ebook img

Student Solutions Manual - Calculus Early Transcendentals PDF

1498 Pages·0103.803 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Student Solutions Manual - Calculus Early Transcendentals

1 PRECALCULUS REVIEW 1.1 Real Numbers, Functions, and Graphs Preliminary Questions 1. Giveanexampleofnumbersaandbsuchthata<band|a|>|b|. solution Takea=−3andb=1.Thena<bbut|a|=3>1=|b|. 2. Whichnumberssatisfy|a|=a?Whichsatisfy|a|=−a?Whatabout|−a|=a? solution Thenumbersa≥0satisfy|a|=aand|−a|=a.Thenumbersa≤0satisfy|a|=−a. 3. Giveanexampleofnumbersaandbsuchthat |a+b|<|a|+|b|. solution Takea=−3andb=1.Then |a+b|=|−3+1|=|−2|=2, but |a|+|b|=|−3|+|1|=3+1=4. Thus,|a+b|<|a|+|b|. 4. Aretherenumbersaandbsuchthat|a+b|>|a|+|b|? solution No.BytheTriangleinequality,|a+b|≤|a|+|b|forallrealnumbersaandb. 5. Whatarethecoordinatesofthepointlyingattheintersectionofthelinesx =9andy =−4? solution Thepoint(9,−4)liesattheintersectionofthelinesx =9andy =−4. 6. Inwhichquadrantdothefollowingpointslie? (a) (1,4) (b) (−3,2) (c) (4,−3) (d) (−4,−1) solution (a) Becauseboththex-andy-coordinatesofthepoint(1,4)arepositive,thepoint(1,4)liesinthefirstquadrant. (b) Becausethex-coordinateofthepoint(−3,2)isnegativebutthey-coordinateispositive,thepoint(−3,2)liesin thesecondquadrant. (c) Becausethex-coordinateofthepoint(4,−3)ispositivebutthey-coordinateisnegative,thepoint(4,−3)liesin thefourthquadrant. (d) Becauseboththex-andy-coordinatesofthepoint(−4,−1)arenegative,thepoint(−4,−1)liesinthethirdquadrant. 7. Whatistheradiusofthecirclewithequation (x−7)2+(y−8)2=9? solution Thecirclewithequation(x−7)2+(y−8)2=9hasradius3. 8. Theequationf(x)=5hasasolutionif(chooseone): (a) 5belongstothedomainoff. (b) 5belongstotherangeoff. solution Thecorrectresponseis(b):theequationf(x)=5hasasolutionif5belongstotherangeoff. 9. Whatkindofsymmetrydoesthegraphhaveiff(−x)=−f(x)? solution Iff(−x)=−f(x),thenthegraphoff issymmetricwithrespecttotheorigin. 10. Isthereafunctionthatisbothevenandodd? solution Yes.Theconstantfunctionf(x)=0forallrealnumbersxisbothevenandoddbecause f(−x)=0=f(x) and f(−x)=0=−0=−f(x) forallrealnumbersx. 1 2 CHAPTER 1 PRECALCULUSREVIEW Exercises 1. Useacalculatortofindarationalnumberrsuchthat|r−π2|<10−4. solution r mustsatisfyπ2−10−4 <r <π2+10−4,or9.869504<r <9.869705.r =9.8696= 12337 would 1250 beonesuchnumber. InExercWishesic3h–o8f,(eax)p–r(efs)satrheetriunetefrovraali=nte−r3masnodfabn=in2e?qualityinvolvingabsolutevalue. 3. [(−a)2,a2<] b (b) |a|<|b| (c) ab>0 1 1 solu(dt)io3na<|x3|b≤2 (e) −4a<−4b (f) < a b 5. (0,4) (−4,4) solution Themidpointoftheintervalisc = (0+4)/2 = 2,andtheradiusisr = (4−0)/2 = 2;therefore,(0,4) canbeexpressedas|x−2|<2. 7. [1,5] [−4,0] solution Themidpointoftheintervalisc = (1+5)/2 = 3,andtheradiusisr = (5−1)/2 = 2;therefore,the interval[1,5]canbeexpressedas|x−3|≤2. InExerc(i−se2s,98–)12,writetheinequalityintheforma<x <b. 9. |x|<8 solution −8<x <8 11. |2x+1|<5 |x−12|<8 solution −5<2x+1<5so−6<2x <4and−3<x <2 InExerc|3isxes−134–|1<8,2expressthesetofnumbersxsatisfyingthegivenconditionasaninterval. 13. |x|<4 solution (−4,4) 15. |x−4|<2 |x|≤9 solution Theexpression|x−4|<2isequivalentto−2<x−4<2.Therefore,2<x <6,whichrepresentsthe interval(2,6). 17. |4x−1|≤8 |x+7|<2 solution Theexpression|4x−1|≤8isequivalentto−8≤4x−1≤8or−7≤4x ≤9.Therefore,−7 ≤x ≤ 9, 4 4 whichrepresentstheinterval[−7,9]. 4 4 InExerc|3isxes+195–|2<2,1describethesetasaunionoffiniteorinfiniteintervals. 19. {x :|x−4|>2} solution x−4>2orx−4<−2⇒x >6orx <2⇒(−∞,2)∪(6,∞) 21. {x :{x|x:2|−2x1+|>4|2>} 3} √ √ solution x2−1>2orx2−1<−2⇒x2 >3orx2 <−1(thiswillneverhappen)⇒x > 3orx <− 3⇒ √ √ (−∞,− 3)∪( 3,∞). 23. Match(a)–(f)with(i)–(vi). {x :|x2+2x|>2} 1 (a) a>3 (b) |a−5|< (cid:2) (cid:2) 3 (cid:2) (cid:2) (c) (cid:2)(cid:2)a− 1(cid:2)(cid:2)<5 (d) |a|>5 3 (e) |a−4|<3 (f) 1≤a≤5 (i) aliestotherightof3. (ii) aliesbetween1and7. (iii) Thedistancefromato5islessthan 1. 3 (iv) Thedistancefromato3isatmost2. (v) aislessthan5unitsfrom 1. 3 (vi) alieseithertotheleftof−5ortotherightof5. solution (a) Onthenumberline,numbersgreaterthan3appeartotheright;hence,a>3isequivalenttothenumberstotheright of3:(i). SECTION 1.1 RealNumbers,Functions,andGraphs 3 (b) |a−5|measuresthedistancefromato5;hence,|a−5|< 1 issatisfiedbythosenumberslessthan 1 ofaunitfrom 3 3 5:(iii). (c) |a− 1|measuresthedistancefromato 1;hence,|a− 1|<5issatisfiedbythosenumberslessthan5unitsfrom 3 3 3 1:(v). 3 (d) Theinequality|a|>5isequivalenttoa>5ora<−5;thatis,eitheraliestotherightof5ortotheleftof−5:(vi). (e) Theintervaldescribedbytheinequality|a−4|<3hasacenterat4andaradiusof3;thatis,theintervalconsists ofthosenumbersbetween1and7:(ii). (f) Theintervaldescribedbytheinequality1<x <5hasacenterat3andaradiusof2;thatis,theintervalconsistsof thosenumberslessthan2unitsfrom3:(iv). 25. Describe{x :(cid:3)x2+2x <3}a(cid:4)saninterval.Hint:Ploty =x2+2x−3. x solutiDonescrTibheeinxeq:uxal+ity1x<2+0 2axs<an3initserevqaul.ivHailnent:tCtoonxs2id+er2txhe−si3gn<of0x.Tanhdegxr+aph1ionfdyivi=duxal2ly+. 2x−3isshown below.Fromthisgraph,itfollowsthatx2+2x−3<0for−3<x <1.Thus,theset{x :x2+2x <3}isequivalent totheinterval(−3,1). y y = x2 + 2x − 3 12 10 8 6 4 2 x −5−4−3−2 −2 1 2 3 −4 27. ShoDwetshcaritbiefath>esbet,aonfdreaa,lbnu(cid:8)=m0b,etrhsesnatbis−f1yi>nga|x−1−,p3r|o=vid|xed−th2a|t+aa1nadsbahhaavlfe-itnhfiensaitmeeinstiegrnv.aWl. hathappensifa>0 andb<0? solution Case1a:Ifaandbarebothpositive,thena>b⇒1> b ⇒ 1 > 1. a b a Case1b:Ifaandbarebothnegative,thena>b⇒1< b (sinceaisnegative)⇒ 1 > 1 (again,sincebisnegative). a b a Case2:Ifa>0andb<0,then 1 >0and 1 <0so 1 < 1.(SeeExercise2fforanexampleofthis). a b b a 29. ShoWwhtihcahtxifs|aati−sfi5e|s<bo12tha|nxd−|b3−|<8|2<an12d,|txhe−n5|<1? |(a+b)−13|<1.Hint:Usethetriangleinequality(|a+b|≤|a|+|b|). solution |a+b−13|=|(a−5)+(b−8)| ≤|a−5|+|b−8| (bythetriangleinequality) 1 1 < + =1. 2 2 31. Supposethat|a−6|≤2and|b|≤3. Supposethat|x−4|≤1. (a) Whatisthelargestpossiblevalueof|a+b|? (a) Whatisthemaximumpossiblevalueof|x+4|? (b) Whatisthesmallestpossiblevalueof|a+b|? (b) Showthat|x2−16|≤9. solution |a−6|≤2guarantees4≤a ≤8,and|b|≤3guarantees−3≤b≤3,so1≤a+b≤11.Basedonthis information, (a) thelargestpossiblevalueof|a+b|is11;and (b) thesmallestpossiblevalueof|a+b|is1. 33. ExpPrreosvser1th=at0|x.2|7−a|sya|f≤ra|cxtio−n.yH|.iHnti:nt1:0A0rp1pl−ytrh1eistraiannignlteegineer.qTuahleitnyetxopyreasnsdr2x=−0y..2666... asafraction. solution Letr1=.27.Weobservethat100r1=27.27.Therefore,100r1−r1=27.27−.27=27and 27 3 r = = . 1 99 11 Now,letr2=.2666.Then10r2=2.666and100r2=26.666.Therefore,100r2−10r2=26.666−2.666=24and 24 4 r = = . 2 90 15 35. Thetextstates:Ifthedecimalexpansionsofnumbersaandbagreetokplaces,then|a−b|≤10−k.Showthatthe conversReeisprfeaslseen:tF1o/r7aallndk4th/e2r7eaasrerenpuematbienrgsdaeacnimdablsw.hosedecimalexpansionsdonotagreeatallbut|a−b|≤10−k. solution Leta = 1andb = .9(seethediscussionbeforeExample1).Thedecimalexpansionsofa andbdonot agree,but|1−.9|<10−k forallk. Ploteachpairofpointsandcomputethedistancebetweenthem: (a) (1,4)and(3,2) (b) (2,1)and(2,4) (c) (0,0)and(−2,3) (d) (−3,−3)and(−2,3) 4 CHAPTER 1 PRECALCULUSREVIEW 37. Findtheequationofthecirclewithcenter(2,4): (a) withradiusr =3. (b) thatpassesthrough(1,−1). solution (a)Theequationoftheindicatedcircleis(x−2)2+(y−4)2=32=9. (b)Firstdeterminetheradiusasthedistancefromthecentertotheindicatedpointonthecircle: (cid:5) √ r = (2−1)2+(4−(−1))2= 26. Thus,theequationofthecircleis(x−2)2+(y−4)2=26. 39. Determinethedomainandrangeofthefunction Findallpointsinthexy-planewithintegercoordinateslocatedatadistance5fromtheorigin.Thenfindallpoints withintegercoordinateslocatedatadifsta:n{cre,s5,ftr,oum}→(2,{3A).,B,C,D,E} definedbyf(r)=A,f(s)=B,f(t)=B,f(u)=E. solution ThedomainisthesetD={r,s,t,u};therangeisthesetR={A,B,E}. InExercises41–48,findthedomainandrangeofthefunction. GiveanexampleofafunctionwhosedomainDhasthreeelementsandwhoserangeRhastwoelements.Doesa functionexistwhosedomainDhastwoelementsandwhoserangeRhasthreeelements? 41. f(x)=−x solution D:allreals;R:allreals 43. f(x)=x3 g(t)=t4 solution D:allreals;R:allreals 45. f(x)=|x|√ g(t)= 2−t solution D:allreals;R:{y :y ≥0} 1 47. f(x)= 1 h(s)=x2 s solution D:{x :x (cid:8)=0};R:{y :y >0} InExercises49–52,determinewheref isincreasing. 1 g(t)=cos t 49. f(x)=|x+1| solution Agraphofthefunctiony =|x+1|isshownbelow.Fromthegraph,weseethatthefunctionisincreasing ontheinterval(−1,∞). y 2 1 x −3 −2 −1 1 51. f(x)=x4 f(x)=x3 solution Agraphofthefunctiony =x4 isshownbelow.Fromthegraph,weseethatthefunctionisincreasingon theinterval(0,∞). y 12 8 4 x −2 −1 1 2 SECTION 1.1 RealNumbers,Functions,andGraphs 5 In Exercises 53–58, find the zeros of f and sketch its graph by plotting points. Use symmetry and increase/decrease 1 informaftio(xn)w=hereappropriate. x4+x2+1 53. f(x)=x2−4 solution Zeros:±2 Increasing:x >0 Decreasing:x <0 Symmetry:f(−x)=f(x)(evenfunction).So,y-axissymmetry. y 4 2 x −2 −1 1 2 −2 −4 55. f(x)=x3−4x f(x)=2x2−4 solution Zeros:0,±2;Symmetry:f(−x)=−f(x)(oddfunction).Sooriginsymmetry. y 10 5 x −2 −1−5 1 2 −10 57. f(x)=2−x3 f(x)=x3 √ solution Thisisanx-axisreflectionofx3translatedup2units.Thereisonezeroatx = 32. y 20 10 x −2 −1−10 1 2 −20 59. WhichofthecurvesinFigure26isthegraphofafunction? 1 f(x)= (x−1)2+1 y y x x (A) (B) y y x x (C) (D) FIGURE 26 solution (B)isthegraphofafunction.(A),(C),and(D)allfailtheverticallinetest. 61. Determinewhetherthefunctioniseven,odd,orneither. Determinewhetherthefunctioniseven,odd,orneither. (a) f(a()t)f=(xt)4=+x1t5+1 − t4−1t+1 (b()bg)(gt)(t=)=2tt−3−2−tt2 (c) G(c()θ)F=(t)si=nθ+1cosθ (d) H(θ)=sin(θ2) t4+t2 6 CHAPTER 1 PRECALCULUSREVIEW solution (a) Because 1 1 1 1 f(−t)= − = − (−t)4+(−t)+1 (−t)4−(−t)+1 t4−t+1 t4+t+1 (cid:6) (cid:7) 1 1 =− − =−f(t), t4+t+1 t4−t+1 1 1 f(t)= − isanoddfunction. t4+t+1 t4−t+1 (b) Becauseg(−t)=2−t −2−(−t)=2−t −2t =−(2t −2−t)=−g(t),g(t)=2t −2−t isanoddfunction. (c) BecauseG(−θ)=sin(−θ)+cos(−θ)=−sinθ+cosθ equalsneitherG(θ)nor−G(θ),G(θ)=sinθ+cosθ is neitheranevenfunctionnoranoddfunction. (d) BecauseH(−θ)=sin((−θ)2)=sin(θ2)=H(θ),H(θ)=sin(θ2)isanevenfunction. (cid:6) (cid:7) 1−x 63. ShoWwrtihteatff(x(x))==2lxn4−15+x3x+1is2axn2o−dd3xfu+nc4tioasn.thesumofanevenandanoddfunction. solution Bytherulesoflogarithmicfunctions, (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) (cid:6) (cid:7) 1−(−x) 1+x 1−x −1 1−x f(−x)=ln =ln =ln =−ln =−f(x). 1+(−x) 1−x 1+x 1+x Therefore,f isanoddfunction. InExercSitsaetse6w5h–e7t0h,elretthfefbuentchteiofnunisctiinocnresahsoinwgn,idnecFriegausrieng2,7o.rneither. (a) Surfaceareaofasphereasafunctionofitsradius y (b) Temperatureatapointontheequatorasafunctionoftime 4 (c) Priceofanairlineticketasafunctionofthepriceofoil 3 (d) Pressureofthegasinapistonasafunctionofvolume 2 1 0 x 1 2 3 4 FIGURE 27 65. Findthedomainandrangeoff. solution D:[0,4];R:[0,4] (cid:8) (cid:9) 67. SkeStckhettchhetghreapghraspohfsyof=yf=(2fx()x,y+=2)fan12dxy,=anfd(yx)=+22f.(x). solution Thegraphofy =f(2x)isobtainedbycompressingthegraphofy =f(x)horizontallybyafactorof2(see thegraphbelowontheleft).Thegraphofy =f(1x)isobtainedbystretchingthegraphofy =f(x)horizontallybya 2 factorof2(seethegraphbelowinthemiddle).Thegraphofy =2f(x)isobtainedbystretchingthegraphofy =f(x) verticallybyafactorof2(seethegraphbelowontheright). y y y 4 4 8 3 3 6 2 2 4 1 1 2 x x x 1 2 3 4 2 4 6 8 1 2 3 4 f(2x) f(x/2) 2f(x) 69. Extendthegraphoff to[−4,4]sothatitisanevenfunction. Sketchthegraphsofy =f(−x)andy =−f(−x). solution Tocontinuethegraphoff(x)totheinterval[−4,4]asanevenfunction,reflectthegraphoff(x)across they-axis(seethegraphbelow). y 4 3 2 1 x −4 −2 2 4 SECTION 1.1 RealNumbers,Functions,andGraphs 7 71. Supposethatf hasdomain[4,8]andrange[2,6].Findthedomainandrangeof: Extendthegraphoff to[−4,4]sothatitisanoddfunction. (a) y =f(x)+3 (b) y =f(x+3) (c) y =f(3x) (d) y =3f(x) solution (a) f(x)+3 is obtained by shifting f(x) upward three units.Therefore, the domain remains [4,8], while the range becomes[5,9]. (b) f(x+3)isobtainedbyshiftingf(x)leftthreeunits.Therefore,thedomainbecomes[1,5],whiletherangeremains [2,6]. (c) f(3x)isobtainedbycompressingf(x)horizontallybyafactorofthree.Therefore,thedomainbecomes[4,8], 3 3 whiletherangeremains[2,6]. (d) 3f(x)isobtainedbystretchingf(x)verticallybyafactorofthree.Therefore,thedomainremains[4,8],whilethe rangebecomes[6,18]. 73. Supposethatthegraphoff(x) = sinx iscompressedhorizontallybyafactorof2andthenshifted5unitstothe right. Letf(x)=x2.Sketchthegraphover[−2,2]of: (a) W(a)hayti=sthfe(xeq+ua1ti)onforthenewgraph? (b) y =f(x)+1 (b) W(c)hayti=sthfe(5exqu)ationifyoufirstshiftby5andthencompres(sdb)yy2=? 5f(x) (c) Verifyyouranswersbyplottingyourequations. solution (a) Letf(x) = sinx.Aftercompressingthegraphoff horizontallybyafactorof2,weobtainthefunctiong(x) = f(2x)=sin2x.Shiftingthegraph5unitstotherightthenyields h(x)=g(x−5)=sin2(x−5)=sin(2x−10). (b) Letf(x)=sinx.Aftershiftingthegraph5unitstotheright,weobtainthefunctiong(x)=f(x−5)=sin(x−5). Compressingthegraphhorizontallybyafactorof2thenyields h(x)=g(2x)=sin(2x−5). (c) The figure below at the top left shows the graphs of y = sinx (the dashed curve), the sine graph compressed horizontallybyafactorof2(thedash,doubledotcurve)andthenshiftedright5units(thesolidcurve).Comparethislast graphwiththegraphofy =sin(2x−10)shownatthebottomleft. Thefigurebelowatthetoprightshowsthegraphsofy =sinx(thedashedcurve),thesinegraphshiftedtotheright 5units(thedash,doubledotcurve)andthencompressedhorizontallybyafactorof2(thesolidcurve).Comparethislast graphwiththegraphofy =sin(2x−5)shownatthebottomright. y y 1 1 x x −6 −4 −2 2 4 6 −6 −4 −2 2 4 6 −1 −1 y y 1 1 x x −6 −4 −2 2 4 6 −6 −4 −2 2 4 6 −1 −1 (cid:8) (cid:9) 75. SkeFtcighutrhee2g8rasphhowofsyth=egfra(p2hx)ofanfd(xy)==f|x|12+x 1,.wMheartechft(hxe)f=unc|xti|o+ns1(a()F–i(geu)rwe2it8h)t.heirgraphs(i)–(v). solu(at)ioyn=Tfh(exg−ra1p)hofy = f(2x)isob(tabi)neyd=by−cfom(xp)ressingthegraphofy =(cf)(yx)=h−orfiz(oxn)ta+lly2byafactorof2 (see(tdh)egyra=phfb(exlo−w1o)n−th2eleft).Thegraph(oef)yy==ff((1xx+)is1)obtainedbystretchingthegraphofy =f(x)horizontally 2 byafactorof2(seethegraphbelowontheright). y y 6 6 4 4 2 2 x x −3 −2 −1 1 2 3 −3 −2 −1 1 2 3 f(2x) f(x/2) 8 CHAPTER 1 PRECALCULUSREVIEW 77. Definef(x)tobethelargerofxand2−x.Sketchthegraphoff.Whatareitsdomainandrange?Expressf(x)in termsofFtihnedatbhseofluuntectvioanlufefwunhcotsioeng.raphisobtainedbyshiftingtheparabolay =x2 by3unitstotherightand4units down,asinFigure29. solution y 2 1 x −1 1 2 3 Thegraphofy =f(x)isshownabove.Clearly,thedomainoff isthesetofallrealnumberswhiletherangeis{y|y ≥1}. NoticethegraphhasthestandardV-shapeassociatedwiththeabsolutevaluefunction,butthebaseoftheVhasbeen translatedtothepoint(1,1).Thus,f(x)=|x−1|+1. 79. Showthatthesumoftwoevenfunctionsisevenandthesumoftwooddfunctionsisodd. solutiFoonreaEcvhecnu:r(vfe+ingF)i(g−urxe)3=0,fst(a−texw)h+etgh(e−rixt)isev=seynmfm(ext)ri+cwgi(txh)r=esp(efct+togt)h(ex)y-axis,theorigin,both,orneither. Odd:(f +g)(−x)=f(−x)+g(−x)o=dd−f(x)+−g(x)=−(f +g)(x) 81. Provethattheonlyfunctionwhosegraphissymmetricwithrespecttoboththey-axisandtheoriginisthefunction f(x)=S0u.pposethatf andgarebothodd.Whichofthefollowingfunctionsareeven?Whichareodd? (a) y =f(x)g(x) (b) y =f(x)3 solution Acircleofradius1withitscenterattheoriginissymmetricalbothwithrespecttothey-axisandtheorigin. T(hce)oynl=yffu(nxc)ti−ongh(xav)ing both symmetries is f(x) = 0. F(do)r iyf=f fis(xsy)mmetric with respect to the y-axis, then f(−x) = f(x). If f is also symmetric with respect to the origin, theng(fx()−x) = −f(x). Thus f(x) = −f(x) or 2f(x)=0.Finally,f(x)=0. Further Insights and Challenges 83. Showthatafractionr =a/binlowesttermshasafinitedecimalexpansionifandonlyif Provethetriangleinequality(|a+b|≤|a|+|b|)byaddingthetwoinequalities b=2n5m forsomen,m≥0. −|a|≤a≤|a|, −|b|≤b≤|b| Hint:Observethatrhasafinitedecimalexpansionwhen10NrisanintegerforsomeN ≥0(andhencebdivides10N). solution Supposer hasafinitedecimalexpansion.ThenthereexistsanintegerN ≥0suchthat10Nr isaninteger, callitk.Thus,r =k/10N.Becausetheonlyprimefactorsof10are2and5,itfollowsthatwhenr iswritteninlowest terms,itsdenominatormustbeoftheform2n5mforsomeintegersn,m≥0. a a Conversely, suppose r = a/b in lowest with b = 2n5m for some integers n,m ≥ 0. Then r = = or b 2n5m 2n5mr = a.Ifm ≥ n,then2m5mr = a2m−n orr = a2m−n andthusr hasafinitedecimalexpansion(lessthanor 10m equaltomterms,tobeprecise).Ontheotherhand,ifn>m,then2n5nr =a5n−morr = a5n−m andonceagainrhas 10n afinitedecimalexpansion. 85. LetpA=fupn1ct.io.n.pfsibsesaynmimnteetgriecrwwiitthhrdeisgpitescptt1o,t.h.e.,vperst.icSahlolwinethxat=aiff(a−x)=f(a+x). (a) Drawthegraphofafunctionthatissymmetricwithrespecttox =2. p (b) Showthatiff issymmetricwithrespecttox =10as,−the1n=g(0x.)p=1.f..(pxs+a)iseven. solution (a) TUhseertehaisretomfianndytphoesdsiebciilmitiaelse,xopnaenosfiownhoifchri=s: 2.Notethat 11 y 2 18 r = = 11 102−1 2 1 x −1 1 2 3 4 5 y = |x − 2| (b) Letg(x)=f(x+a).Then g(−x)=f(−x+a)=f(a−x) =f(a+x) symmetrywithrespecttox =a =g(x) Thus,g(x)iseven. Formulateaconditionforf tobesymmetricwithrespecttothepoint(a,0)onthex-axis. SECTION 1.2 LinearandQuadraticFunctions 9 1.2 Linear and Quadratic Functions Preliminary Questions 1. Whatistheslopeoftheliney =−4x−9? solution Theslopeoftheliney =−4x−9is−4,givenbythecoefficientofx. 2. Arethelinesy =2x+1andy =−2x−4perpendicular? solution Theslopesofperpendicularlinesarenegativereciprocalsofoneanother.Becausetheslopeofy =2x+1 is2andtheslopeofy =−2x−4is−2,thesetwolinesarenotperpendicular. 3. Whenisthelineax+by =cparalleltothey-axis?Tothex-axis? solution Thelineax+by =cwillbeparalleltothey-axiswhenb=0andparalleltothex-axiswhena=0. 4. Supposey =3x+2.Whatis(cid:4)yifxincreasesby3? solution Becausey =3x+2isalinearfunctionwithslope3,increasingxby3willleadto(cid:4)y =3(3)=9. 5. Whatistheminimumoff(x)=(x+3)2−4? solution Because(x+3)2≥0,itfollowsthat(x+3)2−4≥−4.Thus,theminimumvalueof(x+3)2−4is−4. 6. Whatistheresultofcompletingthesquareforf(x)=x2+1? solution Becausethereisnoxterminx2+1,completingthesquareonthisexpressionleadsto(x−0)2+1. Exercises InExercises1–4,findtheslope,they-intercept,andthex-interceptofthelinewiththegivenequation. 1. y =3x+12 solution Becausetheequationofthelineisgiveninslope-interceptform,theslopeisthecoefficientofx andthe y-interceptistheconstantterm:thatis,m=3andthey-interceptis12.Todeterminethex-intercept,substitutey =0 andthensolveforx:0=3x+12orx =−4. 3. 4x+9y =3 y =4−x solution Todeterminetheslopeandy-intercept,wefirstsolvetheequationforytoobtaintheslope-interceptform. This yields y = −4x + 1. From here, we see that the slope is m = −4 and the y-intercept is 1.To determine the 9 3 9 3 x-intercept,substitutey =0andsolveforx:4x =3orx = 3. 4 InExercises5–8,findtheslopeoftheline. y−3= 1(x−6) 2 5. y =3x+2 solution m=3 7. 3x+4y =12 y =3(x−9)+2 solution Firstsolvetheequationforytoobtaintheslope-interceptform.Thisyieldsy =−3x+3.Theslopeofthe 4 lineisthereforem=−3. 4 InExerc3ixse+s94–y20=,fi−n8dtheequationofthelinewiththegivendescription. 9. Slope3,y-intercept8 solution Usingtheslope-interceptformfortheequationofaline,wehavey =3x+8. 11. Slope3,passesthrough(7,9) Slope−2,y-intercept3 solution Usingthepoint-slopeformfortheequationofaline,wehavey−9=3(x−7)ory =3x−12. 13. Horizontal,passesthrough(0,−2) Slope−5,passesthrough(0,0) solution Ahorizontallinehasaslopeof0.Usingthepoint-slopeformfortheequationofaline,wehavey−(−2)= 0(x−0)ory =−2. 15. Paralleltoy =3x−4,passesthrough(1,1) Passesthrough(−1,4)and(2,7) solution Becausetheequationy =3x−4isinslope-interceptform,wecanreadilyidentifythatithasaslopeof3. Parallellineshavethesameslope,sotheslopeoftherequestedlineisalso3.Usingthepoint-slopeformfortheequation ofaline,wehavey−1=3(x−1)ory =3x−2. Passesthrough(1,4)and(12,−3) 10 CHAPTER 1 PRECALCULUSREVIEW 17. Perpendicularto3x+5y =9,passesthrough(2,3) solution Westartbysolvingtheequation3x+5y =9forytoobtaintheslope-interceptformfortheequationofa line.Thisyields 3 9 y =− x+ , 5 5 fromwhichweidentifytheslopeas−3.Perpendicularlineshaveslopesthatarenegativereciprocalsofoneanother,so 5 theslopeofthedesiredlineism⊥= 5.Usingthepoint-slopeformfortheequationofaline,wehavey−3= 5(x−2) 3 3 ory = 5x− 1. 3 3 19. Horizontal,passesthrough(8,4) Vertical,passesthrough(−4,9) solution Ahorizontallinehasslope0.Usingthepointslopeformfortheequationofaline,wehavey−4=0(x−8) ory =4. 21. Findtheequationoftheperpendicularbise(cid:6)ctorofthesegm(cid:7)entjoining(1,2)and(5,4)(Figure12).Hint:Themidpoint Slope3,x-intercept6 a+c b+d Qofthesegmentjoining(a,b)and(c,d)is , . 2 2 y Perpendicular bisector (5, 4) Q (1, 2) x FIGURE 12 solution Theslopeofthesegmentjoining(1,2)and(5,4)is 4−2 1 m= = 5−1 2 andthemidpointofthesegment(Figure12)is (cid:6) (cid:7) 1+5 2+4 midpoint= , =(3,3) 2 2 Theperpendicularbisectorhasslope−1/m = −2andpassesthrough(3,3),soitsequationis:y−3 = −2(x−3)or y =−2x+9. 23. Findanequationofthelinewithx-interceptx =4andy-intercepty =3. Intercept-InterceptForm Showthatifa,b (cid:8)=0,thenthelinewithx-interceptx =aandy-intercepty =b solution FromExercise22, x + y =1or3x+4y =12. hasequation(Figure13) 4 3 25. Determinewhetherthereexistsaconstantcsuchthatthelinex+cy =1: (a) hasFsilnodpey4s.uchthat(3,y)liesonthelineofslopemx=+2(ytbh)r=opu1agshse(1s,th4r)o.ugh(3,1). a b (c) ishorizontal. (d) isvertical. solution (a) Rewritingtheequationofthelineinslope-interceptformgivesy =−x + 1.Tohaveslope4requires−1 =4or c c c c=−1. 4 (b) Substitutingx =3andy =1intotheequationofthelinegives3+c=1orc=−2. (c) From(a),weknowtheslopeofthelineis−1.Thereisnovalueforcthatwillmakethisslopeequalto0. c (d) Withc=0,theequationbecomesx =1.Thisistheequationofaverticalline. 27. SupposethatthenumberofacertaintypeofcomputerthatcanbesoldwhenitspriceisP (indollars)isgivenby alinearAfusnsucmtioenthNat(Pth)e.nDuemtebremriNneoNfc(Pon)ciefrtNti(c1k0e0ts0)th=atc1a0n,0b0e0saonlddaNta(1p5r0ic0e)o=fP7,d5o0l0la.rWsphearttiiscktheeticshaanligneea(cid:4)rNfuninctitohne numNbe(rPo)ffcoorm1p0u≤terPss≤old40if.tDheetperrmiceiniesNin(cPre)as(ceadllbeyd(cid:4)thPed=em1a0n0ddfoulnlacrtsio?n)ifN(10)=500andN(40)=0.Whatisthe decrease(cid:4)N inthenumberofticketssoldifthepriceisincreasedby(cid:4)P =5dollars? solution Wefirstdeterminetheslopeoftheline: 10000−7500 2500 m= = =−5. 1000−1500 −500 KnowingthatN(1000)=10000,itfollowsthat N−10000=−5(P −1000), or N(P)=−5P +15000. Becausetheslopeofthedemandfunctionis−5,a100dollarincreaseinpricewillleadtoadecreaseinthenumberof computerssoldof5(100)=500computers.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.