ebook img

Student Solutions Manual for Elementary Differential Equations and Elementary Differential Equations with Boundary Value Problems PDF

288 Pages·2016·1.66 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Student Solutions Manual for Elementary Differential Equations and Elementary Differential Equations with Boundary Value Problems

STUDENT SOLUTIONSMANUAL FOR ELEMENTARY DIFFERENTIAL EQUATIONS AND ELEMENTARY DIFFERENTIAL EQUATIONS WITH BOUNDARY VALUE PROBLEMS William F. Trench Andrew G.CowlesDistinguishedProfessor Emeritus DepartmentofMathematics TrinityUniversity SanAntonio,Texas, USA [email protected] ©2013WilliamF.Trench,allrightsreserved ThisbookwaspublishedpreviouslybyBrooks/ColeThomsonLearning Reproductionispermittedforanyvalidnoncommercialeducational,mathematical,orscientificpurpose. However,chargesforprofitbeyondreasonableprintingcostsareprohibited. CORRECTIONSAREWELCOME TO BEVERLY Contents Chapter1 Introduction 1 1.2 FirstOrderEquations 1 Chapter2 FirstOrderEquations 5 2.1 LinearFirstOrder Equations 5 2.2 SeparableEquations 8 2.3 ExistenceandUniquenessofSolutionsofNonlinearEquations 11 2.4 TransformationofNonlinearEquationsintoSeparableEquations 13 2.5 ExactEquations 17 2.6 IntegratingFactors 21 Chapter3 NumericalMethods 25 3.1 Euler’sMethod 25 3.2 TheImprovedEulerMethodandRelatedMethods 29 ii Contents 3.3 TheRunge-KuttaMethod 34 Chapter4 ApplicationsofFirstOrderEquations 39 4.1 GrowthandDecay 39 4.2 CoolingandMixing 40 4.3 ElementaryMechanics 43 4.4 AutonomousSecondOrderEquations 45 4.5 ApplicationstoCurves 46 Chapter5 LinearSecondOrderEquations 51 5.1 HomogeneousLinearEquations 51 5.2 ConstantCoefficientHomogeneousEquations 55 5.3 NonhomgeneousLinearEquations 58 5.4 TheMethodofUndeterminedCoefficientsI 60 5.5 TheMethodofUndeterminedCoefficientsII 64 5.6 ReductionofOrder 75 5.7 VariationofParameters 79 Chapter6 ApplcationsofLinearSecondOrderEquations 85 6.1 SpringProblemsI 85 6.2 SpringProblemsII 87 6.3 TheRLCCircuit 89 6.4 MotionUnderaCentralForce 90 Chapter7 SeriesSolutionsofLinearSecondOrderEquations 108 7.1 ReviewofPowerSeries 91 7.2 SeriesSolutionsNearanOrdinaryPointI 93 7.3 SeriesSolutionsNearanOrdinaryPointII 96 7.4 RegularSingularPoints;EulerEquations 102 7.5 TheMethodofFrobeniusI 103 7.6 TheMethodofFrobeniusII 108 7.7 TheMethodofFrobeniusIII 118 Chapter8 LaplaceTransforms 125 8.1 IntroductiontotheLaplaceTransform 125 8.2 TheInverseLaplaceTransform 127 8.3 SolutionofInitialValueProblems 134 8.4 TheUnitStepFunction 140 8.5 ConstantCoefficientEquationswithPiecewiseContinuousForcing Functions 143 8.6 Convolution 152 Contents iii 8.7 ConstantCofficientEquationswithImpulses 55 Chapter9 LinearHigherOrderEquations 159 9.1 IntroductiontoLinearHigherOrderEquations 159 9.2 HigherOrderConstantCoefficientHomogeneousEquations 171 9.3 UndeterminedCoefficientsforHigherOrderEquations 175 9.4 VariationofParametersforHigherOrderEquations 181 Chapter10 LinearSystemsofDifferentialEquations 221 10.1 IntroductiontoSystemsofDifferentialEquations 191 10.2 LinearSystemsofDifferentialEquations 192 10.3 BasicTheoryofHomogeneousLinearSystems 193 10.4 ConstantCoefficientHomogeneousSystemsI 194 10.5 ConstantCoefficientHomogeneousSystemsII 201 10.6 ConstantCoefficientHomogeneousSystemsII 245 10.7 VariationofParametersforNonhomogeneousLinearSystems 218 Chapter 221 11.1 EigenvalueProblemsfory (cid:21)y 0 221 00C D 11.2 FourierExpansionsI 223 11.3 FourierExpansionsII 229 Chapter12 FourierSolutionsofPartialDifferentialEquations 239 12.1 TheHeatEquation 239 12.2 TheWaveEquation 247 12.3 Laplace’sEquationinRectangularCoordinates 260 12.4 Laplace’sEquationinPolarCoordinates 270 Chapter13BoundaryValueProblemsforSecondOrderOrdinaryDifferentialEquations 273 13.1Two-PointBoundaryValueProblems 273 13.2Sturm-LiouvilleProblems 279 CHAPTER 1 Introduction 1.2 BASICCONCEPTS 1.2.2. (a)Ify ce2x,theny 2ce2x 2y. xD2 c 0 D 2x Dc 2x2 c x2 c (b)Ify ,theny ,soxy y x2. D 3 C x 0 D 3 (cid:0) x2 0C D 3 (cid:0) x C 3 C x D (c)If 1 y ce x2; then y 2xce x2 (cid:0) 0 (cid:0) D 2 C D(cid:0) and 1 y 2xy 2xce x2 2x ce x2 2xce x2 x 2cxe x2 x: 0 (cid:0) (cid:0) (cid:0) (cid:0) C D(cid:0) C 2 C D(cid:0) C C D (cid:18) (cid:19) (d)If 1 ce x2=2 y C (cid:0) D 1 ce x2=2 (cid:0) (cid:0) then .1 ce x2=2/. cxe x2=2/ .1 ce x2=2/cxe x2=2 y (cid:0) (cid:0) (cid:0) (cid:0) (cid:0) C (cid:0) (cid:0) 0 D .1 cxe x2=2/2 (cid:0) (cid:0) 2cxe x2=2 (cid:0) (cid:0) D .1 ce x2=2/2 (cid:0) (cid:0) and 1 ce x2=2 2 y2 1 C (cid:0) 1 (cid:0) D 1(cid:0)ce(cid:0)x2=2! (cid:0) .1 ce x2=2/2 .1 ce x2=2/2 C (cid:0) (cid:0) (cid:0) (cid:0) D .1 ce x2=2/2 (cid:0) (cid:0) 4ce x2=2 (cid:0) ; D .1 ce x2=2/2 (cid:0) (cid:0) 1 2 Chapter1BasicConcepts so 4cx 4cx 2y x.y2 1/ (cid:0) C 0: 0C (cid:0) D .1 ce x2=2/2 D (cid:0) (cid:0) x3 x3 x3 (e)Ify tan c ,theny x2sec2 c x2 1 tan2 x2.1 y2/. D 3 C 0 D 3 C D C 3 c D C (f)If (cid:18) (cid:19) y .c1 (cid:18)c2x/ex (cid:19)sinx (cid:18)x2; the(cid:18)n C (cid:19)(cid:19) D C C C y .c 2c x/ex cosx 2x; 0 1 2 D C C C y .c 3c x/ex sinx 2; 0 1 2 D C (cid:0) C and y 2y y c ex.1 2 1/ c xex.3 4 1/ 00 0 1 2 (cid:0) C D (cid:0) C C (cid:0) C sinx 2cosx sinx 2 4x x2 (cid:0) (cid:0) C C (cid:0) C 2cosx x2 4x 2: D (cid:0) C (cid:0) C 2 2 4 (g)Ify c ex c x ,theny c ex c andy c ex ,so.1 x/y xy y D 1 C 2 Cx 0 D 1 C 2(cid:0)x2 00 D 1 Cx3 (cid:0) 00C 0(cid:0) D 4.1 x/ 2 2 4.1 x x2/ c .1 x x 1/ c .x x/ (cid:0) (cid:0) (cid:0) 1 (cid:0) C (cid:0) C 2 (cid:0) C x3 (cid:0) x (cid:0) x D x3 c sinx c cosx c cosx c sinx c sinx c cosx 1 2 1 2 1 2 (h)Ify C 4x 8theny (cid:0) C 4and D x1=2 C C 0 D x1=2 (cid:0) 2x3=2 C c sinx c cosx c sinx c cosx 3c sinx c cosx 1 y 1 C 2 1 (cid:0) 2 1 C 2 ,sox2y xy x2 y 00 D(cid:0) x1=2 (cid:0) x3=2 C4 x5=2 00C 0C (cid:0) 4 D (cid:18) (cid:19) 3 c x 3=2sinx x1=2cosx x 1=2sinx x1=2cosx 1 (cid:0) (cid:0) (cid:0) (cid:0) C 4 C (cid:0) (cid:18) 1 1 3 x 1=2sinx x3=2sinx x 1=2sinx c x 3=2cosx x1=2sinx x 1=2cosx (cid:0) (cid:0) 2 (cid:0) (cid:0) 2 C (cid:0) 4 C (cid:0) C C 4 (cid:19) (cid:18) 1 1 1 x1=2sinx x 1=2cosx x3=2cosx x 1=2cosx 4x x2 .4x 8/ 4x3 8x2 (cid:0) (cid:0) (cid:0) (cid:0) 2 C (cid:0) 4 C C (cid:0) 4 C D C C (cid:19) (cid:18) (cid:19) 3x 2. (cid:0) 1.2.4. (a)Ify xex,theny xex exdx c .1 x/ex c,andy.0/ 1 1 1 c, 0 D(cid:0) D(cid:0) C C D (cid:0) C D ) D C soc 0andy .1 x/ex. D D (cid:0) R 1 (cid:25) (b) If y xsinx2, then y cosx2 c; y 1 1 0 c, so c 1 and 0 D D (cid:0)2 C 2 D ) D C D (cid:18)r (cid:19) 1 y 1 cosx2. D (cid:0) 2 sinx 1 d (c) Write y tanx .cosx/. Integrating thisyields y ln cosx c; 0 D D cosx D (cid:0)cosxdx D (cid:0) j jC y.(cid:25)=4/ 3 3 ln.cos.(cid:25)=4// c,or3 lnp2 c,soc 3 lnp2,soy ln. cosx / D ) D(cid:0) C D C D (cid:0) D(cid:0) j j C 3 lnp2 3 ln.p2 cosx /. (cid:0) D (cid:0) j j x5 32 37 (d) If y x4, then y c ; y .2/ 1 c 1 c , so y 00 D 0 D 5 C 1 0 D (cid:0) ) 5 C 1 D (cid:0) ) 1 D (cid:0)15 0 D x5 37 x6 37 64 47 . Therefore, y .x 2/ c ; y.2/ 1 c 1 c , so 2 2 2 5 (cid:0) 15 D 30 (cid:0) 15 (cid:0) C D (cid:0) ) 30 C D (cid:0) ) D (cid:0)15 47 37 x6 y .x 2/ . D(cid:0)15 (cid:0) 5 (cid:0) C 30 xe2x 1 xe2x e2x xe2x e2x (e) (A) xe2xdx e2xdx . Therefore, y c ; D 2 (cid:0) 2 D 2 (cid:0) 4 0 D 2 (cid:0) 4 C 1 R 1 5 Z 5 xe2x e2x 5 xe2x y .0/ 1 c c , so y ; Using(A)again, y 0 D ) (cid:0)4 C 1 D 4 ) 1 D 4 0 D 2 (cid:0) 4 C 4 D 4 (cid:0) e2x e2x 5 xe2x e2x 5 1 29 x c x c ; y.0/ 7 c 7 c , so 2 2 2 2 8 (cid:0) 8 C 4 C D 4 (cid:0) 4 C 4 C D ) (cid:0)4 C D ) D 4 xe2x e2x 5 29 y x . D 4 (cid:0) 4 C 4 C 4 (f)(A) xsinxdx xcosx cosxdx xcosx sinx and(B) xcosxdx xsinx D (cid:0) C D (cid:0) C D (cid:0) sinxdx xsinx cosx. Ify xsinx,then(A)impliesthaty xcosx sinx c ;y .0/ RD C 00 DR(cid:0) 0 D R (cid:0) C 1 0 D 3 c 3,soy xcosx sinx 3. Now(B)impliesthaty xsinx cosx cosx 3x c (cid:0)R ) D(cid:0) 0 D (cid:0) (cid:0) D C C (cid:0) C 2 D xsinx 2cosx 3x c ;y.0/ 1 2 c 1 c 1,soy xsinx 2cosx 3x 1. 2 2 2 C (cid:0) C D ) C D ) D(cid:0) D C (cid:0) (cid:0) Section1.2BasicConcepts 3 (g) If y x2ex, then y x2exdx x2ex 2 xexdx x2ex 2xex 2ex c ; 000 D 00 D D (cid:0) D (cid:0) C C 1 y .0/ 3 2 c 3 c 1,so(A)y .x2 2x 2/ex 1. Since .x2 2x 2/exdx 00 D ) C 1 D ) 1 D R 00 D (cid:0) CR C (cid:0) C D .x2 2x 2/ex .2x 2/exdx .x2 2x 2/ex .2x 2/ex 2ex .x2 4x 6/ex, (cid:0) C (cid:0) (cid:0) D (cid:0) C (cid:0) (cid:0) C R D (cid:0) C (A)impliesthaty .x2 4x 6/ex x c ; y .0/ 2 6 c 2 c 8, so(B) 0 DR (cid:0) C C C 2 0 D (cid:0) ) C 2 D (cid:0) ) 2 D (cid:0) y .x2 4x 6/ex x 8;Since .x2 4x 6/exdx .x2 4x 6/ex .2x 4/exdx .x2 0 D (cid:0) C C (cid:0) (cid:0) C D (cid:0) C (cid:0) (cid:0) D (cid:0) x2 4x 6/ex .2x 4/ex 2ex .x2 R6x 12/ex,(B)impliesthaty .x2 6xR 12/ex 8x c ; 3 C (cid:0) (cid:0) C D (cid:0) C D (cid:0) C C 2 (cid:0) C x2 y.0/ 1 12 c 1 c 11,soy .x2 6x 12/ex 8x 11. 3 3 D ) C D ) D(cid:0) D (cid:0) C C 2 (cid:0) (cid:0) cos2x 1 7 (h) Ify 2 sin2x, then y 2x c ; y .0/ 3 c 3 c , 000 D C 00 D (cid:0) 2 C 1 00 D ) (cid:0)2 C 1 D ) 1 D 2 cos2x 7 sin2x 7 so y 2x . Then y x2 x c ; y .0/ 6 c 6, so 00 D (cid:0) 2 C 2 0 D (cid:0) 4 C 2 C 2 0 D (cid:0) ) 2 D (cid:0) sin2x 7 x3 cos2x 7 1 7 y x2 x 6. Theny x2 6x c ;y.0/ 1 c 1 c , 0 D (cid:0) 4 C2 (cid:0) D 3 C 8 C4 (cid:0) C 3 D ) 8C 3 D ) 3 D 8 x3 cos2x 7 7 soy x2 6x . D 3 C 8 C 4 (cid:0) C 8 (i)Ify 2x 1,theny x2 x c ;y .2/ 7 6 c 7 c 1;soy x2 x 1. 000 Dx3 Cx2 00 D C C 1 00 D14 ) C 1D ) 1 D26 00 Dx3C xC2 Theny .x 2/ c ;y .2/ 4 c 4 c ,soy 0 D 3 C 2 C (cid:0) C 2 0 D(cid:0) ) 3 C 2D(cid:0) ) 2 D(cid:0) 3 0 D 3 C 2 C 26 x4 x3 1 26 8 5 .x 2/ .Theny .x 2/2 .x 2/ c ;y.2/ 1 c 1 c , 3 3 3 (cid:0) (cid:0) 3 D 12C 6 C2 (cid:0) (cid:0) 3 (cid:0) C D ) 3C D ) D(cid:0)3 x4 x3 1 26 5 soy .x 2/2 .x 2/ . D 12 C 6 C 2 (cid:0) (cid:0) 3 (cid:0) (cid:0) 3 1.2.6. (a)Ify x2.1 lnx/,theny.e/ e2.1 lne/ 2e2;y 2x.1 lnx/ x 3x 2xlnx, D C D C D 0 D C C D C so y .e/ 3e 2elne 5e; (A)y 3 2 2lnx 5 2lnx. Now, 3xy 4y 3x.3x 0 D C D 00 D C C D C 0 (cid:0) D C 2xlnx/ 4x2.1 lnx/ 5x2 2x2lnx x2y ,from(A). (cid:0) x2C D C 1 D 00 1 2 2 5 (b)Ify x 1,theny.1/ 1 1 ; y x 1, soy .1/ 1 ; (A) D 3 C (cid:0) D 3 C (cid:0) D 3 0 D 3 C 0 D 3 C D 3 2 2 x2 2 y . Nowx2 xy y 1 x2 x x 1 x 1 1 x2 x2y ,from(A). 00 D 3 (cid:0) 0C C D (cid:0) 3 C C 3 C (cid:0) C D 3 D 00 (cid:18) (cid:19) (c)Ify .1 x2/ 1=2, theny.0/ .1 02/ 1=2 1;y x.1 x2/ 3=2, soy .0/ 0;(A) D C (cid:0) D C (cid:0) D 0 D (cid:0) C (cid:0) 0 D y .2x2 1/.1 x2/ 5=2.Now,.x2 1/y x.x2 1/y .x2 1/.1 x2/ 1=2 x.x2 1/. x/.1 00 D (cid:0) C (cid:0) (cid:0) (cid:0) C 0 D (cid:0) .xC2 1(cid:0)/y (cid:0)x.x2 C1/y(cid:0) C x2/ 3=2 .2x2 1/.1 x2/ 1=2 y .1 x2/2from(A),soy (cid:0) (cid:0) C 0. (cid:0) D (cid:0) C (cid:0) D 00 C 00 D .x2 1/2 x2 1=4 1 x.x 2/ C. 1=2/. 3=2/ (d)Ify ,theny.1=2/ ;y (cid:0) ,soy .1=2/ (cid:0) (cid:0) 3; D 1 x D 1 1=2 D 2 0 D(cid:0).1 x/2 0 D .1 1=2/2 D 2(cid:0) (cid:0) x2 x (cid:0) x2.x (cid:0)2/ x2 (A)y . Now,(B)x y x and(C)xy y (cid:0) 00 D .1 x/3 C D C1 x D 1 x 0(cid:0) D(cid:0) .1 x/2 (cid:0)1 x D x2 (cid:0) (cid:0) x3(cid:0) x3 2.x (cid:0)y/.xy y(cid:0)/ . From(B)and(C),.x y/.xy y/ y ,soy C 0 (cid:0) . .1 x/2 C 0 (cid:0) D .1 x/3 D 2 00 00 D x3 (cid:0) (cid:0) 1.2.8. (a) y .x c/a is defined and x c y1=a on .c; /; moreover, y a.x c/a 1 a y1=a a(cid:0)1 DDay.a(cid:0)(cid:0)1/=a. (cid:0) D 1 0 D (cid:0) (cid:0) D (b)ifa>1ora <0,theny 0isasolutionof(B)on. ; /. (cid:0) (cid:1) (cid:17) (cid:0)1 1 1.2.10. (a)Sincey c wemustshowthattherightsideof(B)reducestoc forallvaluesofx insome 0 D 4 Chapter1BasicConcepts interval.Ify c2 cx 2c 1, D C C C x2 4x 4y x2 4x 4c2 4cx 8c 4 C C D C C C C C x2 4.1 c/x 4.c2 2c 1/ D C C C C C x2 4.1 c/ 2.c 1/2 .x 2c 2/2: D C C C C D C C Therefore, x2 4x 4y x 2c 2andtherightsideof(B)reducestocifx > 2c 2. C C D C C (cid:0) (cid:0) x.x 4/ x 2 (b)Ify1 Dp(cid:0) 4C ,theny10 D(cid:0) C2 andx2C4xC4y D0forallx. Therefore, y1 satisfies (A)on. ; /. (cid:0)1 1 CHAPTER 2 First Order Equations 2.1 LINEARFIRSTORDEREQUATIONS y 2.1.2. 0 3x2; ln y x3 k; y ce x3. y ce .lnx/2=2. y D(cid:0) j j jD(cid:0) C D (cid:0) D (cid:0) y 3 c 2.1.4. 0 ; ln y 3ln x k ln x 3 k; y . y D(cid:0)x j jD(cid:0) j jC D(cid:0) j j C D x3 y 1 x 1 ce x 2.1.6. 0 C 1; ln y ln x x k; y (cid:0) ; y.1/ 1 c e; y D (cid:0) x D (cid:0)x (cid:0) j j j D (cid:0) j j(cid:0) C D x D ) D e .x 1/ y (cid:0) (cid:0) . D x y 1 c 2.1.8. 0 cotx; ln y ln x ln sinx k ln xsinx k; y ; y D (cid:0)x (cid:0) j j j D (cid:0) j j(cid:0) j jC D (cid:0) j jC D xsinx (cid:25) y.(cid:25)=2/ 2 c (cid:25); y . D ) D D xsinx y k 2.1.10. 0 ; ln y kln x k ln x k k ; y c x k; y.1/ 3 c 3; y D (cid:0)x j j j D (cid:0) j jC 1 D j (cid:0) jC 1 D j j(cid:0) D ) D y 3x k. (cid:0) D y 2.1.12. 10 3; ln y 3x; y e 3x; y ue 3x; ue 3x 1; u e3x; u y D (cid:0) j 1j D (cid:0) 1 D (cid:0) D (cid:0) 0 (cid:0) D 0 D D 1 e3x 1 c; y ce 3x. (cid:0) 3 C D 3 C y 2.1.14. 10 2x; ln y x2; y e x2; y ue x2; ue x2 xe x2; u x; y D (cid:0) j 1j D (cid:0) 1 D (cid:0) D (cid:0) 0 (cid:0) D (cid:0) 0 D 1 x2 x2 u c; y e x2 c . D 2 C D (cid:0) 2 C (cid:18) (cid:19) y 1 1 u u 7 7 2.1.16. 10 ; ln y ln x ; y ; y ; 0 3; u 3x; y D (cid:0)x j 1j D (cid:0) j j 1 D x D x x D x2 C 0 D x C 1 3x2 7ln x 3x c u 7ln x c; y j j . D j jC 2 C D x C 2 C x 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.