ebook img

Structural folding dynamics of an archetypal conformational disease using Nuclear Magne PDF

214 Pages·2014·21.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structural folding dynamics of an archetypal conformational disease using Nuclear Magne

Structural  folding  dynamics  of  an  archetypal  conformational   disease  using  Nuclear  Magnetic  Resonance  Spectroscopy           Ph.D.  Thesis   Géraldine  Rosalie  Levy   Institute  of  Structural  and  Molecular  Biology  (ISMB)   University  College  London           Submitted  September  2013 Declaration         I,  Géraldine  Rosalie  Levy,  declare  that  all  the  work  presented  in  this  thesis  is   the  result  of  my  work  only.  Where  information  has  been  derived  from  other   sources,  I  confirm  that  this  has  been  indicated  in  the  thesis.  The  work  herein  was   carried  out  while  I  was  a  post-­‐graduate  student  at  University  College  London,   Institute  of  Structural  and  Molecular  biology,  under  the  supervision  of  Dr  John   Christodoulou  and  Dr  Bibekbrata  Gooptu.                                                 1 Acknowledgements     2 Abstract       Members of the serpin (serine protease inhibitor) superfamily of proteins regulate key physiological processes through their ability to undergo major conformational transitions. In conformational diseases, native protein conformers convert to pathological species that polymerise. Structural characterization of these key transitions is challenging. Mechanistic intermediates are unstable and minimally populated in dynamic equilibria that may be perturbed by many analytical techniques. I use Nuclear Magnetic Resonance (NMR), and Circular Dichroism (CD) spectroscopy, to investigate the interrelated processes of serpin folding, misfolding and polymerisation in solution using the 45kDa prototypic serpin α -antitrypsin, the 1 recent assignment of the backbone resonances of α -antitrypsin by our group, allows 1 us to ask more sophisticated questions by a range of NMR techniques to study its structure and dynamics. In this study, I analysed early unfolding behaviour of α - 1 antitrypsin across a urea titration within what is apparently the largest two-states system yet characterised. In order to assess the dynamics of the native state, I have used hydrogen/deuterium exchange nuclear magnetic resonance spectroscopy (HDXNMR) to characterise motions on the slow (ms) timescale. I have conducted a detailed analysis of residue-specific changes in protection from exchange across a pH titration using SOFAST-HMQC. This is complemented by a detailed a preliminary analysis of fast motions (ps-ns) using NMR relaxation experiments. Moreover, a forme fruste deficiency variant of α -antitrypsin (Lys154Asn) that forms polymers 1 recapitulating the conformer-specific neo-epitope observed in polymers that form in vivo was characterized in this study. Lys154Asn α -antitrypsin populates an 1 intermediate ensemble along the polymerisation pathway at physiological temperatures. Together, this study shows how the use of powerful but minimally perturbing techniques, mild disease mutants, and physiological conditions, provides novel insights into pathological conformational behaviour.       3 List  of  abbreviations       Serpin:     Serine  Protease  Inhibitor   FENIB:     Familial  Encephalopathy  with  Neuronal  Inclusion  Body   NMR:       Nuclear  Magnetic  Resonance  spectroscopy   SDS:       Sodium  Dodecyl  Sulfate     PAGE:       Polyacrylamide  Gel  Electrophoresis   LB:       Luria  Broth     E.  coli:       Escherichia  coli   Cryo-­‐EM:     Cryo  electron-­‐microscopy   CD:       Circular  Dichroism     RPM:       Revolutions  Per  Minute   OD:       Optical  Density   PEG:       Poly  Ethylene  Glycol   TUG:     Transverse  Urea  Gel   βME:      β  Mercapto-­‐Ethanol   EDTA:       EthyleneDiamineTetracetic  Acid   IPTG:     Isopropyl  β-­‐D-­‐1-­‐thiogalactopyranoside   ER:       Endoplasmic  Reticulum   HSQC:       Heteronuclear  Single  Quantum  Coherence   TROSY:     Transverse  Relaxation-­‐Optimized  Spectroscopy   RDC:       Residual  Dipolar  Coupling   HMQC:     Heteronclear  Multiple  quantum  coherence   SOFAST:   Selective  Optimized  Flip  Angle  Short  Transient     DSS:       4,4-­‐dimethyl-­‐4-­‐silapentane-­‐1-­‐sulfonic  acid   MW:       Molecular  Weight   RNA:       Ribonucleic  Acid     4 mRNA:     Messenger  Ribonucleir  Acid   tRNA:       Transfer  Ribonucleir  Acid   DNA:     Deoxyribonucleic  acid   cDNA:       Complementary  DNA   v/v:  volume:    volume  ratio   w/v:  weight:    volume  ratio   kDa:       kilo  Daltons   Δν :       Linewidth   1H τ :       Rotational  correlation  time   C RCL:       Reactive  Centre  Loop   MS:       Mass  Spectrometry     IM/MS:     Ion  Mobility  Spectrometry  -­‐  Mass  Spectrometry  experiments   ToF:     Time  of  Flight   m/z:     mass:charge  ratio   CID:       Collision  Induced  Dissociation   HDXNMR:     Hydrogen  Deuterium  Exchange  Nuclear  Magnetic  Resonance     Spectroscopy   HDXMS:     Hydrogen  Deuterium  Exhange  Mass  Spectrometry   FID:       Free  Induction  Decay   NOE:     Nuclear  Overhauser  Effect   FT:       Fourier  Transformation   PDB:       Protein  Data  Base     ω :       Precession  rate   0 γ:     Gyromagnetic  ratio   F Apparent  fraction  unfolded     app:     WT:       Wild  Type   ∆G:       Gibbs  Free  energy   ∆H:       Difference  in  enthalpy   T:     temperature       5 ∆S:     Difference  in  entropy   k :     Rate  of  exchange     ex k :     Intrinsic  rate       int k :     Rate  of  opening     op k :     Rate  of  closing   cl ∆G :       Free  energy  between  the  close     app GdmCl:     Guanidine  Hydrochloride   K:     Equilibrium  constant   F:     Folded     U:     Unfolded   I:       Intermediate   M*:     Molten  Globule-­‐like   CFTR:       Cystic  Fibrosis  Transmembrane  Conductance  Regulator     ERAD:     ER-­‐associated  degradation     EOR:       ER  Overload  Response       S:     Stressed     R:     Relaxed     B Externally  applied  magnetic  field   0:     R Transverse  relaxation  rate   2:     τ Rotational  correlation  time     c:     pET:     pTermat  Expression  vector  system   PCR:     Polymerase  chain  reaction   AmPS:     Ammonium  persulphate   IM-­‐MS:   Ion  Mobility  -­‐  Mass  Spectrometry     DTT:     Dithiothreitol   U.V.:     Ultra  Violet   DSC:     Differential  Scanning  Calorimetry   mAb:     Monoclonal  antibody   P:       Protection  factor     6 IEF:     Iso-­‐Electric  Focusing     SI:     Stoichiometry  of  Inhibition     K :     Association  rate  constant   app PAI-­‐1:     Plasminogen  Activator  Inhibitor-­‐1     CCS:       Collision  Cross  Section   INEPT:     Insensitive  Nuclei  Enhanced  by  Polarization  Transfer                                                   7 Table  of  Contents   Declaration   1   Acknowledgements   2   Abstract   3   List  of  abbreviations   4   Chapter  1  –  INTRODUCTION   12   Protein  folding   13   Physical  forces  and  principle  underlying  protein  folding   13   1.1.1.1.  Thermodynamics   14   1.1.1.2.  Kinetics   16   1.1.1.3.  Models  of  protein  folding   16   1.1.1.4.  Polypeptide  chain  behaviour  and  energy  landscapes   18   1.1.1.5.  Tools  for  the  study  of  protein  folding.   20   1.1.1.6.  Relationship  of  polypeptide  folding  within  cells  and  in  isolation   20   1.1.1.7.  Protein  misfolding  and  conformational  disease   21   1.2.  Serpins  and  serpinopathies   23   1.2.1.  α -­‐antitrypsin  deficiency   24    1 1.2.2.  Metastability  and  inhibitory  mechanism   25   1.2.3  Alternative  serpin  conformations   27   1.2.4.  Studies  of  serpin  folding   29   1.2.5.  Serpin  polymerisation   31   1.2.5.1.  Polymerisation  induced  by  loop  cleavage  or  peptide  insertion   32   1.2.5.2.  Three  models  of  polymerisation  proposed  for  disease  mechanism  and   intermediate  formation   34   1.3.  NMR  spectroscopy  in  studying  protein  folding   38   1.3.1.  General  principles  of  NMR   38   1.3.2.  Study  of  protein  structure  and  dynamics  using  NMR  spectroscopy   41   1.3.3.  NMR  studies  of  high  molecular  weight  proteins   42   1.3.4.  Introduction  to  NMR  of  α-­‐antitrypsin   46   1 1.3.5.  Multiple  timescales  allow  structural  and  dynamical  behaviour  to  be  characterized  48   Chapter  2  –  MATERIALS  AND  METHODS   54   2.1  Materials   55   2.1.1  Regents   55   2.1.2  Instruments   55   2.1.2.1.  Cell  purification  and  characterization   55   2.1.2.2.  Circular  Dichroism   56   2.1.2.3.  Nuclear  Magnetic  Resonance  (NMR)  Spectroscopy   56   2.1.2.4.  Mass  Spectrometry  (MS)   56   2.2  Methods   57   2.2.1  Protein  recombinant  expression  in  Escherichia  coli  (E.  coli)  and  purification   57     8 2.2.1.1.  Plasmid  constructs   57   2.2.1.2  Transformation  of  BL-­‐21-­‐Gold  E.  coli  with  plasmid  pQE-­‐31  containing  α-­‐antitrypsin   1 cDNA   59   2.2.1.3  Unlabelled  recombinant  α-­‐antitrypsin  protein  production   59   1 2.2.1.4  Uniform  incorporation  of  15N-­‐  and  13C-­‐15N-­‐2H-­‐  isotopic  labeling  for  NMR   60   2.2.2  Purification  of  α-­‐antitrypsin   60   1 2.2.3  Biophysical  and  biochemical  characterization   62   2.2.3.1  Activity  Assay   62   2.2.3.2  Far  U.V.  Circular  Dichroism  spectroscopy   63   2.2.3.3  Native-­‐PAGE   63   2.2.3.4  Transverse  Urea  Gradient-­‐PAGE   64   2.2.3.5  1H  NMR   65   2.2.3.6  Native  Mass  Spectrometry  (MS)   65   2.2.4  Hydrogen  Deuterium  exchange  (HDXNMR)   66   2.2.4.1  Sample  preparation   66   2.2.4.2  1H-­‐15N  SOFAST  HMQC  NMR  for  HDXNMR  experiments   66   2.2.4.3.  Spectral  processing  and  NMR  frequency  referencing   67   2.2.4.4.  Data  processing  and  analysis   68   2.2.5.  NMR  studies  of  α-­‐antitrypsin  in  urea   70   1 2.2.5.1.  Sample  preparation   70   2.2.5.2  1H-­‐15N  -­‐TROSY  HSQC   71   2.2.6.  NMR  relaxation  of  α-­‐antitrypsin   71   1 2.2.6.1  Sample  preparation   71   Chapter  3  –  NMR  STUDIES  OF  α-­‐ANTITRYPSIN  SOLUTION  BEHAVIOUR  IN  UREA   74   1 3.1.  Introduction   75   3.1.1.  Metastability/Z-­‐mutant  and  formation  of  intermediate  ensemble.   75   3.1.2.  Equilibrium  folding  intermediate   76   3.1.3.  Probing  the  folding/unfolding  pathway  of  α-­‐antitrypsin  in  guanidine   78   1 3.1.4.  Probing  the  folding/unfolding  pathway  of  α-­‐antitrypsin  in  urea   80   1 3.1.5.  Effect  of  stabilizing  ‘cavity-­‐filling’  mutations  on  the  native  state  α-­‐antitrypsin   81   1 3.2  Results   82   3.2.1.  NMR  studies  of  α-­‐antitrypsin  unfolding  structural  behaviour   82   1 3.2.2.  Circular  Dichroism  studies  of  the  plasma  derived  and  recombinant  α-­‐antitrypsin   92   1 3.2.3.  Transiently  populated  α-­‐antitrypsin  intermediates  form  off-­‐pathway  polymers  with   1 defined  secondary  structure  in  urea   95   3.3.  Discussion   97   Chapter  4  –  STRUCTURAL  DYNAMICS  OF  THE  NATIVE  α-­‐ANTITRYPSIN  STUDIED  BY   1 HYDROGEN  DEUTERIUM  EXCHANGE  NUCLEAR  MAGNETIC  RESONANCE  SPECTROSCOPY   101   4.1.  Introduction   102   4.1.1.  General  principle  of  HDXNMR   102   4.1.2.  HDXMS  studies  of  α-­‐antitrypsin   105   1   9

Description:
Ph.D. Thesis. Géraldine Rosalie Levy. Institute of Structural and Molecular Biology (ISMB). University College London. Submitted September 2013 described above, to which 10 % D20 was added, as a spectrometer field lock, and This opens the way to future studies including those that can be.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.