ebook img

Structural Health Monitoring, Photogrammetry & DIC, Volume 6 PDF

209 Pages·2019·17.676 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structural Health Monitoring, Photogrammetry & DIC, Volume 6

Conference Proceedings of the Society for Experimental Mechanics Series Christopher Niezrecki · Javad Baqersad Editors Structural Health Monitoring, Photogrammetry & DIC, Volume 6 Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics 2018 ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries SeriesEditor KristinB.Zimmerman,Ph.D. SocietyforExperimentalMechanics,Inc., Bethel,CT,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/8922 Christopher Niezrecki • Javad Baqersad Editors Structural Health Monitoring, Photogrammetry & DIC, Volume 6 Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics 2018 123 Editors ChristopherNiezrecki JavadBaqersad DepartmentofMechanicalEngineering KetteringUniversity UniversityofMassachusetts Flint,MI,USA Lowell,MA,USA ISSN2191-5644 ISSN2191-5652 (electronic) ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries ISBN978-3-319-74475-9 ISBN978-3-319-74476-6 (eBook) https://doi.org/10.1007/978-3-319-74476-6 LibraryofCongressControlNumber:2018939784 ©TheSocietyforExperimentalMechanics,Inc.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthematerialisconcerned,specificallytherights oftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,evenintheabsenceofaspecific statement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedate ofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorfor anyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutional affiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpartofSpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface StructuralHealthMonitoring,Photogrammetry&DICrepresentsoneofninevolumesoftechnicalpaperspresentedatthe 36thIMAC,AConferenceandExpositiononStructuralDynamics,organizedbytheSocietyforExperimentalMechanics, and held in Orlando, Florida, February 12–15, 2018. The full proceedings also include volumes on Nonlinear Dynamics; DynamicsofCivilStructures;ModelValidationandUncertaintyQuantification;DynamicsofCoupledStructures;Special Topics inStructural Dynamics; Rotating Machinery, Vibro-Acoustics and Laser Vibrometry; Sensors and Instrumentation, Aircraft/AerospaceandEnergyHarvesting;andTopicsinModalAnalysisandTesting. Eachcollectionpresentsearlyfindingsfromexperimentalandcomputationalinvestigationsonanimportantareawithin structuraldynamics. Theorganizerswouldliketothanktheauthors,presenters,sessionorganizers,andsessionchairsfortheirparticipationin thistrack. UniversityofMassachusettsatLowell,Lowell,MA,USA ChristopherNiezrecki KetteringUniversity,Flint,MI,USA JavadBaqersad v Contents 1 AModificationtoUnifiedMatrixPolynomialApproach(UMPA)forModalParameterIdentification ...... 1 SeyedEhsanHajiAghaMohammadZarbafandRandallAllemang 2 OrthogonalProjection-BasedHarmonicSignalRemovalforOperationalModalAnalysis .................... 9 S.Gres,P.Andersen,C.Hoen,andL.Damkilde 3 Identifying Mode Shapes of Turbo-Machinery Blades Using Principal Component Analysis andSupportVectorMachines.......................................................................................... 23 AlexLa,JohnSalmon,andJaronEllingson 4 Full-FieldModalAnalysisUsingaDSLRCamera .................................................................. 27 JakaJavh,JankoSlavicˇ,andMihaBoltežar 5 EnhancingStandardGVTMeasurementswithDigitalImageCorrelation....................................... 31 S.Manzato,E.Di Lorenzo,andP.Mäckel 6 AMulti-viewDICApproachtoExtractOperatingModeShapesofStructures................................. 43 VanshajSrivastava,KiranPatil,JavadBaqersad,andJamesZhang 7 DevelopmentofaSemi-autonomousDroneforStructuralHealthMonitoringofStructuresUsing DigitalImageCorrelation(DIC)....................................................................................... 49 SeanCatt,BenjaminFick,MatthewHoskins,JosephPraski,andJavadBaqersad 8 Experimental Examples for Identification of Structural Systems Using Neural Network andDOF-BasedReductionMethod ................................................................................... 59 HeejunSungandMaenghyoCho 9 ActiveControlofFlexibleCylindersUndergoingVortex-InducedVibrationsUsingPiezoStripe Actuators ................................................................................................................. 63 ErsegunDenizGedikli,DavidChelidze,andJasonDahl 10 ExtractingNaturalFrequenciesofLayeredBeamsUsingaContinuousVariationModelandModal Analysis................................................................................................................... 67 ArnaldoJ.Mazzei,JavadBaqersad,andYaominDong 11 ExtendedAbstract:DynamicBehaviorofaCompliantMechanismDrivenbyStackedPiezoelectric Actuators ................................................................................................................. 77 A.Koyuncu,M.S¸ahin,andH. N.Özgüven 12 Detection of Natural Frequency and Mode Shape Correspondence Using Phase-Based Video MagnificationinLarge-ScaleStructures.............................................................................. 81 AralSarrafi,PeymanPoozesh,ChristopherNiezrecki,andZhuMao 13 RelatingVibrationandThermalLossesUsingtheDampingHeatCoefficient................................... 89 MarkoMihalec,JankoSlavicˇ,JakaJavh,FilippoCianetti,MicheleMoretti,GianlucaRossi,andMihaBoltežar vii viii Contents 14 PredictingGeometricToleranceThresholdsinaFive-AxisMachiningCentre .................................. 93 T.Rooker,N.Dervilis,J.Stammers,K.Worden,P.Hammond,G.Potts,T.Brown,andK.Kerrigan 15 LightFieldImagingofThree-DimensionalStructuralDynamics ................................................. 101 Benjamin Chesebrough, Sudeep Dasari, Andre Green, Yongchao Yang, Charles R. Farrar, andDavidMascareñas 16 AdaptiveObserversforStructuralHealthMonitoringofHigh-Rate,Time-VaryingDynamicSystems...... 109 B. S.Joyce,J.Hong,J. C.Dodson,J. C.Wolfson,andS.Laflamme 17 ProbabilisticRobustnessAnalysisofanActivelyControlledStructurethatOperatesinHarshand UncertainEnvironments................................................................................................ 121 ChristopherJ.D’Angelo,DanielG.Cole,andJohnC.Collinger 18 ImplementationofPiezoelectricShapeSensorsUsingDigitalImageCorrelation............................... 133 JasonTranandJayantSirohi 19 VariableAmplitudeFatigueTestingApparatusandItsDynamicalCharacterization .......................... 137 HewenxuanLiandDavidChelidze 20 AnEfficientLikelihood-FreeBayesianComputationforModelSelectionandParameterEstimation AppliedtoStructuralDynamics ....................................................................................... 141 A.BenAbdessalem,N.Dervilis,D.Wagg,andK.Worden 21 Investigation on the Performance of a Velocity Feedback Control Unit for Structural Vibration Control:TheoryandExperiments..................................................................................... 153 S.Camperi,M.Ghandchi-Tehrani,andS.J.Elliott 22 ExperimentalImplementationofaNonlinearFeedbackControllerforaStrokeLimitedInertial Actuator .................................................................................................................. 163 M.DalBorgo,M.GhandchiTehrani,andS. J.Elliott 23 Bio-inspiredNonlinearControlofArtificialHairCells............................................................. 179 SheydaDavaria,V. V. N.SriramMalladi,andPabloA.Tarazaga 24 TransientExcitationSuppressionCapabilitiesofElectromagneticActuatorsinRotor-ShaftSystems ....... 185 NitishSharma,ShivangShekhar,andJayantaKumarDutt 25 ActiveVehicleSuspensionwithaWeightedMultitoneOptimalController:ConsiderationsofEnergy Consumption............................................................................................................. 195 WaldemarRa˛czka,MarekSibielak,andJarosławKonieczny 26 SlidingModeControllerforVehicleBodyRollReductionUsingActiveSuspensionSystem................... 199 JarosławKonieczny,MarekSibielak,andWaldemarRa˛czka 27 ApplyingConceptsofComplexitytoStructuralHealthMonitoring .............................................. 205 BrianM.West,WilliamR.Locke,TravisC.Andrews,AlexScheinker,andCharlesR.Farrar Chapter 1 A Modification to Unified Matrix Polynomial Approach (UMPA) for Modal Parameter Identification SeyedEhsanHajiAghaMohammadZarbafandRandallAllemang Abstract Inthispaper,amodificationtoUnifiedMatrixPolynomialApproach(UMPA)formodalparameteridentification of mechanical systems is suggested. Following the proposed modification, the measured Frequency Response Functions (FRF)/ImpulseResponseFunctions(IRF)matricesofthesystemaremanipulatedsothatthevibrationalmodesofthesystem can be identified at smaller model orders. A multi degree of freedom numerical case study and the experimental data of a circular plate are then employed to investigate the enhancement in performance of UMPA framework due to the proposed modification.Itwillbeshownthatfollowingtheproposeddatamanipulation,matriceswithlargevaluesofconditionnumber canbeavoidedinmodalparameterestimation. Keywords Unifiedmatrixpolynomialapproach(UMPA) · High-ordermodalparameteridentification · Condition number · Rationalfractionpolynomialmethod · Polyreferencetimedomainmethod 1.1 Introduction Modalparameterestimationisabranchofsystemidentificationwhereexperimentallymeasuredresponseofthesystemis used to identify the modal parameters of the system employing a model in terms of modal parameters. There are several typesofsystemresponsesintime/frequencydomainthatcanbeusedtoextractthemodalpropertieslikeImpulseResponse Functions(IRF)andFrequencyResponseFunction(FRF).Thesystemcanbeexcitedusingdifferentexcitationmethods[1,2] oritcanbelefttobeexcitedbyworking/environmentalconditions[3–8].Thesystemresponsesmeasuredatdifferentpoints on the structure can be processed individually or simultaneously [9]. Consequently, there are many system identification methods developed to identify the modal properties of systems using several types of systems responses [10–15]. In 1998, Allemang and Brown reformulated different modal parameter identification methods into a consistent mathematical formulation and named it Unified Matrix Polynomial Approach (UMPA) [16]. In UMPA framework, a polynomial of a generalized frequency variable with matrix coefficients is considered as the characteristic equation of the system where the model order is the highest order of the generalized frequency variable. The methods in which there is no limitation on the value of model order such as Complex Exponential (CE) [17], Least Squares Complex Exponential (LSCE) [18], PolyreferenceTimeDomain(PTD)[19],andRationalFractionPolynomial(RFP)[20]arecalledhigh-ordermethodswhile the methods with model order 1 (Ibrahim Time Domain (ITD) [21] and Eigensystem Realization Algorithm (ERA) [22]) or2(PolyreferenceFrequencyDomain(PFD)[23])arecalledlow-ordermethods.Foreachmodalparameteridentification method,datamatricesintime/frequencydomainaremanipulatedaccordinglytocalculatetheunknowncoefficientmatrices of matrix polynomial equation. Employing acquired coefficient matrices in a two-stage linear procedure, complex-valued natural frequencies, modal participation vectors, modal vectors, and modal scaling factors (modal A/modal mass) are identified[16]. Large condition number of data matrices involved in high order modal parameter identification methods is a challenge especiallyforfrequencydomainmethodRFPwherethedatamatrixisofVandermondeform[24]andhence,thecondition number of data matrix increases with model order and makes the identification method more sensitive to noise in data. Minimizing the frequency range of the data and the order of the model [25], scaling the frequencies [26], and using S.E.HajiAghaMohammadZarbaf((cid:2))·R.Allemang StructuralDynamicsResearchLaboratory,SchoolofDynamicSystems,CollegeofEngineeringandAppliedScience,UniversityofCincinnati, Cincinnati,OH,USA e-mail:[email protected] ©TheSocietyforExperimentalMechanics,Inc.2019 1 C.Niezrecki,J.Baqersad(eds.),StructuralHealthMonitoring,Photogrammetry&DIC,Volume6, ConferenceProceedingsoftheSocietyforExperimentalMechanicsSeries,https://doi.org/10.1007/978-3-319-74476-6_1 2 S.E.HajiAghaMohammadZarbafandR.Allemang orthogonalpolynomialslikeForsythepolynomials[27,28]andChebyshevpolynomials[29]insteadofpowerpolynomials intheformulationofRFPhavebeenproposedovertheyearstodealwithill-conditioningofdatamatrixinhigh-ordermodal parameteridentificationmethods. In this paper, a data manipulation based on UMPA framework is suggested so that smaller model orders are required to identify the vibrational modes of a system. First, UMPA framework for modal parameter identification of mechanical systemsisreviewed.Second,amodificationtoUMPAframeworkissuggestedtoreducethemodelorderrequiredtoidentify thevibrationalmodesofthesystemandhence,matriceswithlargeconditionnumberscanbeavoided.Finally,twohigh-order modalparameteridentificationmethodsPTDandRFPareimplementedinUMPAframeworktoinvestigatetheenhancement inperformanceofhighordermodalparameteridentificationmethodsinUMPAframeworkduetotheproposedmodification. 1.2 UMPA ThegoverningdifferentialequationofmotionofasystemwithNDegreesofFreedom(DOFs)canbewrittenasEq.(1.1), ŒM(cid:2)fxR.t/gCŒC(cid:2)fxP.t/gCŒK(cid:2)fx.t/gDff.t/g (1.1) where [M], [C], and [K] – RN(cid:2)N are the mass, damping, and stiffness matrices of the system and fx(t)g and ff(t)g are the systemresponsevectorandexcitationvector.TakingtheLaplacetransformofbothsidesofEq.(1.1)resultsin, (cid:2) (cid:3) ŒM(cid:2)s2CŒC(cid:2)sCŒK(cid:2) fX.s/gDfF.s/g (1.2) where s is a general frequency variable and fX(s)g and fF(s)g are the Laplace transforms of fx(t)g and ff(t)g respectively. AssumingthefreevibrationconditionforEq.(1.1),ff(t)gD0,thecharacteristicequationofthesystemiscalculatedasEq. (1.3): (cid:2) (cid:3) det ŒM(cid:2)s2CŒC(cid:2)sCŒK(cid:2) D0 (1.3) Partitioning[M],[C],and[K]intosub-matrices[M ],[C ],and[K ],i,jD1,2,3, :::,n,Eq.(1.3)canbeexpandedas ij ij ij below, 02 3 2 3 2 31 ŒM11(cid:2) ŒM12(cid:2) (cid:2)(cid:2)(cid:2) ŒM1n(cid:2) ŒC11(cid:2) ŒC12(cid:2) (cid:2)(cid:2)(cid:2) ŒC1n(cid:2) ŒK11(cid:2) ŒK12(cid:2) (cid:2)(cid:2)(cid:2) ŒK1n(cid:2) detBBB@6664 ŒM:::21(cid:2)ŒM:::22(cid:2) (cid:2)::(cid:2):(cid:2) ŒM:::2n(cid:2)7775s2C6664 ŒC:::21(cid:2)ŒC:::22(cid:2) (cid:2)::(cid:2):(cid:2) ŒC:::2n(cid:2)7775sC6664 ŒK:::21(cid:2)ŒK:::22(cid:2) (cid:2)::(cid:2):(cid:2) ŒK:::2n(cid:2)7775CCCAD0 (1.4) ŒMn1(cid:2)ŒMn2(cid:2) (cid:2)(cid:2)(cid:2) ŒMnn(cid:2) ŒCn1(cid:2)ŒCn2(cid:2) (cid:2)(cid:2)(cid:2) ŒCnn(cid:2) ŒKn1(cid:2)ŒKn2(cid:2) (cid:2)(cid:2)(cid:2) ŒKnn(cid:2) Thesecond-ordermatrixpolynomialofEq.(1.4)canalsobewrittenasahigherordermatrixpolynomialwiththesame roots: Œ’2n(cid:2)s2nCŒ’2n(cid:3)1(cid:2)s2n(cid:3)1C(cid:2)(cid:2)(cid:2)CŒ’1(cid:2)sCŒ’0(cid:2)D0 (1.5) InUMPAframework,thepolynomialmodelofEq.(1.6)isemployedtocalculatetheunknowncoefficientmatrices[’]in Eq.(1.5): P H .¨/D “n.j¨/nC“n(cid:3)1.j¨/n(cid:3)1C(cid:2)(cid:2)(cid:2)C“1.j¨/1C“0 D PnkD0“k.j¨/k (1.6) pq ’m.j¨/mC’m(cid:3)1.j¨/m(cid:3)1C(cid:2)(cid:2)(cid:2)C’1.j¨/1C’0 mkD0’k.j¨/k where H (¨) is the FRF of the system measured at DOF p while the system is being excited at DOF q, ¨ is the angular pq frequencyinrad/sec,andmisthemodelorder.Eq.(1.6)canberewrittenas, Xm Xn ’ .j¨/kH .¨/D “ .j¨/k (1.7) k pq k kD0 kD0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.