ebook img

Strongly Nonlinear Oscillators: Analytical Solutions PDF

241 Pages·2014·6.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Strongly Nonlinear Oscillators: Analytical Solutions

Undergraduate Lecture Notes in Physics Livija Cveticanin Strongly Nonlinear Oscillators Analytical Solutions Undergraduate Lecture Notes in Physics For furthervolumes: http://www.springer.com/series/8917 Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering topicsthroughoutpureandappliedphysics.Eachtitleintheseriesissuitableasabasisfor undergraduate instruction, typically containing practice problems, worked examples, chapter summaries, andsuggestions forfurtherreading. ULNPtitles must provideatleastone ofthefollowing: • Anexceptionally clear andconcise treatment ofa standard undergraduate subject. • A solid undergraduate-level introduction to a graduate, advanced, or non-standard subject. • Anovelperspective oran unusualapproach to teachinga subject. ULNP especially encourages new, original, and idiosyncratic approaches to physics teachingattheundergraduate level. ThepurposeofULNPistoprovideintriguing,absorbingbooksthatwillcontinuetobethe reader’s preferred reference throughouttheir academic career. Series editors Neil Ashby Boulder, CO, USA William Brantley Greenville, SC, USA Michael Fowler Charlottesville, VA, USA Michael Inglis Selden, NY, USA Heinz Klose Oldenburg, Niedersachsen, Germany Helmy Sherif Edmonton, AB, Canada Livija Cveticanin Strongly Nonlinear Oscillators Analytical Solutions 123 LivijaCveticanin Faculty ofTechnical Sciences Universityof NoviSad NoviSad Serbia ISSN 2192-4791 ISSN 2192-4805 (electronic) ISBN 978-3-319-05271-7 ISBN 978-3-319-05272-4 (eBook) DOI 10.1007/978-3-319-05272-4 Springer ChamHeidelberg New YorkDordrecht London LibraryofCongressControlNumber:2014935976 (cid:2)SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface This book is the result of my long-time investigations and interest in the field of nonlinearvibration.Theintentionofthistextistogivetheapproximateanalytical solution procedures for strong nonlinear oscillators and to explain some of the phenomena that occur in such systems. The book considers the free and forced vibrations, takes the positiveand negativedamping ofVan der Poltype,analyzes the criteria for deterministic chaos, and investigates the parametrically excited vibration in one-degree-of-freedom oscillators. Special attention is given to vibration properties of a two and one mass systems with two-degrees-of-freedom where the oscillation of a rotor, as a practical device, is discussed. The ideal and nonideal nonlinear mechanical systems are also treated where the jump phenom- ena, the Sommerfeld effect, and the control of the system are included. The basic partforallconsiderationsisapurenonlinearoscillatorwhoseorderofnonlinearity is any positive rational number (integer or non-integer). This type of nonlinearity is the generalization for the previously discussed linear or pure cubic oscillators and oscillators with small nonlinearity. All the suggested solution procedures are based on the exact or approximate solution of the strong nonlinear differential equation which is the mathematical model of the corresponding oscillator. I hope that the book will be suitable as a textbook for students in nonlinear vibrations, but also for those who are researching the nonlinear phenomena in oscillatorysystemsinmechanics,mechanicaldevices,electromechanicalsystems, electric circuits, physics, chemistry, etc. The book has an intention to give some practical information to engineers and technicians dealing with the problem of vibration and its elimination. The results of investigation show that independently of the amplitude and frequency of excitation force by proper treatment of the strong nonlinear system, the vibration level may be kept at a small level. Namely, in mechanical systems like cutting machines with periodical motion of cutting tools, presses, supports for machines, seats in vehicles, etc., but also in electronics (electromechanical devices like microactuators and micro oscillators) the requirement of small oscillations but withoutintroducingofdampers,whichcauseenergydissipationanddecreasingof the efficiency of machines, can be achieved by proper use of the nonlinear prop- erties of the system. Theresultspublishedinthisbookareapplicableforimprovementindesigning, forexample,ofmusicinstrumentsandtheirpartssuchasthehammersinapiano. v vi Preface Attheotherside,theinvestigationisalsoofpotentialinterestformodelinghuman voice production in cases where the vocal cords and voice producing fold are damaged. Finally, I have to thank to my family for the support to write and publish this book. Novi Sad, Serbia Livija Cveticanin Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Nonlinear Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Physical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Mathematical Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Pure Nonlinear Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Qualitative Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Exact Period of Vibration . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Exact Periodical Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Linear Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 Cubic Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Adopted Lindstedt-Poincaré Method . . . . . . . . . . . . . . . . . . . . 26 3.4 Modified Lindstedt-Poincaré Method. . . . . . . . . . . . . . . . . . . . 30 3.4.1 Comparison of the LP and MLP Methods . . . . . . . . . . . 31 3.4.2 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Exact Amplitude, Period and Velocity Method . . . . . . . . . . . . . 33 3.6 Solution in the Form of Jacobi Elliptic Function. . . . . . . . . . . . 34 3.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.7 Solution in the Form of a Trigonometric Function. . . . . . . . . . . 38 3.7.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7.2 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.8 Pure Nonlinear Oscillator with Linear Damping . . . . . . . . . . . . 41 3.8.1 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.8.2 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Free Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1 Homotopy-Perturbation Technique. . . . . . . . . . . . . . . . . . . . . . 51 4.1.1 Duffing Oscillator with a Quadratic Term . . . . . . . . . . . 54 4.1.2 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Averaging Solution Procedure. . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Solution in the Form of an Ateb Function . . . . . . . . . . . . . . . . 58 vii viii Contents 4.3.1 Small Nonlinear Deflection Functions. . . . . . . . . . . . . . 59 4.3.2 Differential Equation with a Linear Dominant Term. . . . 62 4.4 Solution in the Form of the Jacobi Elliptic Function . . . . . . . . . 65 4.4.1 Oscillator with Nonlinear Elastic Force. . . . . . . . . . . . . 67 4.5 Solution in the Form of a Trigonometric Function. . . . . . . . . . . 71 4.5.1 Oscillator with Small Linear Damping. . . . . . . . . . . . . . 73 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.7 Oscillator with Linear Damping . . . . . . . . . . . . . . . . . . . . . . . 77 4.7.1 Van der Pol Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . 79 4.7.2 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 Oscillators with Time Variable Parameters. . . . . . . . . . . . . . . . . . 87 5.1 Oscillators with Slow Time Variable Parameters. . . . . . . . . . . . 88 5.2 Solution in the Form of the Ateb Function. . . . . . . . . . . . . . . . 88 5.2.1 Oscillator with Linear Time Variable Parameter. . . . . . . 91 5.3 Solution in the Form of a Trigonometric Function. . . . . . . . . . . 93 5.3.1 Linear Oscillator with Time Variable Parameters . . . . . . 95 5.3.2 Non-integer Order Nonlinear Oscillator. . . . . . . . . . . . . 96 5.3.3 Levi-Civita Oscillator with a Small Damping. . . . . . . . . 96 5.3.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4 Solution in the Form of a Jacobi Elliptic Function. . . . . . . . . . . 101 5.4.1 Van der Pol Oscillator with Time Variable Mass . . . . . . 103 5.4.2 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.5 Parametrically Excited Strong Nonlinear Oscillator. . . . . . . . . . 111 5.5.1 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.5.2 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.5.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6 Forced Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.1 Oscillator with Constant Excitation Force. . . . . . . . . . . . . . . . . 128 6.1.1 Solution of the Odd-Integer Order Oscillator . . . . . . . . . 131 6.1.2 The Oscillator with Additional Small Nonlinearity . . . . . 134 6.1.3 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.2 Harmonically Excited Pure Nonlinear Oscillator . . . . . . . . . . . . 142 6.2.1 Pure Odd-Order Nonlinear Oscillator. . . . . . . . . . . . . . . 142 6.2.2 Bifurcation in the Oscillator. . . . . . . . . . . . . . . . . . . . . 145 6.2.3 Harmonically Forced Pure Cubic Oscillator . . . . . . . . . . 147 6.2.4 Numerical Simulation and Discussion . . . . . . . . . . . . . . 153 6.2.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Contents ix 7 Two-Degree-of-Freedom Oscillator. . . . . . . . . . . . . . . . . . . . . . . . 161 7.1 Two-Mass System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.1.1 Two-Degree-of-Freedom Van der Pol Oscillator. . . . . . . 164 7.1.2 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.2 Complex-Valued Differential Equation. . . . . . . . . . . . . . . . . . . 173 7.2.1 Adopted Krylov-Bogolubov Method . . . . . . . . . . . . . . . 174 7.2.2 Method Based on the First Integrals . . . . . . . . . . . . . . . 176 7.2.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8 Chaos in Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 8.1 Chaos in Ideal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 8.1.1 Homoclinic Orbits in the Unperturbed System . . . . . . . . 193 8.1.2 Melnikov’s Criteria for Chaos . . . . . . . . . . . . . . . . . . . 195 8.1.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 198 8.1.4 Lyapunov Exponents and Bifurcation Diagrams . . . . . . . 202 8.1.5 Control of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 8.1.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 8.2 Chaos in Non-ideal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . 206 8.2.1 Modeling of the System. . . . . . . . . . . . . . . . . . . . . . . . 206 8.2.2 Asymptotic Solving Method. . . . . . . . . . . . . . . . . . . . . 208 8.2.3 Stability and Sommerfeld Effect. . . . . . . . . . . . . . . . . . 209 8.2.4 Numerical Simulation and Chaotic Behavior . . . . . . . . . 214 8.2.5 Control of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 8.2.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Appendix A: Periodical Ateb Functions . . . . . . . . . . . . . . . . . . . . . . . 223 Appendix B: Averaging of Ateb Functions. . . . . . . . . . . . . . . . . . . . . 227 Appendix C: Jacobi Elliptic Functions. . . . . . . . . . . . . . . . . . . . . . . . 231 Appendix D: Euler’s Integrals of the First and Second Kind. . . . . . . . 233 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Description:
This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pur
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.