ebook img

Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of PDF

22 Pages·2017·2.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of

RESEARCHARTICLE Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of curcumin analogues as novel ALR2 inhibitors SantKumarVerma,SureshThareja* SchoolofPharmaceuticalSciences,GuruGhasidasCentralUniversity,Bilaspur,C.G.,India a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 a1111111111 Abstract Aldosereductase(ALR2)inhibitionisthemostlegitimateapproachforthemanagementof diabeticcomplications.ThelimitedtriumphinthedrugdevelopmentagainstALR2ismainly becauseofitsclosestructuralsimilaritywiththeothermembersofaldo-ketoreductase OPENACCESS (AKR)superfamilyviz.ALR1,AKR1B10;andlipophilicityproblemi.e.poordiffusionofsyn- Citation:VermaSK,TharejaS(2017)Structure theticaldosereductaseinhibitors(ARIs)totargettissues.Theliteratureevidencedthatnatu- basedcomprehensivemodelling,spatial fingerprintsmappingandADMEscreeningof rallyoccurringcurcumindemonstratesrelativelyspecificandnon-competitiveinhibition curcuminanaloguesasnovelALR2inhibitors. towardshumanrecombinantALR2overALR1andAKR1B10;howeverβ-diketonemoiety PLoSONE12(4):e0175318.https://doi.org/ ofcurcuminisaspecificsubstrateforliverAKRsandaccountableforit’srapidinvivometab- 10.1371/journal.pone.0175318 olism.Inthepresentstudy,structurebasedcomprehensivemodellingstudieswereusedto Editor:GiovanniMaga,IstitutodiGenetica mapthepharmacophoricfeatures/spatialfingerprintsofcurcuminanaloguesresponsiblefor Molecolare,ITALY theirALR2specificityalongwithpotencyonadatasetofsyntheticcurcuminanaloguesand Received:January11,2017 naturallyoccurringcurcuminoids.Thedatasetmoleculeswerealsoscreenedfordrug-like- Accepted:March23,2017 nessorADMEparameters,andthescreeningdatastronglysupportthatcurcuminana- Published:April11,2017 loguescouldbeproposedasagooddrugcandidateforthedevelopmentofALR2inhibitors withimprovedpharmacokineticprofilecomparedtocurcuminoidsduetotheabsenceofβ- Copyright:©2017Verma,Thareja.Thisisanopen accessarticledistributedunderthetermsofthe diketonemoietyintheirstructuralframework. CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation Introduction files. Diabetesmellitus(DM),acommonmetabolicdisorderdesignatedbythehyperglycaemic Funding:SKVhasreceivedsupportfromtheIndian state,adverselyaffectsthehomeostasisofvariousorgansystems[1].Long-termhyperglycae- CouncilofMedicalResearch(ICMR)intheformof miacausesacutereversibleandchroniccumulativeirreversiblechanges,includesdamageto aSeniorResearchFellowship(SRF,No.45/54/ bloodvesselsandperipheralnerveswhicheventuallyleadstodiabeticcomplicationssuchas 2014-PHA-BMS).Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto vasculopathy,nephropathy,neuropathy,retinopathy,andcataracts;greatlyincreasingtherisk publish,orpreparationofthemanuscript. ofatherosclerosis,heartattack,stroke,blindness,amputation,andkidneyfailure[2,3].World- Competinginterests:Theauthorshavedeclared wide,387millionpeoplesarelivingwithdiabeteswiththeprevalenceof8.3%i.e.oneperson thatnocompetinginterestsexist. intwelveissufferingfromdiabetes.Intheyear2014,4.9millionindividualsdiedfromdiabetes PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 1/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors withthedeathrateofonepersonpersevenseconds.Thediabetesexpenditurehasreached612 billionUS$inthesameyear[4].Ifthecurrentdemographicpatterncontinues,thediabetic populationswillincreasemorethan592millionuptotheyear2035[5].Thedirecteconomic costofdiabetesisabout10%ofthetotalhealthcarebudgetofNationalHealthService(NHS) andisprojectedtoaccountforaround17%in2035/2036;furthermore,approximately90%of thetotaldirectcostisneededforthetreatmentofthedevastatingdiabeticcomplications[6]. Althoughtightcontrolofbloodglucosereducestheincidenceofdiabeticcomplications,a significantfractionofdiabeticpatientswithgoodglycaemiccontrolstillshowsthedevastating complicationsassociatedwithdiabetes[7].Despiteadvancesinthetreatmentofdiabetes,itis stilldifficulttopreventthedevelopmentandprogressionofmanyofthedisablingcomplica- tionsassociatedwiththisdisease[2].Severalmechanismsforthepathogenesisofdiabetic complicationshavebeenproposedsuchasthepolyolpathway[8],non-enzymaticglycation [9],proteinkinaseC(PKC)[10],hexosamine[11],andoverproductionofsuperoxidebythe mitochondrialelectrontransportchain[12].Evidenceshavedemonstratedalinkbetween enhancedmetabolismofglucosethroughthepolyolpathway(Fig1)andtheonsetandpro- gressionoflong-termdiabeticcomplications[7]. Innormalglycaemiccondition,glucoseentersintoglycolysiscycle;leadingtotheproduction ofpyruvateandenergy.Inhyperglycaemiccondition,theexcessofglucoseentersintopolyol pathwayviaaldosereductase(AR,ALR2)enzyme.Aldosereductase,akeymemberofthealdo- ketoreductase(AKR)superfamily,isthefirstandrate-limitingenzymeofthepolyolpathway,a glucose-shuntthatchannelsexcessglucosetoformfructosethroughsorbitolinhyperglycaemic condition[13].Inpolyolpathway,ARinitiallycatalysesthestereospecifictransferofahydride fromNADPHtothealdehydeformofglucosetoformsorbitol.Sorbitoldehydrogenase,in turn,utilizesNAD+andoxidizesthisintermediatepolyoltofructose(Fig1). Fig1.ALR2mediatedPolyolpathway. https://doi.org/10.1371/journal.pone.0175318.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 2/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Diabeticcomplicationsarisemainlyduetoprolongedexposureofthebodytohighcon- centrationsofglucose.Duringhyperglycaemia,thereisanincreasedfluxofglucoseinpolyol pathway.Morethan30%oftheglucoseismetabolizedbypolyolpathwayduringdiabetescon- ditions(lessthan3%innormoglycaemicconditions)[14].Underhyperglycaemia,increased polyolpathwayactivationleadstotheproductionofexcesssorbitolwhichisimpermeable throughbiologicalmembranes,accumulatesinsidethecells,andcausesosmoticstressleading tosecondarydiabeticcomplications[15].Further,inhyperglycaemia,increasedutilizationof NADPH(reducedformofnicotinamideadeninedinucleotidephosphate)byARcouldresult indecreasedsupplyofNADPHco-factortoglutathionereductasethatconvertsglutathione disulfide(GSSG)toglutathione(GSH)leadingtodecreasedGSHreductaseactivityandin turndecreasedGSHlevels(Fig1).SinceitiswellknownthatdecreasedGSHlevelscontribute tooxidativestress,AR-mediatedincreasesinNADPHconsumptioncouldalsoleadtooxida- tivestress[16].Thehyperglycaemicinjuryisinpartduetoosmoticandoxidativestress, inducedbyAR-mediatedreductionofglucosetosorbitol.Further,supportforacriticalroleof ARinmediatingthetoxiceffectsofglucoseisprovidedbythedemonstrationthatoverexpres- sionofARinthelensoftransgenicmiceacceleratesdiabeticcataracts[17].Ithasalsobeen demonstratedthathighglucoseindiabetesleadstotheup-regulationofARinseveraltissues andthetreatmentwithspecificARinhibitorspreventshyperglycaemia-inducedhyperplasia andhyperproliferationofvascularsmoothmusclecells[18].Hyperglycaemiacausesprolifera- tionofvascularsmoothmusclecellsandapoptosisofvascularendothelialcells.Theseobserva- tionsindicatethatARinhibitioncouldbeusefulinpreventingthepro-vascular-proliferative effectsofdiabetes,whichisstillremainthemajorcauseofmorbidityandmortalityassociated withthisdisease. Invivoanimalstudiesperformedbydifferentresearchersusingsyntheticandnaturalcom- poundsasARinhibitorsfavourthatARinhibitioncouldbeeffectiveformanagementofdia- beticcomplications,andsomeofthemhavebeenevaluatedinclinicaltrials[19,20].During thelastdecade,numbersofaldosereductaseinhibitor(ARI)havebeendeveloped(Fig2) whichmainlyincludehydantoins,e.g.Fidarestat(1)andSorbinil(2);carboxylicacidderiva- tives,e.g.Epalrestat(3),Tolrestat(4)andZopolrestat(5);andmoleculeofnaturalorigin,e.g. Quercetin(6). Fig2.ARIsofsynthetic(1–5)andnaturalorigin(6)developedduringlastfewdecades. https://doi.org/10.1371/journal.pone.0175318.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 3/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Todate,Epalrestatisthesingledrugmoleculeavailableinthemarketforthetreatmentof diabeticperipheralneuropathy[21,22].FidarestatandRanirestatareothermoleculeswhich havereachedtoadvancedphaseofclinicaltrials[23,24].Further,mostARIsdevelopedsofar haveacquiredlimitedtriumph,amongtheminparticularsyntheticARIswerefacinglipophili- cityproblemi.e.poordiffusiontotargettissuessuchasretinaandnerve,alongwithlinked harmfulsideeffects[20,25]. Naturalproductscontaininginherentlyvaststructuraldiversitythansyntheticcompounds arethemajorsourcesofbioactiveagents,andwillcontinuallyplayleadingroleindiscovering newdrugs.Phytochemicalsareconsideredprivilegedstructuresastheyhavethediversity spaceinwhichchemicalscaffoldsembodycharacteristicsthatpromotebindingtomultiple proteintargets.Ananalysisoftheoriginofthedrugsthatwerelaunchedinthelast25years showedthatbothnaturalproductsandtheirderivedsemi-syntheticcompoundscomposed 34%ofallnewchemicalentities,while18%ofthemweresyntheticmimicsofnaturalcom- pounds[26,27]. Curcumin,anaturalpolyphenolicdiarylheptanoidobtainedfromthedriedrhizomeof theherbCurcumalongaLinn.Itisevidentfromtheliteraturethatcurcuminisamulti-target pleiotropicagent,showingabroadrangeofbiologicalactivities.Turmeric(Curcumalonga) hasbeenwidelyusedinIndiaandChinaasaspice,dietarypigmentandintraditionalme- dicine,suchasremediesagainstthediabeticcomplications[28–30].Naturallyoccurring curcumindemonstratesrelativelyspecificandnon-competitiveinhibitiontowardshuman recombinantALR2overanotherstructurallysimilarmembersofAKRsuperfamilyi.e.alde- hydereductase(ALR1)andhumansmallintestinereductase(HSIR,AKR1B10)withIC 50 value6.8μM[31],whichisnearly5-foldlesserthanthatofquercetin(IC =37.6μM)[32],a 50 well-knownARIofnaturalorigin.Moreimportantly,curcuminalsopreventstheaccumula- tionofintracellularsorbitolunderhyperglycaemicstate,inturn,diminishestheosmotic cellularstress,resultingintodelayinprogressionofdiabeticcomplications[31,33,34].Two cumulativeα,β-unsaturatedcarbonylgroupsworkasalinkerbetweenbotharomaticphenol ringspresentincurcumin,andbothofthemexhibitketo-enoltautomerizationviaanenolate intermediate(Fig3).UndertheneutralpHconditions,curcuminpredominantlyexistsasa ketoform[31];howeverβ-diketonemoietyofcurcuminisaspecificsubstrateforliveraldo- ketoreductasesandmaybeaccountableforit’srapidinvivometabolism[35].Variousstruc- turalmodificationsweremadebydifferentresearchersinthehemicalstructureofcurcuminto improveitspharmacokineticprofile[36–39]. Takingintoconsideration,theALR2selectivityandinhibitorypotentialofcurcumin, anintegratedmoleculardockingassistedthree-dimensionalquantitativestructureactivity relationship(3D-QSAR)modelsweredevelopedonadatasetof21moleculescomprisesof naturallyoccurringcurcuminoidsandsyntheticcurcuminanaloguesactiveagainstALR2. Moleculardocking(MD)typicallyusesanenergy-basedscoringfunctiontoidentifytheener- geticallymostfavourableligandconformationwhenboundtothetarget.Itpredictsthebind- ingaffinityandexploresthebindingmodeofinteractionsofligandswiththekeyaminoacid residuespresentattheactivebindingsiteofthetarget[5].3D-QSARmodelsareessentialfor thegenerationofapharmacophorerequiredtofacilitatemolecularrecognitionandbinding. Fig3.Tautomericformsofcurcumin. https://doi.org/10.1371/journal.pone.0175318.g003 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 4/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Theprimaryaimofa3D-QSARtechniqueistoestablishacorrelationofbiologicalactivitiesof aseriesofstructurallyandbiologicallycharacterizedcompoundswiththespatialfingerprintsof themajorfieldpropertiesofeachmolecule,suchasstericandelectrostaticpotential[5,40].Fur- ther,athree-dimensionalpharmacophorewasgeneratedasanoutcomeof3D-QSARstudies, thegeneratedspatialfingerprintsorpharmacophoricfeaturesmappedandcanbeusedforthe designinganddevelopmentofnewerALR2selectivecurcuminanalogueswithhighpotencyas wellasimprovedpharmacokineticprofileforthemanagementofdiabeticcomplications. Methodology Datasetandbiologicalactivity Adatasetof21moleculescomprisesofcurcuminoidsobtainedfromCurcumalonga(com- pound1–3),andsyntheticcurcuminanalogues(4–21)wasselectedforpresentstudy[32]. Datasetwassplitintotrainingsetof18molecules,andtestsetof3molecules.Thedivision wasdoneinsuchamannerthatthreecompounds(1,3and12)shuffledinthetestset,repre- sentingthestructurallydivergentfeaturesofmoleculespresentintrainingsetwithawide rangeofALR2inhibitorypotential.However,thefinalcompoundsintrainingandtestsets weredecidedbasedonthehighestQ2andR2valueswith85%compoundsintrainingsetand theremainingcompoundsintestset.ThereportedIC valuesofdatasetmoleculeswerecon- 50 vertedintopIC (pIC =−logIC )toarrangethedatainascendinglinearmannerforthe 50 50 50 QSARanalysis(Fig4). Molecularmodelling,docking,andalignment Thepresentmolecularmodellingstudieswereaccomplishedwiththeuseofdifferentsoftware packagesnamelyMolegroVirtualDocker(MVD6.0.02013)[41],VLifeMDS3.5[42], SOMFA2.0.0[43],TSAR3D3.3[44],andVegaZZ3.0.3.18[45].Firstly,thestructuresofdata setmoleculesweredrawnusingChemDrawUltra8.0;thenthesesketchedmoleculeswere convertedinto3Dandsubjectedtoenergyminimizationtoattainthestableconformation withthelowestenergyusingChem3DUltra8.0.Thegeometricaloptimizationwasperformed withthesubsequentuseofdualoptimizersviz.molecularmechanics(MM2)followedby Hamiltonianapproximation(AM1)availableinMOPACmodule.Theimplicitsolventenvi- ronmentorsolventeffectwastakenforgeometricaloptimizationswhichreplacetheexplicitly representedwatermoleculeswithamathematicalexpressionthatreproducestheaverage behaviourofwatermolecules[5].Thegeometricaloptimizationprocesswasruntilltheroot- mean-square(RMS)gradientvaluereachesavaluelesserthan0.001kcal/molÅinboththe optimizationtechniquesmentionedabove[1]. ThegeometricallyoptimizedconformerswereimportedintotheworkspaceofMVD (MVD2013.6.0evaluationversion)alongwiththeALR2(PDBentry:4JIR,ALR2fromHomo sapiensandco-crystalizedwithEpalrestataswellasNADP+)[46].Whileretrievingtargetmol- eculefromproteindatabank(PDB),theassociatedwatermoleculeswereeliminated,and NADP+importedasco-factor.Allthemoleculesintheworkspaceweresubjectedtomolecular preparationtoassignmissingbonds,bondorders,hybridization,charge,explicithydrogens, triposatomtypesanddetectflexibletorsionsinligands.Potentialbindingsitesalsoreferredto ascavitiesoractivesites(1–5)(Fig5)wereidentifiedusingthebuilt-incavitydetectionalgo- rithm.Duringthiscomputationalprocess,themaximumnumbersofcavitieswerefixedto5, gridresolution0.80Å,minimumcavityvolume10Å3,maximumcavityvolume10,000Å3and probesize1.2Å;whiletheotherparameterswerekeptasdefault[1]. MDsimulationswerecommencedintothelargestcavity(1)correspondingtoco-crystal- izedEpalrestatbindingcavityof4JIR(Fig6)todeterminethebindingaffinityandbinding PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 5/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Fig4.Chemicalstructureofcurcuminoids(compound1–3),syntheticcurcuminanalogues(compound4–21)alongwith theirobservedALR2inhibitoryactivity(IC ),pIC ,predictedpIC ,residualactivity,anddruglikeness/ADMEscreening 50 50 50 Data.TTestsetcompounds;moleculeviolatingdrug-likeness/ADMEscreeningdueto:*molecularweight>500,and#LogP>5. https://doi.org/10.1371/journal.pone.0175318.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 6/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Fig5.Predictedbindingcavities(1–5)(green)withinALR2(secondarystructure). https://doi.org/10.1371/journal.pone.0175318.g005 modeofinteractionsofdatasetmoleculeswithALR2.AsyntheticARIpresentlyavailablein themarketviz.EpalrestatwastakenasareferencetochecktheaccuracyandreliabilityofMD simulations,andthebindingaffinitiesofdatasetmoleculeswerealsocomparedwithanARI ofnaturaloriginnamelyQuercetinintermsofdockingscores.Fortheevaluationofdocking solutions,gridbasedscoringfunctionMolDockScore[47]wasselectedat0.3Ågridresolu- tions.MolDockSimplexEvolution(MolDockSE)searchalgorithmwithnumberofruns10 andpopulationsize50wasselectedforperformingMDsimulations[1].Thenumberofruns specifiesthenumberoftimesthatthedockingsimulationwasrepeatedforeachligandchosen tobedockedandeachoftheserunswasreturningtoasinglefinalsolutioni.e.pose.Theonly negativelowest-energyrepresentativeclusterwasreturnedfromeachofthemaftercompletion ofdocking,andthesimilarposeswereremovedkeepingthebestscoringone.Theclusters wererankedthroughthesimplecomparisonbetweentheconformationsofthelowestbinding energyineachcluster.Theotherparameterssuchasmaximumiterations,energythreshold, bindingradius,SEmaximumstepsandSEneighbouringdistancefactorweresetto1,500,100, 15Å,300and1.00,respectively.Forclustersimilarposesaswellasignoresimilarposes(for multiplerunsonly),theRMSDthresholdwasfixed1.00Å[1].Theposeorconformationof eachligandwiththehighestMolDockscorewasselectedfortheanalysisofits’stericand hydrogenbondinteractionswithALR2. Further,thelowestbindingenergyconformersofallthedatasetmolecules(1–21)obtained fromMDsimulationswerealignedseparatelybytwodifferentalignmentapproachesbasedon molecularweighted(MW)extentandmomentsofinertia(MI)usingTSARpackage.TheMW andMIalignedstructureswereexportedinto.cssrfileformatandfurtherconvertedto.cTF2 usingfileformatconverterpresentinSOMFApackagebecauseitisreadilytakenbySOMFA software. PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 7/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Fig6.Cavity1(green)withco-crystalizedepalrestat(red)anditscorrespondingaminoacidresidues. https://doi.org/10.1371/journal.pone.0175318.g006 Generationof3D-QSARmodels The3D-QSARmodelswereconstructedonalignedmoleculesobtainedfromMW(model1, 2)andMI(model3,4)alignmentapproaches.Theexternalapplicabilitydomaini.e.testsetof 3D-QSARmodelswasbuiltbycompounds1,3and12.Allthemoleculesin.cTF2fileformat wereloadedalongwiththeirbiologicalactivity(pIC )againstALR2intotheworkspaceofthe 50 3D-QSARpackage.Onlytrainingsetmoleculeswereusedinthedevelopmentof3D-QSAR models.The3D-QSARmodelsweregeneratedwith40x40x40Ågridoriginatingat(-20, -20,-20)withresolutionof0.5Åand1.0Åboth[5,40].Thestericandelectrostaticproperties ofthedatasetmoleculesgeneratedfrom3D-QSARsoftwareagainstALR2wereusedforthe developmentof3D-QSARmodels.Thethree-dimensionalstericandelectrostaticmastergrid mapsweregeneratedfrom3D-QSARatdefinitegridresolutions;representtheareainspace wherestericandelectrostaticfieldinteractionsareresponsiblefortheobservedbiological activity.Anindividualcompoundinthedatasetcanbevisualizedinthesegridsandvariation inactivitycanbebestexplainedbythegrids[5].Further,thegeneratedmodelswereusedfor predictionoftheALR2inhibitorypotentialofallthedatasetmolecules. RegressionanalysisbyPLSmethod Partialleastsquare(PLS)inconjugationwithleaveoneout(LOO)cross-validationtechniques implementedinVLifeMDSwasusedfortheregressionanalysisofdeveloped3D-QSAR PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 8/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors models,inwhichthestericandelectrostaticpropertiesofdatasetmoleculeswereindependent variableandpIC valueswereusedasdependentvariables.Thesepropertieswerecorrelated 50 withbiologicalactivitytoidentifythethree-dimensionalmolecularpropertiesresponsiblefor selectiveandpotentALR2inhibitoryactivity[5,40]. Validationofdeveloped3D-QSARmodels Thestatisticalfitnessofdeveloped3D-QSARmodelswasevaluatedundervariousstatistical parametersobtainedfromPLSregressionanalysis,suchascross-validatedcorrelationcoeffi- cient(q2)asaninternalstatisticalindexofpredictivepower(Formula1),correlationcoeffi- cient(r2)externalpredictivityindicator(Formula2),predictivecorrelationcoefficientr2 pred (Formula3),standarderrorofestimate(S-value)(Formula4)andFischerstatistics(F-test) (Formula5)[40]. P ðY (cid:0) Y Þ2 PRESS q2 ¼1(cid:0) P cal obs (cid:17)1(cid:0) ð1Þ ðY (cid:0) Y Þ2 SS obs average InFormula(1),Y andY representobservedandcalculatedactivityvaluesrespectively, obs cal whileY meansaverageactivityvalueoftheentiredataset.Often,ahighq2value(q2> average 0.5)isreflectedasanevidenceofhighpredictiveabilityoftheQSARmodel.ThePRESSvalue isreferredas‘PredictiveResidualSumofSquares’,whichisthedifferencebetweenthepre- dictedvaluesY andtheobservedvaluesY .TheSumofSquares(SS)denotestothediffer- cal obs encebetweentheobservedvaluesY andtheirmeanY [48]. obs average P ðYfit(cid:0) Y Þ2 RSS r2 ¼1(cid:0) P cal obs (cid:17)1(cid:0) ð2Þ ðY (cid:0) Y Þ2 SS obs average InFormula(2),Yfit denotesthefittedvaluecalculatedwiththelinearregression.RSS cal refers‘ResidualSumofSquares’whichisdifferencebetweenthefittedvaluesYfit andthe cal observedvaluesY .ThenumeratortermSSisthe‘SumofSquares’whichisdifference obs betweentheobservedvaluesY andtheirmeanvaluesY .ForthereliableQSARmodel, obs average r2valueshouldbegreaterthan0.6[48],andthedifferencebetweenr2andq2shouldnotexceed 0.3[49]. P ½Y (cid:0) Y (cid:138)2 r2 ¼1(cid:0) P calðtestÞ obsðtestÞ ð3Þ pred ½Y (cid:0) Y (cid:138)2 obsðtestÞ mean(cid:0) obsðtrainingÞ InFormula(3),Y ,Y andY denotecalculated,observedvaluesof cal(test) obs(test) mean-obs(training) thetestsetandmeanvaluesoftrainingsetrespectively.ForastatisticallyfitQSARmodelwith goodpredictiveability,r2 valueshouldbemorethan0.5.InFormula(4),Y ,Y andn pred obs cal representobserved,calculatedactivityvaluesandnumberofcompoundsrespectively[48]. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P ðY (cid:0) Y Þ2 S¼ obs cal ð4Þ n(cid:0) 2 P ðYcal(cid:0) YmeanÞ2 F ¼ P p ð5Þ test ðYobs(cid:0) YcalÞ2 n(cid:0) p(cid:0) 1 InFormula(5),Y ,Y ,Y ,nandpdenoteobserved,calculated,meanactivityvalues, obs cal mean numberofcompoundsandpredictorvariables,respectively.Furthermore,Svaluecloserto0 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 9/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors andF-testvalueshouldbenearabovethresholdvaluei.e.largertheF-testvalue;greateristhe probabilitythatQSARmodelsarestatisticallysignificant[48]. Resultsanddiscussion Computer-aideddrugdesigningtoolssuchasmolecularmodelling,pharmacophoremapping, moleculardocking,homologymodellingandQSARmodellingaresomeoftherobustap- proacheswhichhavebeenwidelyemployedbytheresearchersaroundtheworldinorderto elucidatethetargetstructureorrecognizetheactivesiteswithinthetarget,constructionofthe targetstructure,virtualscreening,leadoptimization,ligand-targetbindingaffinityprediction, establishmentofselectivityofligandsagainstaparticulartarget,generationofpharmacophore, constructionofmolecularlibrarybearingactivepharmacophore,andmoreimportantlyto hastenthedrugdiscoveryprocess.Inthepresentstudy,integratedmoleculardockingassisted 3D-QSARwassuccessfullyperformedonadatasetof21compoundscomprisesofcurcumi- noids(compound1–3)andsyntheticcurcuminanalogues(compound4–21)(Fig4)tofind outbindingaffinityagainstARL2withtheidentificationofmolecularshapeandelectronicfea- turesofmoleculesresponsibleforpotentARL2inhibitoryactivity.The3D-QSARmodelswere builtbyusingself-organizingmolecularfieldanalysis(SOMFA)proposedbyRobinsonand co-workers[5,40,50]. Initially,thegeometricallyoptimizeddatasetmoleculesweresubjectedtomoleculardock- ingsimulationswiththeALR2forconformationalsearchaswellasdetectionofmodeand extentofbindinginteractions.ALR2(EC1.1.1.21)isa36kDaTIM-barrel-shapedaldo-keto reductaseconsistsofasinglepolypeptidedomainof316aminoacidresidues[46,51].The polypeptidechaincloggedattheaminoterminusendsintoaβ/α-barrelstructuralmotifcon- tainingeightparallelβstrandswhichareconnectedtoeachotherbyeightoutlyingα-helical segmentsrunninganti-paralleltotheβsheet.Theactivesiteislocatedinalargeanddeepcleft intheC-terminalendoftheβbarrel,andtheNADPHcofactorbindsinanextendedconfor- mationtothebottomoftheactivesite[52,53].However,itisprospectivethattheactivesite oftenchangesitsconformationalshapedependingonthebindingconformationsofbound ligand.Theligand-dependentconformationsoftheALR2indicatearemarkableinducedfitor flexibilityoftheactivesite[54].Threedistinctbindingpockets(Fig7)intheactivesiteof ALR2canbeprojectedaccordingtoX-raycrystallographyandmutagenesisstudiesperformed onALR2[55–59]:(1)‘anionbindingpocket’,madeupofTyr48,His110,Trp20,Trp111 aminoacidresiduesinunionwiththepositivelychargednicotinamideofthecofactorNADP+; (2)‘hydrophobicpocket’or‘specificitypocket’linedbytheaminoacidresiduesLeu300,Cys 298,Cys303,Trp111andPhe122[55];(3)another‘hydrophobicpocket’constitutedbythe aminoacidresiduesTrp20,Trp111,Phe122,andTrp219.Thespecificitypocketdemonstrates ahighdegreeofflexibilityandtheconstructingresiduesofthispocketarenotconservedin otherAKRsincludingALR1[57]. Moleculardocking(MD)simulationswereperformedintothecavity1havinglargestsur- facearea(149.76Å2)andvolume(51.712Å3)(Table1)outofatotalfivecavities(1–5)(Fig5) searchedwithintheARL2(PDBentry:4JIR)[46].Thekeyaminoacidresiduesofcavity1 nearbytheproximityof6.00ÅincludedAla299,Arg296,Cys298,His110,Leu300,Leu301, Phe122,Trp20,Trp79,Trp111,Trp219,Tyr48,Val47andVal297(Fig6). MolDock,Re-rank,andH-BondscoreswereobtainedafterthecompletionofMDsimula- tions(Table2).Thedockingviewofmostactivecompound9withALR2isalsodepictedin Fig8.TheMolDockscoreshowsthequalityofbindingfitnessandplausibleorientationof ligandwithintheactivesiteofthetarget.TheRe-rankscoreusesaweightedcombinationof thetermsusedbytheMolDockscoremixedwithafewadditionterms.Re-rankscoring PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 10/22

Description:
map the pharmacophoric features/spatial fingerprints of curcumin analogues responsible for their ALR2 specificity along with potency billion US$ in the same year [4]. If the current demographic . are the major sources of bioactive agents, and will continually play leading role in discovering new d
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.