Structural Engineering Reference Manual Eighth Edition Alan Williams, PhD, SE, FICE, C Eng Professional Publications, Inc. • Belmont, California Benefit by Registering This Book with PPI • Get book updates and corrections. • Hear the latest exam news. • Obtain exclusive exam tips and strategies. • Receive special discounts. Register your book at ppi2pass.com/register. Report Errors and View Corrections for This Book PPI is grateful to every reader who notifies us of a possible error. Your feedback allows us to improve the quality and accuracy of our products. You can report errata and view corrections at ppi2pass.com/errata. Notice to Readers of the Digital Book Digital books are not free books. All digital content, regardless of delivery method, is protected by the same copyright laws that protect the printed book. Access to digital content is limited to the original user/assignee and is non-transferable. PPI may, at its option, use undetectable methods to monitor ownership, access, and use of digital content, and may revoke access or pursue damages if user violates copyright law or PPI’s end-use license agreement. STRUCTURALENGINEERINGREFERENCEMANUAL EighthEdition Currentprintingofthisedition:8(electronicversion) PrintingHistory edition printing number number update 6 3 Minorcorrections. 7 1 Newedition.Codeupdates.Copyrightupdate. 8 1 Newedition.Codeupdates.Additionalcontent.Copyrightupdate. Ó2015ProfessionalPublications, Inc. Allrights reserved. All content is copyrighted by Professional Publications, Inc. (PPI). No part, either text or image, may be used for any purposeotherthanpersonaluse.Reproduction,modification,storageinaretrievalsystemorretransmission,inanyform or by any means, electronic, mechanical, or otherwise, for reasons other than personal use, without prior written permission from thepublisherisstrictlyprohibited.Forwrittenpermission, [email protected]. PrintedintheUnitedStatesofAmerica. PPI 1250FifthAvenue Belmont,CA94002 (650)593-9119 ppi2pass.com ISBN:978-1-59126-499-6 LibraryofCongressControlNumber:2015938459 FEDCBA Table of Contents ................................................................................................................................................................................................................................................................................. Preface and Acknowledgments . . . . . . . . . . . . . .v Chapter 4: Structural Steel Design 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii 2. Load Combinations. . . . . . . . . . . . . . . . . . . . . 4-1 3. Design for Flexure. . . . . . . . . . . . . . . . . . . . . . 4-4 Codes and References . . . . . . . . . . . . . . . . . . . xix 4. Design for Shear . . . . . . . . . . . . . . . . . . . . . . .4-14 5. Design of Compression Members . . . . . . . . . . .4-18 Chapter 1: Reinforced Concrete Design 6. Plastic Design. . . . . . . . . . . . . . . . . . . . . . . . .4-37 1. General Requirements . . . . . . . . . . . . . . . . . . . 1-1 7. Design of Tension Members . . . . . . . . . . . . . . .4-44 2. Strength Design Principles. . . . . . . . . . . . . . . . 1-1 8. Design of Bolted Connections. . . . . . . . . . . . . .4-50 3. Strength Design of Reinforced 9. Design of Welded Connections. . . . . . . . . . . . .4-59 Concrete Beams . . . . . . . . . . . . . . . . . . . . . 1-3 4. Serviceability Requirements for Beams . . . . . . .1-12 10. Plate Girders. . . . . . . . . . . . . . . . . . . . . . . . .4-69 5. Elastic Design Method. . . . . . . . . . . . . . . . . . .1-16 11. Composite Beams . . . . . . . . . . . . . . . . . . . . .4-76 6. Beams in Shear. . . . . . . . . . . . . . . . . . . . . . . .1-17 References. . . . . . . . . . . . . . . . . . . . . . . . . . .4-81 7. Deep Beams . . . . . . . . . . . . . . . . . . . . . . . . . .1-21 Practice Problems . . . . . . . . . . . . . . . . . . . . .4-82 8. Corbels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-25 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . .4-83 9. Beams in Torsion . . . . . . . . . . . . . . . . . . . . . .1-27 10. Concrete Columns. . . . . . . . . . . . . . . . . . . . .1-29 Chapter 5: Timber Design 11. Development and Splice Length 1. ASD and LRFD Methods. . . . . . . . . . . . . . . . . 5-1 of Reinforcement. . . . . . . . . . . . . . . . . . . .1-37 2. Load Combinations. . . . . . . . . . . . . . . . . . . . . 5-1 12. Two-Way Slab Systems . . . . . . . . . . . . . . . . .1-45 13. Anchoring to Concrete. . . . . . . . . . . . . . . . . .1-51 3. Definitions and Terminology . . . . . . . . . . . . . . 5-2 References. . . . . . . . . . . . . . . . . . . . . . . . . . .1-59 4. Reference Design Values . . . . . . . . . . . . . . . . . 5-2 Practice Problems . . . . . . . . . . . . . . . . . . . . .1-60 5. Adjustment of Reference Design Values . . . . . . 5-3 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . .1-62 6. Adjustment Factors. . . . . . . . . . . . . . . . . . . . . 5-4 7. Design for Flexure. . . . . . . . . . . . . . . . . . . . . .5-12 Chapter 2: Foundations and Retaining 8. Design for Shear . . . . . . . . . . . . . . . . . . . . . . .5-15 Structures 9. Design for Compression . . . . . . . . . . . . . . . . . .5-21 1. Strip Footing . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 10. Design for Tension. . . . . . . . . . . . . . . . . . . . .5-27 2. Isolated Column with Square Footing. . . . . . . . 2-6 11. Design of Connections . . . . . . . . . . . . . . . . . .5-29 3. Isolated Column with Rectangular Footing. . . .2-11 References. . . . . . . . . . . . . . . . . . . . . . . . . . .5-40 4. Combined Footing. . . . . . . . . . . . . . . . . . . . . .2-12 Practice Problems . . . . . . . . . . . . . . . . . . . . .5-41 5. Strap Footing . . . . . . . . . . . . . . . . . . . . . . . . .2-18 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . .5-42 6. Cantilever Retaining Wall . . . . . . . . . . . . . . . .2-22 7. Counterfort Retaining Wall . . . . . . . . . . . . . . .2-27 Chapter 6: Reinforced Masonry Design References. . . . . . . . . . . . . . . . . . . . . . . . . . . .2-28 1. Construction Details . . . . . . . . . . . . . . . . . . . . 6-1 Practice Problems. . . . . . . . . . . . . . . . . . . . . .2-29 2. ASD and SD Methods. . . . . . . . . . . . . . . . . . . 6-1 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-30 3. Load Combinations. . . . . . . . . . . . . . . . . . . . . 6-2 4. Masonry Beams in Flexure. . . . . . . . . . . . . . . . 6-3 Chapter 3: Prestressed Concrete Design 5. Beams in Shear. . . . . . . . . . . . . . . . . . . . . . . .6-16 1. Design Stages . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 6. Design of Masonry Columns. . . . . . . . . . . . . . .6-19 2. Design for Shear . . . . . . . . . . . . . . . . . . . . . . .3-14 7. Design of Shear Walls . . . . . . . . . . . . . . . . . . .6-27 3. Design for Torsion. . . . . . . . . . . . . . . . . . . . . .3-18 8. Design of Slender Walls. . . . . . . . . . . . . . . . . .6-32 4. Prestress Losses. . . . . . . . . . . . . . . . . . . . . . . .3-20 9. Design of Anchor Bolts . . . . . . . . . . . . . . . . . .6-40 5. Composite Construction. . . . . . . . . . . . . . . . . .3-25 6. Load Balancing Procedure. . . . . . . . . . . . . . . .3-30 10. Design of Prestressed Masonry . . . . . . . . . . . .6-47 7. Statically Indeterminate Structures . . . . . . . . .3-32 11. Quality Assurance, Testing, and Inspection. . .6-56 References. . . . . . . . . . . . . . . . . . . . . . . . . . . .3-34 References. . . . . . . . . . . . . . . . . . . . . . . . . . .6-58 Practice Problems. . . . . . . . . . . . . . . . . . . . . .3-35 Practice Problems . . . . . . . . . . . . . . . . . . . . .6-58 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-36 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . .6-60 P P I * w w w . p p i 2 p a s s . c o m iv S T R U C T U R A L E N G I N E E R I N G R E F E R E N C E M A N U A L Chapter 7: Lateral Forces Appendices Part 1: Lateral Force-Resisting Systems . . . . 7-1 A. Values of Mu=f0cbd2 for a Tension-Controlled 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1 2. Basic Components. . . . . . . . . . . . . . . . . . . . . . 7-1 B. Values of the Neutral Axis Depth Factor, k . . .A-2 3. Structural Systems . . . . . . . . . . . . . . . . . . . . . 7-2 C. Interaction Diagram: Tied Circular Column 4. Diaphragms . . . . . . . . . . . . . . . . . . . . . . . . . .7-15 (fc ¼4 kips=in2; fy ¼60 kips=in2; (cid:2) ¼0:60). . .A-3 D. Interaction Diagram: Tied Circular Column Part 2: Seismic Design. . . . . . . . . . . . . . . . . . .7-21 (fc ¼4 kips=in2; fy ¼60 kips=in2; (cid:2) ¼0:75). . .A-4 5. Equivalent Lateral Force Procedure . . . . . . . . .7-22 E. Interaction Diagram: Tied Circular Column 6. Vertical Distribution of Seismic Forces. . . . . . .7-30 (fc ¼4 kips=in2; fy ¼60 kips=in2; (cid:2) ¼0:90). . .A-5 7. Diaphragm Loads . . . . . . . . . . . . . . . . . . . . . .7-31 F. Interaction Diagram: Tied Square Column 8. Story Drift . . . . . . . . . . . . . . . . . . . . . . . . . . .7-32 (fc ¼4 kips=in2; fy ¼60 kips=in2; (cid:2) ¼0:60). . .A-6 9. P-Delta Effects . . . . . . . . . . . . . . . . . . . . . . . .7-33 G. Interaction Diagram: Tied Square Column (f ¼4 kips=in2; f ¼60 kips=in2; (cid:2) ¼0:75). . .A-7 10. Simplified Lateral Force Procedure. . . . . . . . .7-34 c y H. Interaction Diagram: Tied Square Column 11. Seismic Load on an Element of a Structure. . .7-39 (f ¼4 kips=in2; f ¼60 kips=in2; (cid:2) ¼0:90). . .A-8 c y Part 3: Wind Design . . . . . . . . . . . . . . . . . . . .7-40 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I-1 12. Wind Loads. . . . . . . . . . . . . . . . . . . . . . . . . .7-41 13. Design Wind Pressure . . . . . . . . . . . . . . . . . .7-44 Index of Codes . . . . . . . . . . . . . . . . . . . . . . . . IC-1 14. Low-Rise Regular Building, Main Wind Force-Resisting System. . . . . . . . . . .7-45 15. Low-Rise Regular Building, Components and Cladding. . . . . . . . . . . . . . . . . . . . . . .7-49 16. IBC Alternate All-Heights Procedure . . . . . . .7-51 References. . . . . . . . . . . . . . . . . . . . . . . . . . .7-56 Practice Problems . . . . . . . . . . . . . . . . . . . . .7-57 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . .7-58 Chapter 8: Bridge Design 1. Design Loads. . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 2. Reinforced Concrete Design . . . . . . . . . . . . . . .8-14 3. Prestressed Concrete Design. . . . . . . . . . . . . . .8-21 4. Structural Steel Design . . . . . . . . . . . . . . . . . .8-35 5. Wood Structures. . . . . . . . . . . . . . . . . . . . . . .8-42 6. Seismic Design. . . . . . . . . . . . . . . . . . . . . . . . .8-45 References. . . . . . . . . . . . . . . . . . . . . . . . . . . .8-53 Practice Problems. . . . . . . . . . . . . . . . . . . . . .8-54 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-55 P P I * w w w . p p i 2 p a s s . c o m Preface and Acknowledgments ................................................................................................................................................................................................................................................................................. IwrotetheStructuralEngineeringReferenceManualto Chapter 7, Lateral Forces, includes new material on be a comprehensive resource that helps you prepare for shearwall-framesystems,steelsystems,subdiaphragms, the National Council of Examiners for Engineering and seismicparametersandbuildingheight,andwindloads. Surveying (NCEES) 16-hour Structural Engineering Existing content was revised to conform to the Seismic (SE) exam. As such, each of this book’s eight chapters Design Manual, 2012 edition. presents the most useful equations in the exam-adopted Thank you to Arthur Richard Chianello, PE, for tech- codes and standards, and each chapter also provides nically reviewing the new content in Chapter 1 and guidelines for selecting and applying these equations. Chapter 4, and David R. Connor, SE, PE, for techni- For this eighth edition, all nomenclature, equations, callyreviewingthenewcontentinChapter5andChap- examples, and practice problems have been checked ter 6, and to Ralph Arcena, EIT, for performing the and updated so that they are consistent with NCEES- calculation checks. adopted codes and specifications. Additionally, signifi- At PPI, the task of making the vision of a new edition cant changes havebeen made tothe following chapters. intoarealityfelltotheProductDevelopmentandImple- Chapter1,ReinforcedConcreteDesign,includessignifi- mentation Department team that consisted of Hilary cant new material on concrete anchoring. Existing con- Flood, associate acquisitions editor; Nicole Evans and tent was revised to conform to the Building Code EllenNordman,associateprojectmanagers;TracyKatz, RequirementsforStructuralConcreteandCommentary, lead editor; Thomas Bliss, Sierra Cirimelli-Low, Tyler 2011 edition. Hayes, Julia Lopez, and Ian A. Walker, copy editors; TomBergstrom,productionassociateandtechnicalillus- Chapter4,StructuralSteelDesign,includesnewmaterial trator;KateHayes,productionassociate;CathySchrott, onnominal flexural strength, compact sections,noncom- productionservicesmanager;SarahHubbard,directorof pact sections, slender sections, lateral-torsional buckling, product development and implementation; and Jenny moment redistribution in continuous beams, buckling, LindeburgKing, associate editor-in-chief. bolt types and connections, and welds. Existing content wasrevisedtoconformtotheSteelConstructionManual, Finally, if you find an error in this book, please let me fourteenth edition. know by using the error reporting form on the PPI website at ppi2pass.com/errata. Valid submitted Chapter5,TimberDesign,includesnewmaterialonload errorswillbepostedtotheerratapageandincorporated combinations, reference design values, and adjustment into future printings of this book. factors. The chapter was also updated to include both exam-adoptedASDandLRFDdesignmethods.Existing Alan Williams, PhD, SE, FICE, C Eng content was revised to conform to the National Design Specification for Wood Construction ASD/LRFD, 2012 edition. Chapter 6, Reinforced Masonry Design, includes signifi- cantnewmaterialonrequiredstrength,allowablestress, masonry beams in flexure, reinforcement requirements, the design of reinforced masonry beams, minimum and maximum reinforcement area, shear beam design, masonry column design, and anchor bolt placement and design. The chapter was also updated in order to present both exam-adopted ASD and SD design meth- ods. Existing content was revised to conform to the Building Code Requirements and Specification for Masonry Structures, 2011 edition. P P I * w w w . p p i 2 p a s s . c o m Introduction ................................................................................................................................................................................................................................................................................. PART 1: HOW TO USE THIS BOOK exam. This book’s “Codes and References” section lists ................................................................................................................................. these abbreviations in brackets after their appropriate This Structural Engineering Reference Manual is design standard or code. This book also cites other pub- intended to help you prepare for the 16-hour Structural lications that discuss pertinent structural design proce- Engineering (SE) exam administered by the National dures, which may also be found in the “Codes and Council of Examiners for Engineering and Surveying References”section.Textreferencestoanyotherpublica- (NCEES). The NCEES SE exam will test your knowl- tions are numberedasendnotes ineachchapter,and the edge of structural principles by presenting problems publications are cited in the “References” section that that cover the design of an entire structure or portion precedes each chapter’s practice problems. These refer- of a structure. The exam is given in four modules—two ences are provided for youradditional review. concerning vertical forces and two concerning lateral As you prepare for the SE exam, the following sugges- forces. The eight chapters of this book are organized tions may also help. aroundtheeightareasinwhichtheseforcesareapplied. These eight areas include . Become intimately familiar with this book. This means knowing the order of the chapters, the . reinforced concrete design approximate locations of important figures and . foundations and retaining structures tables, and so on. . prestressed concrete design . Usethesubjecttitletabsalongthesideofeachpage. . structural steel design . Skim through a chapter to familiarize yourself with the subjects before starting the practice problems. . timber design . Tominimizetimespentsearchingforoften-usedfor- . reinforced masonry design mulas and data, prepare a one-page summary of all . lateral forces (wind and seismic) theimportantformulasandinformationineachsub- jectarea.Youcanthenrefertothissummaryduring . bridge design the exam instead of searching in this book. . Use the index extensively. Every significant term, Each chapter presents structural design principles that law, theorem, and concept has been indexed. If you buildontheonesbefore,soyoushouldreadthechapters don’t recognize a term used, look for it in the index. in the order in which they are presented. The examples Somesubjectsappearinmorethanonechapter.Use in each chapter should also be read in sequence. Taken the index to learn all there is to know about a together in this way, they constitute the solution to a particular subject. complete design problem similar to that on the exam. . Use the code index extensively. The most com- Your solutions to the SE exam problems must be based monly used chapters, equations, and tables have on the NCEES-adopted codes and design standards. been indexed for your quick reference. Therefore, you should carefully review the appropriate sections of the exam-adopted design standards and codes that are presented, analyzed, and explained in PART 2: EVERYTHING YOU EVER each chapter of this book. Each of the examples in this WANTED TO KNOW ABOUT THE book focuses on one specific code principle and offer a SE EXAM clear interpretation of that principle. ................................................................................................................................. Table 1 lists the SE design standards that code-based ABOUT THE EXAM problemsontheexamwillreference.Youwillnotreceive ................................................................................................................................. credit for solutions based on other editions or standards. The SE exam is offered in two components. The first All problems are in customary U.S. (English) units, and component—vertical forces (gravity/other) and inciden- you will not receive credit for solutions using SI units. tal lateral forces—takes place on a Friday. The second Abbreviations are used throughout this book to refer to component—lateral forces (wind/earthquake)—takes the design standards and codes referenced by the SE place on a Saturday. Each component comprises a P P I * w w w . p p i 2 p a s s . c o m viii S T R U C T U R A L E N G I N E E R I N G R E F E R E N C E M A N U A L Table1 NCEESSEExamDesignStandards abbreviation designstandardtitle AASHTO AASHTOLRFDBridgeDesignSpecifications,Sixthed.,2012,AmericanAssociationofStateHighwayand TransportationOfficials,Washington,DC. ACI318 BuildingCodeRequirementsforStructuralConcreteandCommentary,2011ed.,AmericanConcrete Institute,FarmingtonHills,MI. AISC SteelConstructionManual,Fourteenthed.,2011,AmericanInstituteofSteelConstruction,Inc.,Chicago,IL. AISC SeismicDesignManual,Seconded.,2012,AmericanInstituteofSteelConstruction,Inc.,Chicago,IL. AISI NorthAmericanSpecificationfortheDesignofCold-FormedSteelStructuralMembers,2007ed.,with Supplementno.2(2010),AmericanIronandSteelInstitute,Washington,DC. ASCE/SEI7 MinimumDesignLoadsforBuildingsandOtherStructures,2010ed.,AmericanSocietyofCivilEngineers, Reston,VA. IBC InternationalBuildingCode,2012ed.(withoutsupplements),InternationalCodeCouncil,CountryClubHills,IL. MSJCa,b BuildingCodeRequirementsandSpecificationforMasonryStructures(andcompanioncommentaries),2011 ed.,TheMasonrySociety,Boulder,CO;AmericanConcreteInstitute,Detroit,MI;andAmericanSocietyof CivilEngineers,Reston,VA. NDS NationalDesignSpecificationforWoodConstructionASD/LRFD,2012ed.,andNationalDesign SpecificationSupplement,DesignValuesforWoodConstruction,2012ed.,AmericanForest&Paper Association,Washington,DC. PCI PCIDesignHandbook:PrecastandPrestressedConcrete,Seventhed.,2010,Precast/PrestressedConcrete Institute,Chicago,IL. SDPWS SpecialDesignProvisionsforWindandSeismicwithCommentary,2008ed.,AmericanForest&Paper Association,Washington,DC. aMSJCreferstoTMS402/ACI530/ASCE5. bMSJCSpecificationreferstoTMS602/ACI530.1/ASCE6. morningbreadthandanafternoondepthmodule,asout- The lateral forces (wind/earthquake) depth module in lined in Table 2. buildings covers lateral forces, lateral force distribution, analysis methods, general structural considerations The morning breadth modules are each four hours and (e.g., element design), structural systems integration contain40multiple-choiceproblemsthatcoverarangeof (e.g.,connections),andfoundationsandretainingstruc- structural engineering topics specific to vertical and lat- tures.Thedepthmoduleinbridgescoversgravityloads, eral forces. The afternoon depth modules are also each superstructures, substructures, and lateral forces. It fourhours,butinsteadofmultiple-choiceproblems,they may also require pedestrian bridge and/or vehicular containconstructedresponse(essay)problems.Youmay bridge knowledge. choose either the bridges or the buildings depth module, but you must work the same depth module across both exam components. That is, if you choose to work build- ingsforthelateralforcescomponent,youmustalsowork WHAT DOES “MOST NEARLY” REALLY buildings for the vertical forces component. MEAN? ................................................................................................................................. According to NCEES, the vertical forces (gravity/ other) and incidental lateral depth module in buildings Oneofthemoredisquietingaspectsoftheexam’smulti- covers loads, lateral earth pressures, analysis methods, ple-choice questions isthatthe available answer choices general structural considerations (e.g., element design), are seldom exact. Answer choices generally have only structural systems integration (e.g., connections), and two or three significant digits. Exam questions ask, foundationsandretainingstructures.Thedepthmodule “Whichanswerchoiceismostnearlythecorrectvalue?” in bridges covers gravity loads, superstructures, sub- or they instruct you to complete the sentence, “The structures, and lateral loads other than wind and seis- value is approximately...” A lot of self-confidence is mic. It may also require pedestrian bridge and/or required to move on to the next question when you vehicular bridge knowledge. don’tfindanexactmatchfortheansweryoucalculated, P P I * w w w . p p i 2 p a s s . c o m ix I N T R O D U C T I O N Table2 NCEESSEExamComponent/ModuleSpecifications Friday:verticalforces(gravity/other)andincidentallateralforces morningbreadthmodule analysisofstructures(30%) 4hours loads(10%) 40multiple-choiceproblems methods(20%) designanddetailsofstructures(65%) generalstructuralconsiderations(7.5%) structuralsystemsintegration(2.5%) structuralsteel(12.5%) lightgage/cold-formedsteel(2.5%) concrete(12.5%) wood(10%) masonry(7.5%) foundationsandretainingstructures(10%) constructionadministration(5%) proceduresformitigatingnonconformingwork(2.5%) inspectionmethods(2.5%) afternoondepthmodulea buildingsb 4hours steelstructure(1-hourproblem) essayproblems concretestructure(1-hourproblem) woodstructure(1-hourproblem) masonrystructure(1-hourproblem) bridges concretesuperstructure(1-hourproblem) otherelementsofbridges(e.g.,culverts,abutments,andretainingwalls)(1-hourproblem) steelsuperstructure(2-hourproblem) Saturday:lateralforces(wind/earthquake) morningbreadthmodule analysisofstructures(37.5%) 4hours lateralforces(10%) 40multiple-choiceproblems lateralforcedistribution(22.5%) methods(5%) designanddetailingofstructures(60%) generalstructuralconsiderations(7.5%) structuralsystemsintegration(5%) structuralsteel(10%) lightgage/cold-formedsteel(2.5%) concrete(12.5%) wood(7.5%) masonry(7.5%) foundationsandretainingstructures(7.5%) constructionadministration(2.5%) structuralobservation(2.5%) afternoondepthmodulea buildingsc 4hours steelstructure(1-hourproblem) essayproblems concretestructure(1-hourproblem) woodand/ormasonrystructure(1-hourproblem) generalanalysis(e.g.,existingstructures,secondarystructures,nonbuildingstructures,and/or computerverification)(1-hourproblem) bridges columns(1-hourproblem) footings(1-hourproblem) generalanalysis(e.g.,seismicand/orwind)(2-hourproblem) aAfternoonsessionsfocusonasingleareaofpractice.Youmustchooseeitherthebuildingsorbridgesdepthmodule,andyoumustworkthesame depthmoduleacrossbothexamcomponents. bAtleastoneproblemwillcontainamultistorybuilding,andatleastoneproblemwillcontainafoundation. cAtleasttwoproblemswillincludeseismiccontentwithaseismicdesigncategoryofDorabove.Atleastoneproblemwillincludewindcontentwith abasewindspeedofatleast110mph.Problemsmayincludeamultistorybuildingand/orafoundation. P P I * w w w . p p i 2 p a s s . c o m