ebook img

Structural equation modeling applications using Mplus PDF

537 Pages·10.643 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Structural equation modeling applications using Mplus

(cid:2) Structural Equation Modeling (cid:2) (cid:2) (cid:2) (cid:2) WILEYSERIESINPROBABILITYANDSTATISTICS EstablishedbyWALTERA.SHEWHARTandSAMUELS.WILKS Editors DavidJ.Balding,NoelA.C.Cressie,GarrettM.Fitzmaurice,HarveyGoldstein, GeertMolenberghs,DavidW.Scott,AdrianF.M.Smith,andRueyS.Tsay EditorsEmeriti VicBarnett,RalphA.Bradley,J.StuartHunter,J.B.Kadane,DavidG.Kendall,and JozefL.Teugels Acompletelistofthetitlesinthisseriesappearsattheendofthisvolume. (cid:2) (cid:2) (cid:2) (cid:2) Structural Equation Modeling Applications Using Mplus Second Edition Jichuan Wang GeorgeWashingtonUniversity,UnitedStates (cid:2) (cid:2) Xiaoqian Wang MobleyGroupPacificLtd. P.R.China (cid:2) (cid:2) Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd EditionHistory JohnWiley&Sons(1e,2012) Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleis availableathttp://www.wiley.com/go/permissions. TherightofJichuanWangandXiaoqianWangtobeidentifiedastheauthorsofthisworkhasbeen assertedinaccordancewithlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffice 9600GarsingtonRoad,Oxford,OX42DQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontent (cid:2) thatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. (cid:2) LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthiswork andspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceoffurther informationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicesthe organization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwith theunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceand strategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialist whereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimited tospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationDataappliedfor ISBN:9781119422709 CoverDesign:Wiley CoverImage:©JichuanWangGraphDesign Setin10/12pt,TimesLTStdbySPiGlobal,Chennai,India 10 9 8 7 6 5 4 3 2 1 (cid:2) (cid:2) Contents Preface ix 1 Introductiontostructuralequationmodeling 1 1.1 Introduction 1 1.2 Modelformulation 3 1.2.1 Measurementmodels 4 1.2.2 Structuralmodels 6 1.2.3 Modelformulationinequations 7 1.3 Modelidentification 11 1.4 Modelestimation 14 1.4.1 Bayesestimator 17 (cid:2) 1.5 Modelfitevaluation 19 (cid:2) 1.5.1 Themodel𝜒2statistic 20 1.5.2 Comparativefitindex(CFI) 20 1.5.3 TuckerLewisindex(TLI)ornon-normedfitindex(NNFI) 21 1.5.4 Rootmeansquareerrorofapproximation(RMSEA) 22 1.5.5 Rootmean-squareresidual(RMR),standardizedRMR (SRMR),andweightedRMR(WRMR) 22 1.5.6 Informationcriteriaindices 24 1.5.7 ModelfitevaluationwithBayesestimator 25 1.5.8 Modelcomparison 26 1.6 Modelmodification 27 1.7 ComputerprogramsforSEM 28 Appendix1.A Expressingvariancesandcovariancesamongobserved variablesasfunctionsofmodelparameters 30 Appendix1.B MaximumlikelihoodfunctionforSEM 32 2 Confirmatoryfactoranalysis 33 2.1 Introduction 33 2.2 BasicsofCFAmodels 34 2.2.1 Latentvariables/factors 39 2.2.2 Indicatorvariables 39 2.2.3 Itemparceling 40 2.2.4 Factorloadings 42 (cid:2) (cid:2) vi CONTENTS 2.2.5 Measurementerrors 42 2.2.6 Itemreliability 44 2.2.7 Scalereliability 44 2.3 CFAmodelswithcontinuousindicators 45 2.3.1 Alternativemethodsforfactorscaling 52 2.3.2 Modelestimateditemreliability 57 2.3.3 Modelmodificationbasedonmodificationindices 57 2.3.4 Modelestimatedscalereliability 58 2.3.5 Itemparceling 60 2.4 CFAmodelswithnon-normalandcensoredcontinuousindicators 61 2.4.1 Testingnon-normality 61 2.4.2 CFAmodelswithnon-normalindicators 62 2.4.3 CFAmodelswithcensoreddata 67 2.5 CFAmodelswithcategoricalindicators 70 2.5.1 CFAmodelswithbinaryindicators 72 2.5.2 CFAmodelswithordinalcategoricalindicators 76 2.6 Theitemresponsetheory(IRT)modelandthegradedresponse model(GRM) 77 2.6.1 Theitemresponsetheory(IRT)model 77 2.6.2 Thegradedresponsemodel(GRM) 86 2.7 Higher-orderCFAmodels 91 (cid:2) 2.8 Bifactormodels 96 (cid:2) 2.9 BayesianCFAmodels 102 2.10 Plausiblevaluesoflatentvariables 110 Appendix2.A BSI-18instrument 113 Appendix2.B Itemreliability 114 Appendix2.C Cronbach’salphacoefficient 116 Appendix2.D Calculatingprobabilitiesusingprobitregression coefficients 117 3 Structuralequationmodels 119 3.1 Introduction 119 3.2 Multipleindicators,multiplecauses(MIMIC)model 120 3.2.1 Interactioneffectsbetweencovariates 126 3.2.2 Differentialitemfunctioning(DIF) 127 3.3 Generalstructuralequationmodels 137 3.3.1 Testingindirecteffects 141 3.4 Correctingformeasurementerrorinsingleindicatorvariables 144 3.5 Testinginteractionsinvolvinglatentvariables 150 3.6 Moderatedmediatingeffectmodels 153 3.6.1 Bootstrapconfidenceintervals 159 3.6.2 Estimatingcounterfactual-basedcausaleffectsinMplus 160 3.7 Usingplausiblevaluesoflatentvariablesinsecondaryanalysis 164 (cid:2) (cid:2) CONTENTS vii 3.8 Bayesianstructuralequationmodeling(BSEM) 167 Appendix3.A Influenceofmeasurementerrors 173 Appendix3.B Fractionofmissinginformation(FMI) 175 4 Latentgrowthmodeling(LGM)forlongitudinaldataanalysis 177 4.1 Introduction 177 4.2 LinearLGM 178 4.2.1 UnconditionallinearLGM 178 4.2.2 LGMwithtime-invariantcovariates 184 4.2.3 LGMwithtime-invariantandtime-varyingcovariates 189 4.3 NonlinearLGM 192 4.3.1 LGMwithpolynomialtimefunctions 192 4.3.2 PiecewiseLGM 203 4.3.3 Freetimescores 210 4.3.4 LGMwithdistaloutcomes 211 4.4 MultiprocessLGM 216 4.5 Two-partLGM 221 4.6 LGMwithcategoricaloutcomes 229 4.7 LGMwithindividuallyvaryingtimesofobservation 238 4.8 Dynamicstructuralequationmodeling(DSEM) 241 (cid:2) 4.8.1 DSEMusingobservedcenteringforcovariates 241 (cid:2) 4.8.2 ResidualDSEM(RDSEM)usingobservedcenteringfor covariates 245 4.8.3 ResidualDSEM(RDSEM)usinglatentvariablecentering forcovariates 248 5 Multigroupmodeling 253 5.1 Introduction 253 5.2 MultigroupCFAmodels 254 5.2.1 Multigroupfirst-orderCFA 258 5.2.2 Multigroupsecond-orderCFA 289 5.2.3 MultigroupCFAwithcategoricalindicators 306 5.3 MultigroupSEM 316 5.3.1 Testinginvarianceofstructuralpathcoefficientsacross groups 322 5.3.2 Testinginvarianceofindirecteffectsacrossgroups 326 5.4 Multigrouplatentgrowthmodeling(LGM) 327 5.4.1 Testinginvarianceofthegrowthfunction 332 5.4.2 Testinginvarianceoflatentgrowthfactormeans 335 6 Mixturemodeling 339 6.1 Introduction 339 6.2 Latentclassanalysis(LCA)modeling 340 6.2.1 DescriptionofLCAmodels 341 (cid:2) (cid:2) viii CONTENTS 6.2.2 Definingthelatentclasses 347 6.2.3 Predictingclassmembership 347 6.2.4 UnconditionalLCA 348 6.2.5 DirectlyincludingcovariatesintoLCAmodels 360 6.2.6 ApproachesforauxiliaryvariablesinLCAmodels 363 6.2.7 ImplementingthePC,three-step,Lanza’s,andBCH methods 365 6.2.8 LCAwithresidualcovariances 370 6.3 ExtendingLCAtolongitudinaldataanalysis 373 6.3.1 Longitudinallatentclassanalysis(LLCA) 373 6.3.2 Latenttransitionanalysis(LTA)models 375 6.4 Growthmixturemodeling(GMM) 392 6.4.1 Unconditionalgrowthmixturemodeling(GMM) 394 6.4.2 GMMwithcovariatesandadistaloutcome 402 6.5 Factormixturemodeling(FMM) 411 6.5.1 LCFAmodels 417 Appendix6.A IncludingcovariatesinLTAmodel 418 Appendix6.B Manuallyimplementingthree-stepmixturemodeling 434 7 Samplesizeforstructuralequationmodeling 443 (cid:2) 7.1 Introduction 443 (cid:2) 7.2 TherulesofthumbforsamplesizeinSEM 444 7.3 TheSatorra-Sarismethodforestimatingsamplesize 445 7.3.1 ApplicationofTheSatorra-SarismethodtoCFAmodels 446 7.3.2 ApplicationoftheSatorra-Saris’smethodtolatentgrowth models 454 7.4 MonteCarlosimulationforestimatingsamplesizes 458 7.4.1 ApplicationofaMonteCarlosimulationtoCFAmodels 459 7.4.2 ApplicationofaMonteCarlosimulationtolatentgrowth models 463 7.4.3 ApplicationofaMonteCarlosimulationtolatentgrowth modelswithcovariates 467 7.4.4 ApplicationofaMonteCarlosimulationtolatentgrowth modelswithmissingvalues 469 7.5 EstimatesamplesizeforSEMbasedonmodelfitindexes 473 7.5.1 ApplicationoftheMacCallum–Browne–Sugawara’s method 474 7.5.2 ApplicationofKim’smethod 477 7.6 Estimatesamplesizesforlatentclassanalysis(LCA)model 479 References 483 Index 507 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.