ebook img

Structure and Properties of High-Entropy Alloys PDF

118 Pages·2021·5.665 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structure and Properties of High-Entropy Alloys

Advanced Structured Materials V. E. Gromov S. V. Konovalov Yu. F. Ivanov K. A. Osintsev Structure and Properties of High-Entropy Alloys Advanced Structured Materials Volume 107 SeriesEditors AndreasÖchsner,FacultyofMechanicalEngineering,EsslingenUniversityof AppliedSciences,Esslingen,Germany LucasF.M.daSilva,DepartmentofMechanicalEngineering,Facultyof Engineering,UniversityofPorto,Porto,Portugal HolmAltenbach ,FacultyofMechanicalEngineering,OttovonGuericke UniversityMagdeburg,Magdeburg,Sachsen-Anhalt,Germany Common engineering materials reach in many applications their limits and new developments are required to fulfil increasing demands on engineering materials. Theperformanceofmaterialscanbeincreasedbycombiningdifferentmaterialsto achieve better properties than a single constituent or by shaping the material or constituents in a specific structure. The interaction between material and structure mayariseondifferentlengthscales,suchasmicro-,meso-ormacroscale,andoffers possibleapplicationsinquitediversefields. Thisbookseriesaddressesthefundamentalrelationshipbetweenmaterialsandtheir structureontheoverallproperties(e.g.mechanical,thermal,chemicalormagnetic etc.)andapplications. ThetopicsofAdvancedStructuredMaterialsincludebutarenotlimitedto (cid:129) classical fibre-reinforced composites (e.g. glass, carbon or Aramid reinforced plastics) (cid:129) metalmatrixcomposites(MMCs) (cid:129) microporouscomposites (cid:129) microchannelmaterials (cid:129) multilayeredmaterials (cid:129) cellular materials (e.g., metallic or polymer foams, sponges, hollow sphere structures) (cid:129) porousmaterials (cid:129) trussstructures (cid:129) nanocompositematerials (cid:129) biomaterials (cid:129) nanoporousmetals (cid:129) concrete (cid:129) coatedmaterials (cid:129) smartmaterials AdvancedStructuredMaterialsisindexedinGoogleScholarandScopus. Moreinformationaboutthisseriesathttp://www.springer.com/series/8611 · · · V. E. Gromov S. V. Konovalov Yu. F. Ivanov K. A. Osintsev Structure and Properties of High-Entropy Alloys V.E.Gromov S.V.Konovalov SiberianStateIndustrialUniversity SamaraNationalResearchUniversity Novokuznetsk,Russia Samara,Russia Yu.F.Ivanov K.A.Osintsev InstituteofHighCurrentElectronicsSB SamaraNationalResearchUniversity Tomsk,Russia Samara,Russia ISSN1869-8433 ISSN1869-8441 (electronic) AdvancedStructuredMaterials ISBN978-3-030-78363-1 ISBN978-3-030-78364-8 (eBook) https://doi.org/10.1007/978-3-030-78364-8 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Introduction Oneofthefundamentalandpracticallyorientedtasksofsolid-statephysicsandphys- ical materials science is the development of physical bases of creating new metal- lurgicalmaterialswithacomplexofnecessaryphysico-mechanicalandoperational propertiesandtechnologiesoftheirproduction.Asitisknown,mechanicalproper- tiesofmaterialsdependessentiallyontheirchemicalcompositionandcharacteristic features of the structural state, such as type, grain size, form of their boundaries, grade,quantityanddistributioninsizeandvolumeofexcessivephases,densityand typeofdislocationsubstructure,etc. Considerableimprovementofcomplexofpracticaldesign,functionalandtechno- logicalparametersofalloysandintermetallicswasconnectedwithadditionalmicro- and macro-alloying (with the third, fourth, fifth, sixth elements), development of specialstrengtheningandplastifyingtechnologiesofbothsynthesisandsubsequent treatmentofpoly-andmonocrystals,modificationoftheirmicro-andsubmicrocrys- tallinestructures.Atthebeginningofthetwenty-firstcenturythepapersoncreating andcomplexstudyingthenewso-calledhigh-entropypolymetallicalloysincluding 5–6ormoreprincipalelementsappeared. Inpapers(Tongetal.2005a,b;Chenetal.2006;LiandZhang2009;Tsaietal. 2010;Braicetal.2010;HuangandYeh2009;Huetal.2010;Linetal.2010;Dolique et al. 2010; Zhang et al. 2010; Singh et al. 2011; Chen et al, 2005; Chuang et al. 2011;LinandTsai2011;Liuetal.2012;Manzonietal.2013;Lietal.2013;Qiu 2013;Tariqetal.2013;Daoudetal.2013;Pradeepetal.2013;Manzonietal.2013; Hsuetal.2005;Chenetal.2006;Yehetal.2007;Hsuetal.2007;Wangetal.2007; Tung et al. 2007; Wang et al. 2008), published in 2000–2015 years the results of thestudyingthemethodsformanufacturinghigh-entropyalloys(HEA)ofdifferent chemicalcomposition,microstructureandpropertiesareconsidered.Itisnecessary to add the papers (Tsai et al. 2010; Wen et al. 2009; Strife and Passoja 1980; Ng etal.2012;Jonesetal.2014;ShunandDu2009;Kaoetal.2009;Tsaietal.2009; Ottoetal.2013;Gludovatzetal.2014;Mills1997)inwhichtheeffectofthermal anddeformationtreatmentonthestructureandmechanicalpropertiesofHEAalloys were analysed. The original results obtained in the field of HEA prior to 2015 are consideredindetailinanalyticalreviews(Zhangetal.2014;Cantor2014;Miracle and Senkov 2017; Zhang and Zhang 2018; Osintsev et al. 2021) where the HEA v vi Introduction thermodynamicsisdescribed,resultsofmodellingoftheirstructureareconsidered andnewvariantsofmethodsforobtainingthemulti-componentalloysarediscussed. The HEA studies have shown that it is possible to form in them nanodimen- sionalstructuresandevenamorphousphasesduetoconsiderabledistortionsoflattice caused by the difference in the atomic radii of substitution elements. In this case, therateofdiffusionprocessesdecreases,andasaresult,thespeedofcrystalgrowth reduces(Pogrebnyaketal.2014). Due to differences in dimensions of atoms of different metals the HEA crystal latticeturnsouttobeheavilydistorted,thereforethestructureofsuchphasesmay be considered as intermediate between stable crystal phases with relatively small equilibriumconcentrationofdefects,includingimpurityatoms,andmetastablemetal glassesinwhichlong-rangeorderiscompletelyabsent. Bynowmorethan10,000papersinScopusandWebofSciencebaseshadalready been published. The share of publications on HEA amounts from 5% in Iran to 20–22% in China and the USA (Rogachev 2020). Such an exponential growth of publications will not fail to raise the question: whether the HEA concept is just another scientific fashion such as the ideas of individual dislocations of the last centurycapableofexplainingallthediversityofdeformationbehaviourofcrystalline materials. By now there is no unambiguous answer to this question. It is connected with the fact that direct comparison of data is difficult, due to differences in the type andconcentrationofprincipalelements,thetypeandextentofthermo-mechanical processing, and the temperature and duration of post-process thermal treatment (Georgeetal.2020). Practicallyalltypesofsuchalloys(structural,cryo-andheatresistant,corrosion- resistant,thosewithspecialmagneticandelectricalproperties),aswellascompounds (carbides,nitrides,oxides,borides,silicides),arebeingdeveloped.Inthemajorityof cases,researcherssucceedinmanufacturingasingle-phasehigh-entropymaterialor multi-phasematerialconsistingofamulti-componentmatrixandinclusionswhich mayresultindispersionhardening(Rogachev2020). Nowadaystheprocessofaccumulatingandcomprehendingtheresultsconcerning HEAproduction,theirmechanicalproperties,microstructure,etc.goesonbeginning withclassicalalloysofCantorCrMnFeCoNiandSenkovTiZrHfNbTaandfinishing by unique compositions with rare-earth elements. Estimation of HEA uniqueness in comparison with traditional alloys is a crucial importance for the development ofdifferentbranchesofindustry.Onthebasisofthedataavailable,therearegood reasonstoconsiderthatHEA’srapiddevelopmentwillcontinueinthenearestfuture. Themajortaskofthepresentmonographistoanalysethelatestresultsoverthelast yearsaccordingtothemainsections:1.MethodsofHEAproduction;2.Mechanical propertiesandmechanismsofdeformation;3.Stability;4.Prospectsforapplication; 5.PossibilitiesofuseofexternalenergyeffectsforimprovingtheHEAstructural- phasestatesandproperties. Preciselythesesectionsaredecisive,inouropinion,inestimatingtheperspectives ofthelarge-scaleindustrialintroductionofhigh-entropyalloysintotheindustry. Introduction vii References BraicM.,BraicV.,BalaceanuM.,ZoitaC.N.,VladescuA.,GrigoreE.:Surf.CoatingsTechnol. 204,2010(2010) CantorB.:Entropy16,4749(2014) ChenM.-R.,LinS.-J.,YehJ.-W.,ChenS.-K.,HuangY.-S.,TuC.-P.:Mater.Trans.47,1395(2006) ChenM.-R.,LinS.-J.,YehJ.-W.,ChuangM.-H.,LeeP.-H.,HuangY.-S.:Metall.Mater.Trans. A-PhysicalMetall.Mater.Sci.-Met.MATERTRANSA37,1363(2006) ChenY.Y.,DuvalT.,HungU.D.,YehJ.W.,ShihH.C.:Corros.Sci.47,2257(2005) ChuangM.-H.,TsaiM.-H.,WangW.-R.,LinS.-J.,YehJ.-W.:ActaMater.59,6308(2011) DaoudH.M.,ManzoniA.,VölklR.,WanderkaN.,GlatzelU.:JOM65,1805(2013) Dolique V., Thomann A.-L., Brault P., Tessier Y., Gillon P.: Surf. Coatings Technol. 204, 1989 (2010) GeorgeE.P.,CurtinW.A.,TasanC.C.:ActaMater.188,435(2020) GludovatzB.,HohenwarterA.,CatoorD.,ChangE.H.E.H.,GeorgeE.P.E.P.,RitchieR.O.R.O.: Science(80-.).345,1153(2014) HsuU.S.,HungU.D.,YehJ.W.,ChenS.K.,HuangY.S.,YangC.C.:Mater.Sci.Eng.A460–461, 403(2007) HsuY.-J.,ChiangW.-C.,WuJ.-K.:Mater.Chem.Phys.92,112(2005) HuZ.,ZhanY.,ZhangG.,SheJ.,LiC.:Mater.Des.31,1599(2010) HuangP.-K.,YehJ.-W.:Surf.CoatingsTechnol.203,1891(2009) JonesN.G.,FrezzaA.,StoneH.J.:Mater.Sci.Eng.A615,214(2014) KaoY.-F.,ChenT.-J.,ChenS.-K.,YehJ.-W.:J.AlloysCompd.488,57(2009) LiA.,ZhangX.:ActaMetall.Sin.(EnglishLett.22,219(2009) LiB.,PengK.,HuA.,ZhouL.,ZhuJ.,LiD.:Trans.NonferrousMet.Soc.China23,735(2013) LinC.-M.TsaiH.-L.:Intermetallics19,288(2011) LinM.-I.,TsaiM.-H.,ShenW.-J.,YehJ.-W.:ThinSolidFilms518,2732(2010) LiuL.,ZhuJB.,ZhangC.,LiJ.C.,JiangQ.:Mater.Sci.Eng.A548,64(2012) ManzoniA.,DaoudH.,MondalS.,vanSmaalenS.,VölklR.,GlatzelU.,WanderkaN.:J.Alloys Compd.552,430(2013) ManzoniA.,DaoudH.,VölklR.,GlatzelU.,WanderkaN.:Ultramicroscopy132,212(2013) MillsW.J.:Int.Mater.Rev.42,45(1997) MiracleD.B.,SenkovO.N.:ActaMater.122,448(2017) NgC.,GuoS.,LuanJ.,ShiS.,LiuC.:Intermetallics31,165(2012) OsintsevK.A.,GromovV.E.,KonovalovS.V.,IvanovY.F.,PanchenkoI.A.:Izv.Ferr.Metall.1 (2021) OttoF.,DlouhýA.,SomsenC.,BeiH.,EggelerG.,GeorgeE.P.:ActaMater.61,5743(2013) PogrebnyakA.D.,BagdasapyanA.A.,YakushchenkoI.V.,BeresnevV.M.:Russ.Chem.Rev.83, 1027(2014) PradeepK.G.,WanderkaN.,ChoiP.,BanhartJ.,MurtyB.S.,RaabeD.:ActaMater.61,4696(2013) RogachevA.S.:Phys.Met.Mater.Sci.121,807(2020) ShunT.-T.,DuY.-C.:J.AlloysCompd.478,269(2009) SinghS.,WanderkaN.,MurtyB.S.,GlatzelU.,BanhartJ.:ActaMater.59,182(2011) StrifeJ.,PassojaD.:Metall.Trans.11,1341(1980) TariqN.H.,NaeemM.,HasanB.A.,AkhterJ.I.,SiddiqueM.:J.AlloysCompd.556,79(2013) TongC.-J.,ChenM.-R.,YehJ.-W.,LinS.-J.,LeeP.-H.,ShunT.-T.,ChangS.-Y.:Metall.Mater. Trans.A-PhysicalMetall.Mater.Sci.-Met.MATERTRANSA36,1263(2005a) TongC.-J.,ChenY.-L.,YehJ.-W.,LinS.-J.,LeeP.-H.,ShunT.-T.,TsauC.-H.,ChangS.-Y.:Metall. Mater.Trans.A36,881(2005b) TsaiC.-W.,ChenY.-L.,TsaiM.-H.,YehJ.-W.,ShunT.-T.,ChenS.-K.:J.AlloysCompd.486,427 (2009) TsaiC.-W.,TsaiM.-H.,YehJ.-W.,YangC.-C.:J.AlloysCompd.490,160(2010) TungC.-C.,YehJ.-W.,ShunT.,ChenS.-K.,HuangY.-S.,ChenH.-C.:Mater.Lett.61,1(2007) WangX.F.,ZhangY.,QiaoY.,ChenG.L.:Intermetallics15,357(2007) viii Introduction WangY.P.,LiB.S.,RenM.X.,YangC.,FuH.Z.:Mater.Sci.Eng.A491,154(2008) WenL.H.,KouH.C.,LiJ.S.,ChangH.,XueX.Y.,ZhouL.:Intermetallics17,266(2009) X.-W.Qiu.:J.AlloysCompd.555,246(2013) YehJ.W.,ChenY.L.,LinS.J.,ChenS.K.:Mater.Sci.Forum560,1(2007) ZhangK.B.,FuZ.Y.,ZhangJ.Y.,ShiJ.,WangW.M.,WangH.,WangY.C.,ZhangQ.J.:J.Alloys Compd.502,295(2010) ZhangW.,ZhangY.:Sci.ChinaEarthSci.2(2018) ZhangY.,ZuoT.T.T.T.,TangZ.,GaoM.C.,DahmenK.A.K.A.,LiawP.K.P.K.,LuZ.P.Z.P.:Prog. Mater.Sci.61,1(2014) Contents 1 MethodsofManufacturingtheHigh-EntropyAlloys ............... 1 1.1 ManufacturingofHEAPowders .............................. 2 1.2 MethodsofPowderMetallurgyUsedforHEAsProduction ....... 6 1.3 HotPressing ............................................... 8 1.4 TechnologiesofCastingUsedforHEAProduction .............. 13 1.5 TechnologiesofHEACoatingsDeposition ..................... 18 1.6 TechnologiesofHEAsAdditiveManufacturing ................. 23 1.7 Conclusion ................................................ 29 References ..................................................... 30 2 Mechanical Properties and Mechanisms of Deformation ofHighEntropyAlloys ......................................... 33 References ..................................................... 46 3 HEAs’Stability ................................................ 53 References ..................................................... 56 4 ProspectsofHigh-EntropyAlloysApplication .................... 59 4.1 Conclusion ................................................ 60 References ..................................................... 61 5 PredictionofPhaseCompositionofAl-Co-Cr-Fe-NiSystem High-EntropyAlloy ............................................ 63 5.1 CalculationofThermodynamicParametersandComparison ofThemwithKnownCriteriaofPhaseFormation ............... 65 5.2 Program for Calculation of Thermodynamic Parameters and Prediction of Phase Composition of Quinary High-EntropyAlloys ........................................ 71 5.3 DeterminationoftheChemicalCompositionofaStranded WireCorrespondingtotheRequiredChemicalComposition of Final High-Entropy Alloy Fabricated by Wire-Arc AdditiveManufacturing ..................................... 73 5.4 Conclusion ................................................ 75 References ..................................................... 77 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.