NASA Contractor Report 4424 Structural Dynamics and Vibrations of Damped, Aircraft-Type Structures Maurice I. Young ViG y m ,I nc. Hampton, Virginia Prepared for Langley Research Center under Contract NASl-18585 National Aeronautics and Space Administration Off ice of Management Scientific and Technical Information Program 1992 TABLE OF CONTENTS -Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 SUMMARY.. 1 . . . . . . . . . . . . . . . . . . . . . . . . . 2.0 NOMENCLATURE 2 , . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Notation.. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Symbols 4 . . . . . . . . 3.0 INTRODUCTION 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.0 ANALYSIS 8 . . . . . . . 4.1 The Single Degree of Freedom Oscillator With Damping . 8 4.2 Free Vibration of Systems With Viscous or Equivalent Viscous . . . . . . . . . . . . . . . . . . . . . . . . . . . . Damping 13 4.3 Free Vibration With Two Different Modes Having the Same Natural . . . . . . . . . . . . . . . . . . . . . . . . . Frequency , 16 . . 4.4 Employing the Undamped Modes to Determine the Damped Modes 19 . . . . . . . . 4.5 Forced Vibration of Systems With Viscous Damping 21 . . . 4.5.1 Approximating the Response of Lightly Damped Systems 26 4.6 Free Vibration of Linear Systems With Dynamic Hysteresis-Viscoelastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . Damping 27 . . . . . . . . . 4.7 Pervasive Dynamic Hyster&sViscoel&ic Damping 31 4.8 Forced Vibration of Systems With Dynamic Hysteresis . . . . . . . . 32 4.9 Derivative Operator Formulation For Systems With Dynamic Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . 34 , , 4.10 The Global Equations With Proportional Damping . . . . . . . - . 35 a TABLE OF CONTENTS (continued) Page 5.0 APPROXIMATING THE DAMPING FRACTION FOR CONTINUOUS SYSTEMS . . . . . . . . . . . . . . . . . - . . . . . . . . . . . 37 5.1 The Damped Rod In Axial Vibration . . . . . . . - . . . . - . . 37 5.2 Damped Structural Members Other Than Rods . . . . . . . . . . . 41 5.3 The Pervasively Damped HomogeneousIsotropic Solid . . . . . . . 43 e 6.0 SELECTED NUMERICAL RESULTS . . . . . . . . . . . . . . . . 46 a 6.1 Damping Interaction of Different Modes With Matching or Nearly Matching Natural Frequencies . . . . . . . . . . . . . . . 46 e 6.2 Damping Raction Approximation With a Dynamic Hysteretic Element . . . . . . . . . . . . . . . . . . . . . . . . . - . 47 , 6.3 Examples of Damped Beam Vibration . . . . . . . . . . . . . 48 6.4 Bending Vibration of a Discretely Modelled Damped Beam . . . . . 51 , 6.5 Coupled Bending and Torsion Vibrations of a Discretely Modelled Damped Beam . . . . . . . . . . . . . . . . . . . . . 53 6.6 Vibration of a Plate With Spot Damping and Different Modes With Matchingor Nearly Matching Natural Frequencies . . . . . . - 54 7.0 A SMART DYNAMIC VIBRATION ABSORBER: A COLLATERAL DAMPING APPLICATIONS TECHNOLOGY . . - . . . . . . . . . . . 57 8.0 DYNAMIC STABILITY BOUNDARIES FOR BINARY SYSTEMS . . . . 59 9.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 62 , TABLE OF CONTENTS (concluded) Page 10.0 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 FIGURES.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 APPENDIX A: CLOSED FORM SOLUTION TO THE DAMPING INTERACTION QUARTIC EQUATION . . . . . . . 77 APPENDIX B: AN APPROXIMATIVE SOLUTION TO THE DAMPING INTERACTION QUARTIC EQUATION . . . . . . . . 80 APPENDIX C: DIGITAL COMPUTER SOLUTION TABULATION FOR DAMPED BENDING VIBRATION . . . . . . . . 83 APPENDIX D: DIGITAL COMPUTER SOLUTION TABULATION FOR DAMPED, COUPLED BENDINGTORSION VIBRATION.. . . . . . . . . . . . . . . . . . . . 93 V 1.0 SUMMARY Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis-viscoelwtic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this “modal resonance” phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal naturd frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity and location of damping treatments. It is expected that in many instances these simplified computations will supplant the more elaborate ones. 2.0 NOMENCLATURE 2.1 Notation A cross-sectional area of rod, in2; an arbitrary constant a coefficient in interaction quartic equation; membrane dimension, inch B coefficient in resolvent cubic equation; an arbitrary constant b coefficient in interaction quartic equation; membrane dimension, inch C coefficient in resolvent cubic equation; damping coefficient, lb-sec/in coefficient in interaction quartic equation; damping coefficient , C lb-sec/in D plate flexural rigidity, bin2; coefficient in resolvent cubic equation d coefficient in interaction quartic equation; damping coefficient lb-sec/in E Young’s modulus of elasticity, lb/in2 F function symbol; force f force, lb G shear modulus of elasticity, lb/in2 I area moment of inertia, in4; mass moment of inertia, Ib-sec2-in i ordinal number; a subscript J torsional section constant, in4 f l j ordinal number; complex operator, K stiffness, spring rate, lb/in k stiffness, spring rate, lb/in 2 M mass, 1b-sec2/in m mass, lb-sec2/in; an ordinal number; a subscript N an ordinal number; aspect ratio n an ordinal number; a subscript naught, a subscript 0 P generalized coordinate Q a response quantity; a generalized force Q a generalized coordinate R a response quantity; a parameter r an ordinal number; a subscript; a ratio S an ordinal number; a subscript T membrane tension, lb/in t time, sec a displacement, inch U 21 a displacement, inch W a displacement, inch II: a Cartesian coordinate, inch Y a Cartesian coordinate, inch z a Cartesian coordinate, inch a! an ordinal number; a subscript; a constant P an ordinal number; a subscript; a constant Y a parameter 3 a dilatation s a damping coefficient,l b-sec/in; perturbation symbol c fraction of critical damping 77 loss factor e torsional displacement, radian 11, char act eristi c number P mass per unit length, lb-sec2/in2; mass per unit area, lb-sec2/in3 v frequency ratio axial coordinate position mass density, lb-sec2/in4; frequency ratio damping per unit length, lb-sec/in2 f2 forcing frequency, rad/sec frequency, rad/sec W 2.2 Symbols dot, differentiation with respect to time - bar, amplitude of * asterisk, complex conjugate V2 del squared, the Laplacian operator -# arrow, vector quantity tilde, a modified quantity J ( 1 integral, the integral of ( ) I I the magnitude of, the determinant of 4
Description: