RESEARCHARTICLE Structure based comprehensive modelling, spatial fingerprints mapping and ADME screening of curcumin analogues as novel ALR2 inhibitors SantKumarVerma,SureshThareja* SchoolofPharmaceuticalSciences,GuruGhasidasCentralUniversity,Bilaspur,C.G.,India a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 a1111111111 Abstract Aldosereductase(ALR2)inhibitionisthemostlegitimateapproachforthemanagementof diabeticcomplications.ThelimitedtriumphinthedrugdevelopmentagainstALR2ismainly becauseofitsclosestructuralsimilaritywiththeothermembersofaldo-ketoreductase OPENACCESS (AKR)superfamilyviz.ALR1,AKR1B10;andlipophilicityproblemi.e.poordiffusionofsyn- Citation:VermaSK,TharejaS(2017)Structure theticaldosereductaseinhibitors(ARIs)totargettissues.Theliteratureevidencedthatnatu- basedcomprehensivemodelling,spatial fingerprintsmappingandADMEscreeningof rallyoccurringcurcumindemonstratesrelativelyspecificandnon-competitiveinhibition curcuminanaloguesasnovelALR2inhibitors. towardshumanrecombinantALR2overALR1andAKR1B10;howeverβ-diketonemoiety PLoSONE12(4):e0175318.https://doi.org/ ofcurcuminisaspecificsubstrateforliverAKRsandaccountableforit’srapidinvivometab- 10.1371/journal.pone.0175318 olism.Inthepresentstudy,structurebasedcomprehensivemodellingstudieswereusedto Editor:GiovanniMaga,IstitutodiGenetica mapthepharmacophoricfeatures/spatialfingerprintsofcurcuminanaloguesresponsiblefor Molecolare,ITALY theirALR2specificityalongwithpotencyonadatasetofsyntheticcurcuminanaloguesand Received:January11,2017 naturallyoccurringcurcuminoids.Thedatasetmoleculeswerealsoscreenedfordrug-like- Accepted:March23,2017 nessorADMEparameters,andthescreeningdatastronglysupportthatcurcuminana- Published:April11,2017 loguescouldbeproposedasagooddrugcandidateforthedevelopmentofALR2inhibitors withimprovedpharmacokineticprofilecomparedtocurcuminoidsduetotheabsenceofβ- Copyright:©2017Verma,Thareja.Thisisanopen accessarticledistributedunderthetermsofthe diketonemoietyintheirstructuralframework. CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation Introduction files. Diabetesmellitus(DM),acommonmetabolicdisorderdesignatedbythehyperglycaemic Funding:SKVhasreceivedsupportfromtheIndian state,adverselyaffectsthehomeostasisofvariousorgansystems[1].Long-termhyperglycae- CouncilofMedicalResearch(ICMR)intheformof miacausesacutereversibleandchroniccumulativeirreversiblechanges,includesdamageto aSeniorResearchFellowship(SRF,No.45/54/ bloodvesselsandperipheralnerveswhicheventuallyleadstodiabeticcomplicationssuchas 2014-PHA-BMS).Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto vasculopathy,nephropathy,neuropathy,retinopathy,andcataracts;greatlyincreasingtherisk publish,orpreparationofthemanuscript. ofatherosclerosis,heartattack,stroke,blindness,amputation,andkidneyfailure[2,3].World- Competinginterests:Theauthorshavedeclared wide,387millionpeoplesarelivingwithdiabeteswiththeprevalenceof8.3%i.e.oneperson thatnocompetinginterestsexist. intwelveissufferingfromdiabetes.Intheyear2014,4.9millionindividualsdiedfromdiabetes PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 1/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors withthedeathrateofonepersonpersevenseconds.Thediabetesexpenditurehasreached612 billionUS$inthesameyear[4].Ifthecurrentdemographicpatterncontinues,thediabetic populationswillincreasemorethan592millionuptotheyear2035[5].Thedirecteconomic costofdiabetesisabout10%ofthetotalhealthcarebudgetofNationalHealthService(NHS) andisprojectedtoaccountforaround17%in2035/2036;furthermore,approximately90%of thetotaldirectcostisneededforthetreatmentofthedevastatingdiabeticcomplications[6]. Althoughtightcontrolofbloodglucosereducestheincidenceofdiabeticcomplications,a significantfractionofdiabeticpatientswithgoodglycaemiccontrolstillshowsthedevastating complicationsassociatedwithdiabetes[7].Despiteadvancesinthetreatmentofdiabetes,itis stilldifficulttopreventthedevelopmentandprogressionofmanyofthedisablingcomplica- tionsassociatedwiththisdisease[2].Severalmechanismsforthepathogenesisofdiabetic complicationshavebeenproposedsuchasthepolyolpathway[8],non-enzymaticglycation [9],proteinkinaseC(PKC)[10],hexosamine[11],andoverproductionofsuperoxidebythe mitochondrialelectrontransportchain[12].Evidenceshavedemonstratedalinkbetween enhancedmetabolismofglucosethroughthepolyolpathway(Fig1)andtheonsetandpro- gressionoflong-termdiabeticcomplications[7]. Innormalglycaemiccondition,glucoseentersintoglycolysiscycle;leadingtotheproduction ofpyruvateandenergy.Inhyperglycaemiccondition,theexcessofglucoseentersintopolyol pathwayviaaldosereductase(AR,ALR2)enzyme.Aldosereductase,akeymemberofthealdo- ketoreductase(AKR)superfamily,isthefirstandrate-limitingenzymeofthepolyolpathway,a glucose-shuntthatchannelsexcessglucosetoformfructosethroughsorbitolinhyperglycaemic condition[13].Inpolyolpathway,ARinitiallycatalysesthestereospecifictransferofahydride fromNADPHtothealdehydeformofglucosetoformsorbitol.Sorbitoldehydrogenase,in turn,utilizesNAD+andoxidizesthisintermediatepolyoltofructose(Fig1). Fig1.ALR2mediatedPolyolpathway. https://doi.org/10.1371/journal.pone.0175318.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 2/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Diabeticcomplicationsarisemainlyduetoprolongedexposureofthebodytohighcon- centrationsofglucose.Duringhyperglycaemia,thereisanincreasedfluxofglucoseinpolyol pathway.Morethan30%oftheglucoseismetabolizedbypolyolpathwayduringdiabetescon- ditions(lessthan3%innormoglycaemicconditions)[14].Underhyperglycaemia,increased polyolpathwayactivationleadstotheproductionofexcesssorbitolwhichisimpermeable throughbiologicalmembranes,accumulatesinsidethecells,andcausesosmoticstressleading tosecondarydiabeticcomplications[15].Further,inhyperglycaemia,increasedutilizationof NADPH(reducedformofnicotinamideadeninedinucleotidephosphate)byARcouldresult indecreasedsupplyofNADPHco-factortoglutathionereductasethatconvertsglutathione disulfide(GSSG)toglutathione(GSH)leadingtodecreasedGSHreductaseactivityandin turndecreasedGSHlevels(Fig1).SinceitiswellknownthatdecreasedGSHlevelscontribute tooxidativestress,AR-mediatedincreasesinNADPHconsumptioncouldalsoleadtooxida- tivestress[16].Thehyperglycaemicinjuryisinpartduetoosmoticandoxidativestress, inducedbyAR-mediatedreductionofglucosetosorbitol.Further,supportforacriticalroleof ARinmediatingthetoxiceffectsofglucoseisprovidedbythedemonstrationthatoverexpres- sionofARinthelensoftransgenicmiceacceleratesdiabeticcataracts[17].Ithasalsobeen demonstratedthathighglucoseindiabetesleadstotheup-regulationofARinseveraltissues andthetreatmentwithspecificARinhibitorspreventshyperglycaemia-inducedhyperplasia andhyperproliferationofvascularsmoothmusclecells[18].Hyperglycaemiacausesprolifera- tionofvascularsmoothmusclecellsandapoptosisofvascularendothelialcells.Theseobserva- tionsindicatethatARinhibitioncouldbeusefulinpreventingthepro-vascular-proliferative effectsofdiabetes,whichisstillremainthemajorcauseofmorbidityandmortalityassociated withthisdisease. Invivoanimalstudiesperformedbydifferentresearchersusingsyntheticandnaturalcom- poundsasARinhibitorsfavourthatARinhibitioncouldbeeffectiveformanagementofdia- beticcomplications,andsomeofthemhavebeenevaluatedinclinicaltrials[19,20].During thelastdecade,numbersofaldosereductaseinhibitor(ARI)havebeendeveloped(Fig2) whichmainlyincludehydantoins,e.g.Fidarestat(1)andSorbinil(2);carboxylicacidderiva- tives,e.g.Epalrestat(3),Tolrestat(4)andZopolrestat(5);andmoleculeofnaturalorigin,e.g. Quercetin(6). Fig2.ARIsofsynthetic(1–5)andnaturalorigin(6)developedduringlastfewdecades. https://doi.org/10.1371/journal.pone.0175318.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 3/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Todate,Epalrestatisthesingledrugmoleculeavailableinthemarketforthetreatmentof diabeticperipheralneuropathy[21,22].FidarestatandRanirestatareothermoleculeswhich havereachedtoadvancedphaseofclinicaltrials[23,24].Further,mostARIsdevelopedsofar haveacquiredlimitedtriumph,amongtheminparticularsyntheticARIswerefacinglipophili- cityproblemi.e.poordiffusiontotargettissuessuchasretinaandnerve,alongwithlinked harmfulsideeffects[20,25]. Naturalproductscontaininginherentlyvaststructuraldiversitythansyntheticcompounds arethemajorsourcesofbioactiveagents,andwillcontinuallyplayleadingroleindiscovering newdrugs.Phytochemicalsareconsideredprivilegedstructuresastheyhavethediversity spaceinwhichchemicalscaffoldsembodycharacteristicsthatpromotebindingtomultiple proteintargets.Ananalysisoftheoriginofthedrugsthatwerelaunchedinthelast25years showedthatbothnaturalproductsandtheirderivedsemi-syntheticcompoundscomposed 34%ofallnewchemicalentities,while18%ofthemweresyntheticmimicsofnaturalcom- pounds[26,27]. Curcumin,anaturalpolyphenolicdiarylheptanoidobtainedfromthedriedrhizomeof theherbCurcumalongaLinn.Itisevidentfromtheliteraturethatcurcuminisamulti-target pleiotropicagent,showingabroadrangeofbiologicalactivities.Turmeric(Curcumalonga) hasbeenwidelyusedinIndiaandChinaasaspice,dietarypigmentandintraditionalme- dicine,suchasremediesagainstthediabeticcomplications[28–30].Naturallyoccurring curcumindemonstratesrelativelyspecificandnon-competitiveinhibitiontowardshuman recombinantALR2overanotherstructurallysimilarmembersofAKRsuperfamilyi.e.alde- hydereductase(ALR1)andhumansmallintestinereductase(HSIR,AKR1B10)withIC 50 value6.8μM[31],whichisnearly5-foldlesserthanthatofquercetin(IC =37.6μM)[32],a 50 well-knownARIofnaturalorigin.Moreimportantly,curcuminalsopreventstheaccumula- tionofintracellularsorbitolunderhyperglycaemicstate,inturn,diminishestheosmotic cellularstress,resultingintodelayinprogressionofdiabeticcomplications[31,33,34].Two cumulativeα,β-unsaturatedcarbonylgroupsworkasalinkerbetweenbotharomaticphenol ringspresentincurcumin,andbothofthemexhibitketo-enoltautomerizationviaanenolate intermediate(Fig3).UndertheneutralpHconditions,curcuminpredominantlyexistsasa ketoform[31];howeverβ-diketonemoietyofcurcuminisaspecificsubstrateforliveraldo- ketoreductasesandmaybeaccountableforit’srapidinvivometabolism[35].Variousstruc- turalmodificationsweremadebydifferentresearchersinthehemicalstructureofcurcuminto improveitspharmacokineticprofile[36–39]. Takingintoconsideration,theALR2selectivityandinhibitorypotentialofcurcumin, anintegratedmoleculardockingassistedthree-dimensionalquantitativestructureactivity relationship(3D-QSAR)modelsweredevelopedonadatasetof21moleculescomprisesof naturallyoccurringcurcuminoidsandsyntheticcurcuminanaloguesactiveagainstALR2. Moleculardocking(MD)typicallyusesanenergy-basedscoringfunctiontoidentifytheener- geticallymostfavourableligandconformationwhenboundtothetarget.Itpredictsthebind- ingaffinityandexploresthebindingmodeofinteractionsofligandswiththekeyaminoacid residuespresentattheactivebindingsiteofthetarget[5].3D-QSARmodelsareessentialfor thegenerationofapharmacophorerequiredtofacilitatemolecularrecognitionandbinding. Fig3.Tautomericformsofcurcumin. https://doi.org/10.1371/journal.pone.0175318.g003 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 4/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Theprimaryaimofa3D-QSARtechniqueistoestablishacorrelationofbiologicalactivitiesof aseriesofstructurallyandbiologicallycharacterizedcompoundswiththespatialfingerprintsof themajorfieldpropertiesofeachmolecule,suchasstericandelectrostaticpotential[5,40].Fur- ther,athree-dimensionalpharmacophorewasgeneratedasanoutcomeof3D-QSARstudies, thegeneratedspatialfingerprintsorpharmacophoricfeaturesmappedandcanbeusedforthe designinganddevelopmentofnewerALR2selectivecurcuminanalogueswithhighpotencyas wellasimprovedpharmacokineticprofileforthemanagementofdiabeticcomplications. Methodology Datasetandbiologicalactivity Adatasetof21moleculescomprisesofcurcuminoidsobtainedfromCurcumalonga(com- pound1–3),andsyntheticcurcuminanalogues(4–21)wasselectedforpresentstudy[32]. Datasetwassplitintotrainingsetof18molecules,andtestsetof3molecules.Thedivision wasdoneinsuchamannerthatthreecompounds(1,3and12)shuffledinthetestset,repre- sentingthestructurallydivergentfeaturesofmoleculespresentintrainingsetwithawide rangeofALR2inhibitorypotential.However,thefinalcompoundsintrainingandtestsets weredecidedbasedonthehighestQ2andR2valueswith85%compoundsintrainingsetand theremainingcompoundsintestset.ThereportedIC valuesofdatasetmoleculeswerecon- 50 vertedintopIC (pIC =−logIC )toarrangethedatainascendinglinearmannerforthe 50 50 50 QSARanalysis(Fig4). Molecularmodelling,docking,andalignment Thepresentmolecularmodellingstudieswereaccomplishedwiththeuseofdifferentsoftware packagesnamelyMolegroVirtualDocker(MVD6.0.02013)[41],VLifeMDS3.5[42], SOMFA2.0.0[43],TSAR3D3.3[44],andVegaZZ3.0.3.18[45].Firstly,thestructuresofdata setmoleculesweredrawnusingChemDrawUltra8.0;thenthesesketchedmoleculeswere convertedinto3Dandsubjectedtoenergyminimizationtoattainthestableconformation withthelowestenergyusingChem3DUltra8.0.Thegeometricaloptimizationwasperformed withthesubsequentuseofdualoptimizersviz.molecularmechanics(MM2)followedby Hamiltonianapproximation(AM1)availableinMOPACmodule.Theimplicitsolventenvi- ronmentorsolventeffectwastakenforgeometricaloptimizationswhichreplacetheexplicitly representedwatermoleculeswithamathematicalexpressionthatreproducestheaverage behaviourofwatermolecules[5].Thegeometricaloptimizationprocesswasruntilltheroot- mean-square(RMS)gradientvaluereachesavaluelesserthan0.001kcal/molÅinboththe optimizationtechniquesmentionedabove[1]. ThegeometricallyoptimizedconformerswereimportedintotheworkspaceofMVD (MVD2013.6.0evaluationversion)alongwiththeALR2(PDBentry:4JIR,ALR2fromHomo sapiensandco-crystalizedwithEpalrestataswellasNADP+)[46].Whileretrievingtargetmol- eculefromproteindatabank(PDB),theassociatedwatermoleculeswereeliminated,and NADP+importedasco-factor.Allthemoleculesintheworkspaceweresubjectedtomolecular preparationtoassignmissingbonds,bondorders,hybridization,charge,explicithydrogens, triposatomtypesanddetectflexibletorsionsinligands.Potentialbindingsitesalsoreferredto ascavitiesoractivesites(1–5)(Fig5)wereidentifiedusingthebuilt-incavitydetectionalgo- rithm.Duringthiscomputationalprocess,themaximumnumbersofcavitieswerefixedto5, gridresolution0.80Å,minimumcavityvolume10Å3,maximumcavityvolume10,000Å3and probesize1.2Å;whiletheotherparameterswerekeptasdefault[1]. MDsimulationswerecommencedintothelargestcavity(1)correspondingtoco-crystal- izedEpalrestatbindingcavityof4JIR(Fig6)todeterminethebindingaffinityandbinding PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 5/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Fig4.Chemicalstructureofcurcuminoids(compound1–3),syntheticcurcuminanalogues(compound4–21)alongwith theirobservedALR2inhibitoryactivity(IC ),pIC ,predictedpIC ,residualactivity,anddruglikeness/ADMEscreening 50 50 50 Data.TTestsetcompounds;moleculeviolatingdrug-likeness/ADMEscreeningdueto:*molecularweight>500,and#LogP>5. https://doi.org/10.1371/journal.pone.0175318.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 6/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Fig5.Predictedbindingcavities(1–5)(green)withinALR2(secondarystructure). https://doi.org/10.1371/journal.pone.0175318.g005 modeofinteractionsofdatasetmoleculeswithALR2.AsyntheticARIpresentlyavailablein themarketviz.EpalrestatwastakenasareferencetochecktheaccuracyandreliabilityofMD simulations,andthebindingaffinitiesofdatasetmoleculeswerealsocomparedwithanARI ofnaturaloriginnamelyQuercetinintermsofdockingscores.Fortheevaluationofdocking solutions,gridbasedscoringfunctionMolDockScore[47]wasselectedat0.3Ågridresolu- tions.MolDockSimplexEvolution(MolDockSE)searchalgorithmwithnumberofruns10 andpopulationsize50wasselectedforperformingMDsimulations[1].Thenumberofruns specifiesthenumberoftimesthatthedockingsimulationwasrepeatedforeachligandchosen tobedockedandeachoftheserunswasreturningtoasinglefinalsolutioni.e.pose.Theonly negativelowest-energyrepresentativeclusterwasreturnedfromeachofthemaftercompletion ofdocking,andthesimilarposeswereremovedkeepingthebestscoringone.Theclusters wererankedthroughthesimplecomparisonbetweentheconformationsofthelowestbinding energyineachcluster.Theotherparameterssuchasmaximumiterations,energythreshold, bindingradius,SEmaximumstepsandSEneighbouringdistancefactorweresetto1,500,100, 15Å,300and1.00,respectively.Forclustersimilarposesaswellasignoresimilarposes(for multiplerunsonly),theRMSDthresholdwasfixed1.00Å[1].Theposeorconformationof eachligandwiththehighestMolDockscorewasselectedfortheanalysisofits’stericand hydrogenbondinteractionswithALR2. Further,thelowestbindingenergyconformersofallthedatasetmolecules(1–21)obtained fromMDsimulationswerealignedseparatelybytwodifferentalignmentapproachesbasedon molecularweighted(MW)extentandmomentsofinertia(MI)usingTSARpackage.TheMW andMIalignedstructureswereexportedinto.cssrfileformatandfurtherconvertedto.cTF2 usingfileformatconverterpresentinSOMFApackagebecauseitisreadilytakenbySOMFA software. PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 7/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors Fig6.Cavity1(green)withco-crystalizedepalrestat(red)anditscorrespondingaminoacidresidues. https://doi.org/10.1371/journal.pone.0175318.g006 Generationof3D-QSARmodels The3D-QSARmodelswereconstructedonalignedmoleculesobtainedfromMW(model1, 2)andMI(model3,4)alignmentapproaches.Theexternalapplicabilitydomaini.e.testsetof 3D-QSARmodelswasbuiltbycompounds1,3and12.Allthemoleculesin.cTF2fileformat wereloadedalongwiththeirbiologicalactivity(pIC )againstALR2intotheworkspaceofthe 50 3D-QSARpackage.Onlytrainingsetmoleculeswereusedinthedevelopmentof3D-QSAR models.The3D-QSARmodelsweregeneratedwith40x40x40Ågridoriginatingat(-20, -20,-20)withresolutionof0.5Åand1.0Åboth[5,40].Thestericandelectrostaticproperties ofthedatasetmoleculesgeneratedfrom3D-QSARsoftwareagainstALR2wereusedforthe developmentof3D-QSARmodels.Thethree-dimensionalstericandelectrostaticmastergrid mapsweregeneratedfrom3D-QSARatdefinitegridresolutions;representtheareainspace wherestericandelectrostaticfieldinteractionsareresponsiblefortheobservedbiological activity.Anindividualcompoundinthedatasetcanbevisualizedinthesegridsandvariation inactivitycanbebestexplainedbythegrids[5].Further,thegeneratedmodelswereusedfor predictionoftheALR2inhibitorypotentialofallthedatasetmolecules. RegressionanalysisbyPLSmethod Partialleastsquare(PLS)inconjugationwithleaveoneout(LOO)cross-validationtechniques implementedinVLifeMDSwasusedfortheregressionanalysisofdeveloped3D-QSAR PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 8/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors models,inwhichthestericandelectrostaticpropertiesofdatasetmoleculeswereindependent variableandpIC valueswereusedasdependentvariables.Thesepropertieswerecorrelated 50 withbiologicalactivitytoidentifythethree-dimensionalmolecularpropertiesresponsiblefor selectiveandpotentALR2inhibitoryactivity[5,40]. Validationofdeveloped3D-QSARmodels Thestatisticalfitnessofdeveloped3D-QSARmodelswasevaluatedundervariousstatistical parametersobtainedfromPLSregressionanalysis,suchascross-validatedcorrelationcoeffi- cient(q2)asaninternalstatisticalindexofpredictivepower(Formula1),correlationcoeffi- cient(r2)externalpredictivityindicator(Formula2),predictivecorrelationcoefficientr2 pred (Formula3),standarderrorofestimate(S-value)(Formula4)andFischerstatistics(F-test) (Formula5)[40]. P ðY (cid:0) Y Þ2 PRESS q2 ¼1(cid:0) P cal obs (cid:17)1(cid:0) ð1Þ ðY (cid:0) Y Þ2 SS obs average InFormula(1),Y andY representobservedandcalculatedactivityvaluesrespectively, obs cal whileY meansaverageactivityvalueoftheentiredataset.Often,ahighq2value(q2> average 0.5)isreflectedasanevidenceofhighpredictiveabilityoftheQSARmodel.ThePRESSvalue isreferredas‘PredictiveResidualSumofSquares’,whichisthedifferencebetweenthepre- dictedvaluesY andtheobservedvaluesY .TheSumofSquares(SS)denotestothediffer- cal obs encebetweentheobservedvaluesY andtheirmeanY [48]. obs average P ðYfit(cid:0) Y Þ2 RSS r2 ¼1(cid:0) P cal obs (cid:17)1(cid:0) ð2Þ ðY (cid:0) Y Þ2 SS obs average InFormula(2),Yfit denotesthefittedvaluecalculatedwiththelinearregression.RSS cal refers‘ResidualSumofSquares’whichisdifferencebetweenthefittedvaluesYfit andthe cal observedvaluesY .ThenumeratortermSSisthe‘SumofSquares’whichisdifference obs betweentheobservedvaluesY andtheirmeanvaluesY .ForthereliableQSARmodel, obs average r2valueshouldbegreaterthan0.6[48],andthedifferencebetweenr2andq2shouldnotexceed 0.3[49]. P ½Y (cid:0) Y (cid:138)2 r2 ¼1(cid:0) P calðtestÞ obsðtestÞ ð3Þ pred ½Y (cid:0) Y (cid:138)2 obsðtestÞ mean(cid:0) obsðtrainingÞ InFormula(3),Y ,Y andY denotecalculated,observedvaluesof cal(test) obs(test) mean-obs(training) thetestsetandmeanvaluesoftrainingsetrespectively.ForastatisticallyfitQSARmodelwith goodpredictiveability,r2 valueshouldbemorethan0.5.InFormula(4),Y ,Y andn pred obs cal representobserved,calculatedactivityvaluesandnumberofcompoundsrespectively[48]. sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P ðY (cid:0) Y Þ2 S¼ obs cal ð4Þ n(cid:0) 2 P ðYcal(cid:0) YmeanÞ2 F ¼ P p ð5Þ test ðYobs(cid:0) YcalÞ2 n(cid:0) p(cid:0) 1 InFormula(5),Y ,Y ,Y ,nandpdenoteobserved,calculated,meanactivityvalues, obs cal mean numberofcompoundsandpredictorvariables,respectively.Furthermore,Svaluecloserto0 PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 9/22 Computationalmodelling,pharmacophoremappingandADMEscreeningofcurcuminanaloguesasALR2inhibitors andF-testvalueshouldbenearabovethresholdvaluei.e.largertheF-testvalue;greateristhe probabilitythatQSARmodelsarestatisticallysignificant[48]. Resultsanddiscussion Computer-aideddrugdesigningtoolssuchasmolecularmodelling,pharmacophoremapping, moleculardocking,homologymodellingandQSARmodellingaresomeoftherobustap- proacheswhichhavebeenwidelyemployedbytheresearchersaroundtheworldinorderto elucidatethetargetstructureorrecognizetheactivesiteswithinthetarget,constructionofthe targetstructure,virtualscreening,leadoptimization,ligand-targetbindingaffinityprediction, establishmentofselectivityofligandsagainstaparticulartarget,generationofpharmacophore, constructionofmolecularlibrarybearingactivepharmacophore,andmoreimportantlyto hastenthedrugdiscoveryprocess.Inthepresentstudy,integratedmoleculardockingassisted 3D-QSARwassuccessfullyperformedonadatasetof21compoundscomprisesofcurcumi- noids(compound1–3)andsyntheticcurcuminanalogues(compound4–21)(Fig4)tofind outbindingaffinityagainstARL2withtheidentificationofmolecularshapeandelectronicfea- turesofmoleculesresponsibleforpotentARL2inhibitoryactivity.The3D-QSARmodelswere builtbyusingself-organizingmolecularfieldanalysis(SOMFA)proposedbyRobinsonand co-workers[5,40,50]. Initially,thegeometricallyoptimizeddatasetmoleculesweresubjectedtomoleculardock- ingsimulationswiththeALR2forconformationalsearchaswellasdetectionofmodeand extentofbindinginteractions.ALR2(EC1.1.1.21)isa36kDaTIM-barrel-shapedaldo-keto reductaseconsistsofasinglepolypeptidedomainof316aminoacidresidues[46,51].The polypeptidechaincloggedattheaminoterminusendsintoaβ/α-barrelstructuralmotifcon- tainingeightparallelβstrandswhichareconnectedtoeachotherbyeightoutlyingα-helical segmentsrunninganti-paralleltotheβsheet.Theactivesiteislocatedinalargeanddeepcleft intheC-terminalendoftheβbarrel,andtheNADPHcofactorbindsinanextendedconfor- mationtothebottomoftheactivesite[52,53].However,itisprospectivethattheactivesite oftenchangesitsconformationalshapedependingonthebindingconformationsofbound ligand.Theligand-dependentconformationsoftheALR2indicatearemarkableinducedfitor flexibilityoftheactivesite[54].Threedistinctbindingpockets(Fig7)intheactivesiteof ALR2canbeprojectedaccordingtoX-raycrystallographyandmutagenesisstudiesperformed onALR2[55–59]:(1)‘anionbindingpocket’,madeupofTyr48,His110,Trp20,Trp111 aminoacidresiduesinunionwiththepositivelychargednicotinamideofthecofactorNADP+; (2)‘hydrophobicpocket’or‘specificitypocket’linedbytheaminoacidresiduesLeu300,Cys 298,Cys303,Trp111andPhe122[55];(3)another‘hydrophobicpocket’constitutedbythe aminoacidresiduesTrp20,Trp111,Phe122,andTrp219.Thespecificitypocketdemonstrates ahighdegreeofflexibilityandtheconstructingresiduesofthispocketarenotconservedin otherAKRsincludingALR1[57]. Moleculardocking(MD)simulationswereperformedintothecavity1havinglargestsur- facearea(149.76Å2)andvolume(51.712Å3)(Table1)outofatotalfivecavities(1–5)(Fig5) searchedwithintheARL2(PDBentry:4JIR)[46].Thekeyaminoacidresiduesofcavity1 nearbytheproximityof6.00ÅincludedAla299,Arg296,Cys298,His110,Leu300,Leu301, Phe122,Trp20,Trp79,Trp111,Trp219,Tyr48,Val47andVal297(Fig6). MolDock,Re-rank,andH-BondscoreswereobtainedafterthecompletionofMDsimula- tions(Table2).Thedockingviewofmostactivecompound9withALR2isalsodepictedin Fig8.TheMolDockscoreshowsthequalityofbindingfitnessandplausibleorientationof ligandwithintheactivesiteofthetarget.TheRe-rankscoreusesaweightedcombinationof thetermsusedbytheMolDockscoremixedwithafewadditionterms.Re-rankscoring PLOSONE|https://doi.org/10.1371/journal.pone.0175318 April11,2017 10/22
Description: