ebook img

Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys PDF

160 Pages·2016·25.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys

Structural properties, deformation behavior and thermal stability of martensitic Ti-Nb alloys Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Fakult¨at Mathematik und Naturwissenschaften der Technischen Universit¨at Dresden von Mag. rer. nat. Matthias B¨onisch geboren am 13.08.1986 in Wien Februar 2016 1. Gutachter: Prof. Dr. rer. nat. habil. Werner Skrotzki 2. Gutachter: Prof. Dr. ir. Jan van Humbeeck Tag der Einreichung: 25. Februar 2016 Tag der Verteidigung: 10. Juni 2016 This PhD thesis was financially supported by the European Commission within FP7/2007–13 under the grant agreement no. 264635 (BioTiNet-ITN). Abstract Ti-Nb alloys are characterized by a diverse metallurgy which allows obtaining a wide palette of microstructural configurations and physical properties via careful selection of chemical com- position, heat treatment and mechanical processing routes. The present work aims to expand the current state of knowledge about martensite forming Ti-Nb alloys by studying 15 binary Ti- c Nb(9wt.% (cid:54) c (cid:54) 44.5wt.%)alloyformulationsintermsoftheirstructuralandmechanical Nb Nb properties, as well as their thermal stability. The crystal structures of the martensitic phases, α(cid:48) and α(cid:48)(cid:48), and the influence of the Nb con- tent on the lattice (Bain) strain and on the volume change related to the β → α(cid:48)/α(cid:48)(cid:48) martensitic transformations are analyzed on the basis of Rietveld-refinements. The magnitude of the shuf- fle component of the β → α(cid:48)/α(cid:48)(cid:48) martensitic transformations is quantified in relation to the chemical composition. The largest transformation lattice strains are operative in Nb-lean alloys. Depending on the composition, both a volume dilatation and contraction are encountered and the volume change may influence whether hexagonal martensite α(cid:48) or orthorhombic martensite α(cid:48)(cid:48) forms from β upon quenching. The mechanical properties and the deformation behavior of martensitic Ti-Nb alloys are stud- iedbycomplementarymethodsincludingmonotonicandcyclicuniaxialcompression,nanoinden- tation, microhardness and impulse excitation technique. The results show that the Nb content strongly influences the mechanical properties of martensitic Ti-Nb alloys. The elastic moduli, hardness and strength are minimal in the vicinity of the limiting compositions bounding the interval in which orthorhombic martensite α(cid:48)(cid:48) forms by quenching. Uniaxial cyclic compressive testing demonstrates that the elastic properties of strained samples are different than those of unstrained ones. Also, experimental evidence indicates a deformation-induced martensite to austenite (α(cid:48)(cid:48) → β) conversion. The influence of Nb content on the thermal stability and on the occurrence of decomposition reactionsinmartensiticTi-Nballoysisexaminedbyisochronaldifferentialscanningcalorimetry, dilatometry and in-situ synchrotron X-ray diffraction complemented by transmission electron microscopy. The thermal decomposition and transformation behavior exhibits various phase transformation sequences during heating into the β-phase field in dependence of composition. Eventually,thetransformationtemperatures,interval,hysteresisandheatoftheβ ↔ α(cid:48)(cid:48) marten- sitic transformation are investigated in relation to the Nb content. The results obtained in this study are useful for the development and optimization of β- stabilized Ti-based alloys for structural, Ni-free shape memory and/or superelastic, as well as for biomedical applications. i Kurzzusammenfassung Ti-Nb Legierungen zeichnen sich durch eine vielf¨altige Metallurgie aus, die es nach sorgf¨altiger Auswahl der chemischen Zusammensetzung sowie der thermischen und mechanischen Prozes- sierungsroute erm¨oglicht eine große Bandbreite mikrostruktureller Konfigurationen und physi- kalischer Eigenschaften zu erhalten. Das Ziel der vorliegenden Arbeit ist es den gegenw¨artigen Wissensstandu¨bermartensitbildendeTi-NbLegierungenzuerweitern. ZudiesemZweckwerden 15 bin¨are Ti-c Nb (9Gew.% (cid:54) c (cid:54) 44.5Gew.%) Legierungen hinsichtlich ihrer strukturellen Nb Nb und mechanischen Eigenschaften sowie ihrer thermischen Stabilit¨at untersucht. Die Kristallstrukturen der martensitischen Phasen, α(cid:48) und α(cid:48)(cid:48), sowie der Einfluss des Nb- Gehalts auf die Gitterverzerrung (Bain-Verzerrung), auf die Verschiebungswellenkomponente (Shuffle-Komponente) und auf die Volumen¨anderung der martensitischen β → α(cid:48)/α(cid:48)(cid:48) Trans- formationen werden anhand von Rietveld-Verfeinerungen analysiert. In Abh¨angigkeit des Nb- Gehalts tritt entweder eine Volumendilatation oder -kontraktion auf, die bestimmen k¨onnte ob hexagonaler Martensit α(cid:48) oder orthorhombischer Martensit α(cid:48)(cid:48) aus β bei Abku¨hlung gebildet wird. Die mechanischen Eigenschaften und das Verformungsverhalten martensitischer Ti-Nb Legie- rungen werden mit einer Reihe komplement¨arer Methoden (monotone und zyklische einachsige Druckversuche, Nanoindentation, Mikroh¨arte, Impulserregungstechnik) untersucht. Die Ergeb- nisse zeigen durchgehend, dass die mechanischen Eigenschaften martensitischer Ti-Nb Legierun- gen stark vom Nb-Gehalt beeinflusst werden. Die mechanischen Kennwerte sind minimal in der N¨ahe der Zusammensetzungen, innerhalb derer β → α(cid:48)(cid:48) bei Abku¨hlung auftritt. Aus Druckver- suchen geht hervor, dass die elastischen Eigenschaften verformter Proben verschieden zu denen unverformter sind. Die experimentellen Ergebnisse weisen außerdem auf eine verformungsin- duzierte Umwandlung von Martensit in Austenit (α(cid:48)(cid:48) → β) hin. Der Einfluss des Nb-Gehalts auf die thermische Stabilit¨at und das Auftreten von Zerfallsreak- tionen in martensitischen Ti-Nb Legierungen wird anhand von dynamischer Differenzkalorime- trie, Dilatometrie, und in-situ Synchrotronr¨ontgenbeugung in Kombination mit Transmissionse- lektronenmikroskopieuntersucht. DasthermischeZerfalls-undUmwandlungsverhaltenistdurch dasAuftreteneinerVielzahlvoninAbh¨angigkeitdesNb-GehaltsunterschiedlichenPhasentrans- formationssequenzen gekennzeichnet. Abschließend werden die Transformationstemperaturen und -w¨armen, das Transformationsinterval und die thermische Hysterese der martensitischen β ↔ α(cid:48)(cid:48) Umwandlung untersucht. Die Ergebnisse dieser Arbeit sind fu¨r die Entwicklung und Optimierung β-stabilisierter Ti- Legierungen fu¨r strukturelle und biomedizinische Anwendungen sowie Ni-freier Komponenten, die Formged¨achtniseffekt und/oder Superelastizit¨at aufweisen, von Nutzen. ii Symbols and abbreviations List of symbols Symbol Explanation Unit a , c Lattice parameters of the hcp martensite α(cid:48) m α(cid:48) α(cid:48) a , b , c Lattice parameters of the orthorhombic martensite α(cid:48)(cid:48) m α(cid:48)(cid:48) α(cid:48)(cid:48) α(cid:48)(cid:48) a , a , b Lattice parameters of austenite and martensite m A M M a Lattice parameter of the bcc β-phase m β a , c Lattice parameters of the ω-phase m ω ω A , A Start and finish temperature for austenite formation (cid:176)C or K s f B Deformation gradient (Bain tensor) – c, c ,...,c Solute contents wt.% or at.% 0 6 cα, cβ,cω Equilibrium solute contents of α, β and ω wt.% or at.% c Nb content in wt.% wt.% Nb e/a Effective number of valence electrons per atom based on – the total number of s plus d electrons in the free atom configuration ε Transformation (lattice) strain related to a martensitic – MT phase transformation ε Uniaxial strain – ε Anelastic strain – an ε Purely elastic strain – el εtotal Total elastic strain εtotal = ε +ε – el el el an ε Plastic strain – pl ε Superelastic strain consisting of εtotal and the strain of – SE el martensite reversion ε Shape memory strain – SM η , η , η Principal lattice strains of a martensitic transformation – 1 2 3 E Young’s modulus Pa E Loading modulus Pa l E Unloading modulus Pa un E Secant modulus Pa secant G Shear modulus Pa G, Gα, Gβ, Free enthalpy (Gibb’s free energy), free enthalpy of α, β, J/mol Gα(cid:48)(cid:48), Gω α(cid:48)(cid:48) and of ω iii iv ∆G Free enthalpy change J/mol H Vickers hardness Pa V H, ∆H Enthalpy, enthalpy change J/mol →− k Wave vector 1/m λ X-ray wavelength m m Specimen mass kg M , M Start and finish temperature for martensite formation (cid:176)C or K s f v Poisson’s ratio – p Hydrostatic pressure Pa Q Magnitude of the diffraction vector 1/m Q−1 Loss factor – S Elastic compliance 1/Pa S Elastic compliance of the loading modulus E 1/Pa l l S Elastic compliance of the unloading modulus E 1/Pa un un S, ∆S Entropy, entropy change J/(mol·K) σ Mechanical uniaxial stress Pa σoffset 0.2% offset yield strength Pa 0.2 σcyclic 0.2% yield strength determined by cyclic loading-unloading Pa 0.2 σ Maximum stress of a loading-unloading sequence Pa max t, w, l Specimen thickness, width and length m →− −→ u, u , u Displacement vectors, displacement amplitude m 0 0 T, ∆T Temperature, temperature difference (cid:176)C or K T Temperature at which the free enthalpies of two phases are (cid:176)C or K 0 equal for a given composition T Quench end temperature (cid:176)C or K q α/β T Transus temperature separating the single β-phase field (cid:176)C or K transus and the α+β two phase region U Internal energy J/mol V, ∆V Volume, volume change m3/mol v , v , v Atomic (specific) volumes in α(cid:48), α(cid:48)(cid:48) and β m3 α(cid:48) α(cid:48)(cid:48) β W, ∆W Stored mechanical energy, amount of energy dissipated in a J/m3 mechanical hysteresis loop (cid:126)x, (cid:126)x(cid:48) Real space vectors m x Nb content in at.% at.% Nb y, z Fractional coordinates – (cid:104)uvw(cid:105), {hkl} Family of crystallographically equivalent directions and – planes [uvw], (hkl) Specific crystallographic direction and plane – (cid:104)uvtw(cid:105), Family of crystallographically equivalent directions and – {hkil} planes in the 4-axes 4-index notation for hexagonal lattices [uvtw], Specific crystallographic direction and plane in the 4-axes – (hkil) 4-index notation for hexagonal lattices v List of abbreviations Abbreviation Explanation A Austenite α Hcp α-phase α(cid:48) Hcp martensite α(cid:48) α(cid:48)(cid:48) Orthorhombic martensite α(cid:48)(cid:48) α(cid:48)(cid:48) Nb-depleted α(cid:48)(cid:48) lean α(cid:48)(cid:48) Nb-enriched α(cid:48)(cid:48) rich β Bcc β-phase β β-phase formed athermally by martensite reversion 0 bcc Body centered cubic CGHE Carrier gas hot extraction DSC Differential scanning calorimetry EDM Electrical discharge machining EDX Energy dispersive X-ray spectroscopy hcp Hexagonal close packed HQ Homogenized and water quenched, homogenization and water quenching IET Impulse excitation technique LM Light microscopy M Martensite ICP-OES Inductively coupled plasma - optical emission spectroscopy ω ω-phase ω Athermal ω-phase ath ω Isothermal ω-phase iso RT Room temperature SAED Selected area electron diffraction SD Standard deviation SE Superelasticity, superelastic SEM Scanning electron microscopy SM Shape memory STQ Solution treated and water quenched, solution treatment and water quenching SXRD Synchrotron X-ray diffraction TEM Transmission electron microscopy WQ Water quenched, water quenching XRD X-ray diffraction Contents Abstract/Kurzzusammenfassung i Symbols and abbreviations iii Contents viii 1 Introduction and objectives 1 1.1 Current trends in the development of β-stabilized Ti-alloys . . . . . . . . . . . . 3 1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Fundamentals of the physical metallurgy of β-isomorphous Ti-alloys 9 2.1 Chapter overview and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Phase transformations in β-isomorphous Ti-alloys . . . . . . . . . . . . . . . . . . 9 2.2.1 Classification of phase transformations in solids . . . . . . . . . . . . . . . 9 2.2.2 Martensitic transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Phases and crystal structures in β-isomorphous Ti-alloys illustrated on the Ti-Nb system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Stable and metastable phase diagrams of Ti-Nb . . . . . . . . . . . . . . . 21 2.3.2 Crystal structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Diffusion and precipitation reactions in Ti-Nb alloys . . . . . . . . . . . . . . . . 31 2.5 Deformation mechanisms of martensitic microstructures . . . . . . . . . . . . . . 33 3 Experimental procedures 37 3.1 Chapter overview and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Overview of workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Alloy synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 Induction cold-crucible casting . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 Homogenization treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4 Structural analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.1 X-ray diffraction (XRD) and in-situ experiments . . . . . . . . . . . . . . 42 3.4.2 Refinement of crystal structure with the Rietveld method . . . . . . . . . 43 3.4.3 Electron and light microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Thermal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5.1 Differential scanning calorimetry (DSC) . . . . . . . . . . . . . . . . . . . 46 3.5.2 Dilatometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 vi Contents vii 3.6 Mechanical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.6.1 Impulse excitation technique (IET) . . . . . . . . . . . . . . . . . . . . . . 47 3.6.2 Nanoindentation and microhardness . . . . . . . . . . . . . . . . . . . . . 48 3.6.3 Compression tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4 Structural properties of martensitic Ti-Nb alloys 50 4.1 Chapter overview and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Structural competition and phase formation in Ti-Nb alloys . . . . . . . . . . . . 50 4.2.1 Phase formation upon casting . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2.2 Phase formation upon homogenization and quenching . . . . . . . . . . . 53 4.3 Composition dependent crystallography of the martensitic phases α(cid:48) and α(cid:48)(cid:48) . . . 56 4.3.1 Influence of Nb content on the martensite lattice parameters and volume fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2 The lattice strains of the β → α(cid:48)/α(cid:48)(cid:48) martensitic transformations . . . . . 64 4.3.3 The volume change related to β → α(cid:48)/α(cid:48)(cid:48) . . . . . . . . . . . . . . . . . . 66 4.3.4 The shuffle component of the β → α(cid:48)/α(cid:48)(cid:48) martensitic transformations . . . 70 4.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Deformation behavior and mechanical properties of martensitic Ti-Nb alloys 79 5.1 Chapter overview and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Mechanical properties determined under monotonic compressive loading . . . . . 79 5.3 Elasticmodulimeasuredbyimpulseexcitationtechnique(IET)andnanoindentation 82 5.4 The mechanical strength in dependence of Nb content . . . . . . . . . . . . . . . 84 5.5 Influence of pre-straining on the recoverable strains, elastic moduli and energy dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.1 Variation of recoverable and permanent deformations with pre-strain . . 91 5.5.2 Variation of E with Nb content and the role of pre-straining . . . . . . . 93 l 5.5.3 Effect of pre-straining on the energy dissipation . . . . . . . . . . . . . . 95 5.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 Thermal stability and precipitation pathways 99 6.1 Chapter overview and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Thermal stability of martensitic Ti-Nb alloys . . . . . . . . . . . . . . . . . . . . 100 6.3 Correlation of DSC and dilatometry with the phase diagrams . . . . . . . . . . . 102 6.3.1 Ti-13.5Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3.2 Ti-21Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.3 Ti-28.5Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.3.4 Ti-(31-39.5)Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.4 Transformation temperatures and heats of the β ↔ α(cid:48)(cid:48) martensitic transformation 120 6.4.1 Transformation temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.4.2 Transformation heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 viii Contents 7 Conclusions and outlook 126 Bibliography 130 List of publications 146 Acknowledgments 148 Versicherung 150

Description:
The influence of Nb content on the thermal stability and on the occurrence of [128] F. Prima, P. Vermaut, G. Texier, D. Ansel, and T. Gloriant.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.