthelast0,so 1.8×10−3 wemoveit3placestotheright. Since0.00104isanumber 77. 7.2×10−9 between0and1,theexponentmustbenegative. 1.8 10−3 0.00104=1.04×10−3 = × 7.2 10−9 59. Convert 0.00000000000000000000000000167 to scientific =0.25×106 Thisisnotscientificnotation. notation. =(2.5×10−1)×106 We want the decimal point to be positioned between the =2.5×105 1 and the 6, so we move it 27 places to the right. Since 0.00000000000000000000000000167isanumberbetween0 79. Theaveragenumberofpiecesoftrashpermileisthetotal and1,theexponentmustbenegative. numberofpiecesoftrashdividedbythenumberofmiles. 0.00000000000000000000000000167=1.67×10−27 51.2billion 5.12×1010 = 61. Convert7.6×105 todecimalnotation. 76million 7.6×107 ≈0.6737×103 The exponent is positive, so the number is greater than 10. Wemovethedecimalpoint5placestotheright. ≈(6.737×10−1)×103 7.6×105=760,000 ≈6.737×102 Onaverage,thereareabout6.737×102 piecesoftrashon 63. Convert1.09×10−7 todecimalnotation. eachmileofroadway. Theexponentisnegative,sothenumberisbetween0and 1. Wemovethedecimalpoint7placestotheleft. 81. Thenumberofpeoplepersquaremileisthetotalnumber 1.09×10−7=0.000000109 ofpeopledividedbythenumberofsquaremiles. 38,000 3.8×104 65. Convert3.496×1010 todecimalnotation. 0.75 = 7.5×10−1 The exponent is positive, so the number is greater than ≈0.50667×105 10. Wemovethedecimalpoint10placestotheright. ≈(5.0667×10−1)×105 3.496×1010=34,960,000,000 ≈5.0667×104 67. Convert5.41×10−8 todecimalnotation. Thereareabout5.0667×104 peoplepersquaremile. Theexponentisnegative,sothenumberisbetween0and 83. We multiply the number of light years by the number of 1. Wemovethedecimalpoint8placestotheleft. milesinalightyear. 5.41×10−8=0.0000000541 4.22×5.88×1012 =24.8136×1012 69. Convert2.319×108 todecimalnotation. =(2.48136×10)×1012 The exponent is positive, so the number is greater than =2.48136×1013 10. Wemovethedecimalpoint8placestotheright. ThedistancefromEarthtoAlphaCentauriCis 2.319×108=231,900,000 2.48136×1013 mi. Copyright © 2013 Pearson Education, Inc. 4 Chapter R: Basic Concepts of Algebra 85. Firstfindthenumberofsecondsin1hour: 93. Sinceinterestiscompoundedsemiannually,n=2. Substi- ✦ 60min 60sec tute $3225 for P, 3.1% or 0.031 for i, 2 for n, and 4 for t 1hour=1✧hr× × ✦ =3600sec 1✧hr 1min inthecompoundinterestformula. (cid:4) (cid:5) The number of disintegrations produced in 1 hour is the i nt A=P 1+ numberofdisintegrationspersecondtimesthenumberof n (cid:4) (cid:5) secondsin1hour. 0.031 2·4 37billion×3600 =$3225 1+ 2 Substituting =37,000,000,000×3600 =$3225(1+0.0155)2·4Dividing =3.7×1010×3.6×103 Writingscientific =$3225(1.0155)2·4 Adding notation =$3225(1.0155)8 Multiplying2and4 =(3.7×3.6)×(1010×103) ≈$3225(1.130939628) Evaluatingthe =13.32×1013 Multiplying exponentialexpression =(1.332×10)×1013 ≈$3647.2803 Multiplying =1.332×1014 ≈$3647.28 Roundingtothenearestcent Onegramofradiumproduces1.332×1014 disintegrations 95. Sinceinterestiscompoundedquarterly,n=4. Substitute in1hour. $4100forP,2.3%or0.023fori,4forn,and6fortinthe compoundinterestformula. 87. =5·3+8· 32+4(6−2) (cid:4) (cid:5) i nt =5·3+8· 32+4· 4 Workinginsideparentheses A=P 1+ n =5·3+8· 9+4· 4 Evaluating32 (cid:4) 0.023(cid:5)4·6 =$4100 1+ Substituting =15+72+16 Multiplying 4 =$4100(1+0.00575)4·6 Dividing =87+16 Addinginorder =$4100(1.00575)4·6 Adding =103 fromlefttoright =$4100(1.00575)24 Multiplying4and6 89. 16÷4·4÷2·256 ≈$4100(1.147521919) Evaluatingthe =4·4÷2·256 Multiplyinganddividing exponentialexpression inorderfromlefttoright ≈$4704.839868 Multiplying =16÷2·256 ≈$4704.84 Roundingtothenearestcent =8·256 =2048 97. Substitute$250forP,0.05forr and27fortandperform theresultingcomputation. 91. 4(8−6)2−4·3+2· 8 (cid:4) r (cid:5)12·t  31+190 1+ −1 4·22−4·3+2· 8 S =P 12r  = Calculatinginthe 3+1 12 numeratorandin (cid:4) (cid:5)  0.05 12·27 thedenominator 1+ −1 4·4−4·3+2· 8 =$250 12  = 0.05 4 16−12+16 12 = 4 ≈$170,797.30 4+16 = 99. Substitute$120,000forS,0.03forr,and18fortandsolve 4 forP. 20 (cid:4) (cid:5)  = r 12·t 4 1+ −1 =5 S =P 12r  12 (cid:4) (cid:5)  0.03 12·18 1+ −1 $120,000=P 12  0.03 12 (cid:10) (cid:11) (1.0025)216−1 $120,000=P 0.0025 $120,000≈P(285.94035) $419.67≈P Copyright © 2013 Pearson Education, Inc. Exercise Set R.3 5 101. (xt·x3t)2=(x4t)2=x4t·2=x8t 19. (y−3)(y+5) 103. (ta+x·tx−a)4=(t2x)4=t2x·4=t8x =y2+5y−3y−15 UsingFOIL (cid:12) (cid:13) (cid:12) (cid:13) =y2+2y−15 Collectingliketerms (3xayb)3 2 27x3ay3b 2 105. = (−3xayb)2 9x2ay2b 21. (x+6)(x+3) (cid:14) (cid:15) = 3xayb 2 =x2+3x+6x+18 UsingFOIL =9x2ay2b =x2+9x+18 Collectingliketerms 23. (2a+3)(a+5) Exercise Set R.3 =2a2+10a+3a+15 UsingFOIL 1. 7x3−4x2+8x+5=7x3+(−4x2)+8x+5 =2a2+13a+15 Collectingliketerms Terms: 7x3,−4x2,8x,5 25. (2x+3y)(2x+y) Thedegreeofthetermofhighestdegree,7x3,is3. Thus, =4x2+2xy+6xy+3y2 UsingFOIL thedegreeofthepolynomialis3. =4x2+8xy+3y2 3. 3a4b−7a3b3+5ab−2=3a4b+(−7a3b3)+5ab+(−2) Terms: 3a4b,−7a3b3,5ab,−2 27. (x+3)2 =x2+2· x·3+32 The degrees of the terms are 5, 6, 2, and, 0, respectively, sothedegreeofthepolynomialis6. [(A+B)2=A2+2AB+B2] =x2+6x+9 5. (3ab2−4a2b−2ab+6)+ (−ab2−5a2b+8ab+4) 29. (y−5)2 =(3−1)ab2+(−4−5)a2b+(−2+8)ab+(6+4) =y2−2·y·5+52 =2ab2−9a2b+6ab+10 [(A−B)2=A2−2AB+B2] 7. (2x+3y+z−7)+(4x−2y−z+8)+ =y2−10y+25 (−3x+y−2z−4) 31. (5x−3)2 =(2+4−3)x+(3− 2+1)y+(1− 1−2)z+ =(5x)2−2·5x·3+32 (−7+8− 4) [(A−B)2=A2−2AB+B2] =3x+2y−2z−3 =25x2−30x+9 9. (3x2−2x−x3+2)− (5x2−8x−x3+4) 33. (2x+3y)2 =(3x2−2x−x3+2)+(−5x2+8x+x3−4) =(2x)2+2(2x)(3y)+(3y)2 =(3−5)x2+(−2+8)x+(−1+1)x3+(2− 4) [(A+B)2=A2+2AB+B2] =−2x2+6x−2 =4x2+12xy+9y2 11. (x4−3x2+4x)−(3x3+x2−5x+3) 35. (2x2−3y)2 =(x4−3x2+4x)+(−3x3−x2+5x−3) =(2x2)2−2(2x2)(3y)+(3y)2 =x4−3x3+(−3−1)x2+(4+5)x−3 [(A−B)2=A2−2AB+B2] =x4−3x3−4x2+9x−3 =4x4−12x2y+9y2 13. (3a2)(−7a4)=[3(−7)](a2·a4) 37. (n+6)(n−6) =−21a6 =n2−62 [(A+B)(A−B)=A2−B2] 15. (6xy3)(9x4y2)=(6·9)(x·x4)(y3·y2) =n2−36 =54x5y5 39. (3y+4)(3y−4) 17. (a−b)(2a3−ab+3b2) =(3y)2−42 [(A+B)(A−B)=A2−B2] =(a−b)(2a3)+(a−b)(−ab)+(a−b)(3b2) =9y2−16 Usingthedistributiveproperty 41. (3x−2y)(3x+2y) =2a4−2a3b−a2b+ab2+3ab2−3b3 =(3x)2−(2y)2 [(A−B)(A+B)=A2−B2] Usingthedistributiveproperty threemoretimes =9x2−4y2 =2a4−2a3b−a2b+4ab2−3b3 Collectinglike terms Copyright © 2013 Pearson Education, Inc. 6 Chapter R: Basic Concepts of Algebra 43. (2x+3y+4)(2x+3y−4) 15. x3−x2−5x+5 =[(2x+3y)+4][(2x+3y)−4] =x2(x−1)−5(x−1) =(2x+3y)2−42 =(x−1)(x2−5) =4x2+12xy+9y2−16 17. a3−3a2−2a+6 45. (x+1)(x−1)(x2+1) =a2(a−3)−2(a−3) =(x2−1)(x2+1) =(a−3)(a2−2) =x4−1 19. w2−7w+10 47. (an+bn)(an−bn)=(an)2−(bn)2 Welookfortwonumberswithaproductof10andasum =a2n−b2n of−7. Bytrial,wedeterminethattheyare−5and−2. w2−7w+10=(w−5)(w−2) 49. (an+bn)2 =(an)2+2· an·bn+(bn)2 =a2n+2anbn+b2n 21. x2+6x+5 We look for two numbers with a product of 5 and a sum 51. (x−1)(x2+x+1)(x3+1) of6. Bytrial,wedeterminethattheyare1and5. =[(x−1)x2+(x−1)x+(x−1)·1](x3+1) x2+6x+5=(x+1)(x+5) =(x3−x2+x2−x+x−1)(x3+1) =(x3−1)(x3+1) 23. t2+8t+15 =(x3)2−12 Welookfortwonumberswithaproductof15andasum of8. Bytrial,wedeterminethattheyare3and5. =x6−1 t2+8t+15=(t+3)(t+5) 53. (xa−b)a+b 25. x2−6xy−27y2 =x(a−b)(a+b) Welookfortwonumberswithaproductof−27andasum =xa2−b2 of−6. Bytrial,wedeterminethattheyare3and−9. 55. (a+b+c)2 x2−6xy−27y2=(x+3y)(x−9y) =(a+b+c)(a+b+c) 27. 2n2−20n−48=2(n2−10n−24) =(a+b+c)(a)+(a+b+c)(b)+(a+b+c)(c) Nowfactorn2−10n−24. Welookfortwonumberswitha =a2+ab+ac+ab+b2+bc+ac+bc+c2 productof−24andasumof−10. Bytrial,wedetermine =a2+b2+c2+2ab+2ac+2bc thattheyare2and−12. Thenn2−10n−24= (n+2)(n−12). We must include the common factor, 2, tohaveafactorizationoftheoriginaltrinomial. Exercise Set R.4 2n2−20n−48=2(n+2)(n−12) 1. 3x+18=3· x+3· 6=3(x+6) 29. y2−4y−21 Welookfortwonumberswithaproductof−21andasum 3. 2z3−8z2=2z2·z−2z2·4=2z2(z−4) of−4. Bytrial,wedeterminethattheyare3and−7. 5. 4a2−12a+16=4· a2−4·3a+4· 4=4(a2−3a+4) y2−4y−21=(y+3)(y−7) 7. a(b−2)+c(b−2)=(b−2)(a+c) 31. y4−9y3+14y2=y2(y2−9y+14) Now factor y2 −9y+14. Look for two numbers with a 9. 3x3−x2+18x−6 productof14andasumof−9. Thenumbersare−2and =x2(3x−1)+6(3x−1) −7. Theny2−9y+14=(y−2)(y−7). Wemustinclude =(3x−1)(x2+6) the common factor, y2, in order to have a factorization of theoriginaltrinomial. 11. y3−y2+2y−2 y4−9y3+14y2=y2(y−2)(y−7) =y2(y−1)+2(y−1) 33. 2x3−2x2y−24xy2=2x(x2−xy−12y2) =(y−1)(y2+2) Now factor x2−xy−12y2. Look for two numbers with a 13. 24x3−36x2+72x−108 productof−12andasumof−1. Thenumbersare−4and =12(2x3−3x2+6x−9) 3. Thenx2−xy−12y2=(x−4y)(x+3y). Wemustinclude thecommonfactor,2x,inordertohaveafactorizationof =12[x2(2x−3)+3(2x−3)] theoriginaltrinomial. =12(2x−3)(x2+3) 2x3−2x2y−24xy2=2x(x−4y)(x+3y) Copyright © 2013 Pearson Education, Inc. Exercise Set R.4 7 35. 2n2+9n−56 4. Split the middle term using the numbers found in step(3): WeusetheFOILmethod. 1. Thereisnocommonfactorotherthan1or−1. y=4y−3y 5. Factorbygrouping. 2. Thefactorizationmustbeoftheform (2n+ )(n+ ). 2y2+y−6=2y2+4y−3y−6 3. Factor the constant term, −56. The possibilities =2y(y+2)− 3(y+2) are−1·56,1(−56),−2·28,2(−28),−4·16,4(−16), =(y+2)(2y−3) −7·8, and 7(−8). The factors can be written in theoppositeorderaswell: 56(−1),−56·1,28(−2), 43. 6a2−29ab+28b2 −28·2,16(−4),−16·4,8(−7),and−8·7. WeusetheFOILmethod. 4. Findapairoffactorsforwhichthesumoftheout- 1. Thereisnocommonfactorotherthan1or −1. side and the inside products is the middle term, 9n. By trial, we determine that the factorization 2. Thefactorizationmustbeoftheform is(2n−7)(n+8). (6x+ )(x+ )or(3x+ )(2x+ ). 3. Factorthecoefficientofthelastterm,28. Thepos- 37. 12x2+11x+2 sibilities are 1·28, −1(−28), 2·14, −2(−14), 4·7, Weusethegroupingmethod. and −4(−7). The factors can be written in the op- 1. Thereisnocommonfactorotherthan1or−1. positeorderaswell: 28·1,−28(−1),14·2,−14(−2), 7·4,and−7(−4). 2. Multiply the leading coefficient and the constant: 12·2=24. 4. Findapairoffactorsforwhichthesumoftheout- side and the inside products is the middle term, 3. Trytofactor24sothatthesumofthefactorsisthe −29. Observe that the second term of each bino- coefficient of the middle term, 11. The factors we mial factor will contain a factor of b. By trial, we wantare3and8. determinethatthefactorizationis(3a−4b)(2a−7b). 4. Split the middle term using the numbers found in step(3): 45. 12a2−4a−16 11x=3x+8x Wewillusethegroupingmethod. 5. Factorbygrouping. 1. Factoroutthecommonfactor,4. 12x2+11x+2=12x2+3x+8x+2 12a2−4a−16=4(3a2−a−4) =3x(4x+1)+2(4x+1) 2. Now consider 3a2 −a−4. Multiply the leading coefficientandtheconstant: 3(−4)=−12. =(4x+1)(3x+2) 3. Try to factor −12 so that the sum of the factors is 39. 4x2+15x+9 the coefficient of the middle term, −1. The factors wewantare−4and3. WeusetheFOILmethod. 1. Thereisnocommonfactorotherthan1or−1. 4. Split the middle term using the numbers found in step(3): 2. Thefactorizationmustbeoftheform −a=−4a+3a (4x+ )(x+ )or(2x+ )(2x+ ). 5. Factorbygrouping. 3. Factor the constant term, 9. The possibilities are 1·9,−1(−9),3·3,and−3(−3). Thefirsttwopairs 3a2−a−4=3a2−4a+3a−4 of factors can be written in the opposite order as =a(3a−4)+(3a−4) well: 9·1,−9(−1). =(3a−4)(a+1) 4. Findapairoffactorsforwhichthesumoftheout- Wemustincludethecommonfactortogetafactor- side and the inside products is the middle term, izationoftheoriginaltrinomial. 15x. By trial, we determine that the factorization 12a2−4a−16=4(3a−4)(a+1) is(4x+3)(x+3). 41. 2y2+y−6 47. z2−81=z2−92=(z+9)(z−9) Weusethegroupingmethod. 49. 16x2−9=(4x)2−32=(4x+3)(4x−3) 1. Thereisnocommonfactorotherthan1or−1. 51. 6x2−6y2=6(x2−y2)=6(x+y)(x−y) 2. Multiply the leading coefficient and the constant: 2(−6)=−12. 53. 4xy4−4xz2 =4x(y4−z2) 3. Try to factor −12 so that the sum of the factors is =4x[(y2)2−z2] thecoefficientofthemiddleterm,1. Thefactorswe =4x(y2+z)(y2−z) wantare4and−3. Copyright © 2013 Pearson Education, Inc.

Description:
SOLUTIONS MANUAL. JUDITH A. PENNA. Indiana University Purdue University Indianapolis. COLLEGE ALGEBRA: GRAPHS AND MODELS. FIFTH EDITION.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.