ebook img

Strong restriction on inflationary vacua from the local gauge invariance II: Infrared regularity and absence of the secular growth in Euclidean vacuum PDF

0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Strong restriction on inflationary vacua from the local gauge invariance II: Infrared regularity and absence of the secular growth in Euclidean vacuum

Strong restrictiononinflationary vacua from the localgaugeinvarianceII: Infrared regularity and absenceofthe seculargrowth inEuclidean vacuum Takahiro Tanaka1∗ and Yuko Urakawa2† 1 Yukawa Institute for Theoretical Physics, Kyoto university, Kyoto, 606-8502, Japan 2 Departament de F´ısica Fonamental i Institut de Cie`ncies del Cosmos, Universitat de Barcelona, Mart´ı i Franque`s 1, 08028 Barcelona, Spain (Dated:January15,2013) Weinvestigatetheinitialstateoftheinflationaryuniverse.Inourrecentpublications,weshowedthatrequest- ingthegaugeinvarianceinthelocalobservableuniversetotheinitialstateguaranteestheinfrared(IR)regularity ofloopcorrectionsinageneralsingleclockinflation.Followingthisstudy,inthispaper,weshowthatchoosing theEuclideanvacuumensuresthegaugeinvarianceinthelocaluniverseandhencetheIRregularityofloopcor- rections. Ithasbeensuggestedthatloopcorrectionstoinflationaryperturbationsmayyieldtheseculargrowth, 3 whichcanleadtothebreakdownoftheperturbativeanalysisinanextremelylongterminflation. Theabsence 1 oftheseculargrowthhasbeenclaimedbypickinguponlytheIRcontributions,whichwethinkisincomplete 0 becausethenon-IRmodeswhicharecomparabletoorsmallerthantheHubblescalepotentiallycancontribute 2 totheseculargrowth. Weprovetheabsenceoftheseculargrowthwithoutneglectingthesenon-IRmodestoa n certainorderintheperturbativeexpansion. Wealsodiscusshowtheregularityofthen-pointfunctionsforthe a genuinelygaugeinvariantvariableconstrainstheinitialstatesoftheinflationaryuniverse. Theseresultsapply J inafullygeneralsinglefieldmodelofinflation. 4 1 ] h I. INTRODUCTION t - p e A. MotivationandthecurrentstatusofIRissues h [ Initial states of the observable universe. How our universe began? This is one of the biggest question in cosmology. 1 Theobservationofthecosmicmicrowavebackgroundtellsus aboutthecosmologicalperturbationatthelastscattering,which v realistic scenarios of the early universe should explain. If inflation took place preceding the big-bang nucleosynthesis, the 8 quantum fluctuation of the inflaton can generate the seed of the cosmological fluctuation which is consistent with the scale- 8 invariantspectrumatlargescales. Therefore,inthecontextoftheinflationaryscenario,whichiscurrentlythemostsuccessful 0 scenario of the early universe, the period of inflation is the earliest part of our observable universe. In this series of papers, 3 we pursue the question; “What can we claim aboutthe initial quantum state of the observableuniverseif we require that the . 1 theoreticalpredictionshouldbestableagainsttheinfrared(IR)loopcontribution?”Theadiabaticvacuumiswidelyacceptedto 0 bethemostnaturalvacuumatleastforafreefieldtheory,sinceitmimicsthevacuumoftheflatspacetimeintheultraviolet(UV) 3 limit. However,inanumberofpublications[1–23],ithasbeensuggestedthattheadiabaticvacuummaynotbestableagainst 1 theIRcontributionsinthepresenceofnon-linearinteractions. : v Non-localityoftheactionandIRdivergenceproblem.Whenweassumethatthefreefieldhasthescaleinvariantspectrum i X intheIRlimit,anaiveconsiderationcaneasilyleadtotheIRdivergenceduetoloopcorrections. HereweillustratehowtheIR divergencecanappearfromtheloopcorrectionsofthecurvatureperturbationinsinglefieldmodels. Choosingthetimeslicing r a onwhichtheinflatonfieldishomogeneous,wecanexpresstheactionintermsoftheuniquedynamicaldegreesoffreedomζ, the curvature perturbation, and the Lagrangemultipliers N and N , the lapse function and the shift vector. The Hamiltonian i andthemomentumconstraintequationsrelatethedynamicalvariableζ tothemultipliersN andN . Asisexplicitlyshownin i variouspapers,forinstanceinRef.[24–26],theseconstraintequationsareelliptic-typeequations,andschematicallywrittenas ∂2N =f[ζ], ∂2N =f [ζ], (1.1) i i where ∂2 denotes the spatial Laplacian. By requesting the regularity at the spatial infinity, the boundaryconditions of these elliptic-typeequationsareuniquelyfixed. SubstitutingtheexpressionsofN andN intotheaction,weobtain i S = d4xL[ζ, N, N ]= d4xL[ζ, ∂−2f[ζ], ∂−2f [ζ]], (1.2) i i Z Z ∗Electronicaddress:tanaka˙at˙yukawa.kyoto-u.ac.jp †Electronicaddress:yurakawa˙at˙ffn.ub.es 2 andhencetheevolutionofζ isdescribedbytheabovenon-localaction. HeretheinverseLaplacian∂−2 isusuallysupposedto bedefinedasmultiplyingtheinverseoftheeigenvalueoftheLaplacianoperatorbyusingtheharmonicdecomposition. When weevaluatetheloopcorrectionstothen-pointfunctionsexpandingthemintermsoftheinteractionpicturefieldζ ,weneedto I evaluatetheexpectationvaluessuchas ζ2 , ζ ∂−2ζ , . (1.3) h Ii h I Ii ··· Insertingthescaleinvariantspectruminto ζ2 leadstothelogarithmicdivergenceas ζ2 d3k/k3. Thesecondexpression h Ii h Ii∝ of Eq. (1.3), which may arise as a consequenceof the operation of ∂−2, is more singularas ζ ∂−2ζ d3k/k5, which I I Rh i ∝ diverges quadratically. The presence of non-local interactions enhances the long range correlations, and hence the singular behaviourintheIR.WhenweintroducetheIRcutoff,sayattheHubblescaleataparticulartime t , thevarRiance ζ2 shows 0 h Ii the logarithmicseculargrowthas ζ2 aH dk/k loga/a where a andH , respectively,denotethe scale factorand the Hubble scale at t = t . If thehIIRid∝iverag0eHn0ceexists∼, the loop0correction0s, whic0h are suppressed by an extra powerof the 0 amplitude of the powerspectrum (H/M R)2, may dominate in case inflation continuessufficiently long, leading to the break pl downofperturbation. ThedilatationsymmetryasanecessaryingredientforIRregularity. TheregularizationoftheIRcontributionshasbeen discussedinanumberofpublications[25–38].Theimportantaspectindiscussingthelongwavelengthmodeofζisthedilatation symmetryofthesystem. Asisexpectedfromthefactthatthespatialmetricisgivenintheforma2e2ζdx2,aconstantshiftof thedynamicalvariableζ canbeabsorbedbytheoverallrescalingofthespatialcoordinates. Hence,theactionforζ preserves thedilatationsymmetry: xi e−sxi, ζ(t, x) ζ(t, e−sx) s, (1.4) → → − where s is a constant parameter. (There are a number of literatures where this dilatation symmetry is addressed. See for instance, Refs. [39, 40]andthe referencestherein.) Onemaynaivelyexpectthatwe canabsorbthe IR divergentcontribution ofζ usingthisconstantshift. Asanexample,wesettheparameterstothespatialaverageofthecurvatureperturbationwithin the Hubble patch at t , ζ¯(t ), where the size of the Hubble patch in comovingcoordinatesis given by 1/(a H ). Then, the 0 0 0 0 logarithmicallydivergenttwo-pointfunction ζ2 seems to be replaced with (ζ ζ¯ )2 aH dk/k, which is finite but still growslogarithmicallyin time. One mayhthIinik that if the system is descrhibeId−in sIuchia∝waay0Hth0at the symmetryunderthe R timedependentdilatationtransformationismanifest,settings(t)tothetimedependentspatialaverageintheHubblepatch,the logarithmicgrowthof ζ¯(t)mightbeeliminated. However,thereducedactionwrittenin termsofζ (1.2)doesnotpreservethe invarianceunderthedilatationtransformationwiththetimedependentparameters(t). Forexample,intherecentliterature[40], the authors showed that when we consider the whole universe with the infinite spatial volume, the dilatation transformation shouldbetimeindependenttopreservetheactioninvariant. Inaddition,thetwo-pointfunctionwith∂−2cannotberegularized by considering the dilatation symmetry alone. This quick consideration tells us that the presence of the dilatation symmetry ofthe system mayplay animportantrole in theregularizationof the IR contributionsbutis notsufficienttoguaranteethe IR regularityandtheabsenceoftheseculargrowth. Residualgaugedegreesoffreedominthelocaluniverse. Amissingpieceintheabovediscussionistopaycarefulattention towhatarethequantitieswecanactuallyobserve. Sinceour observableregionisalimitedportionofthewholeuniverse,the observablefluctuationsmustbecomposedoflocalquantities. Furthermore,astheinformationthatwecanaccessislimitedto ourobservableregion,thereisnoreasontorequesttheregularityatthespatialinfinityinsolvingtheellipticconstraintequations (1.1). Then, there arise degrees of freedom in choosing the boundary conditions of Eqs. (1.1). The degrees of freedom in solutionsofN andN canbeunderstoodasthedegreesoffreedominchoosingcoordinates. AsweshowedinRefs.[25,26], i theseresidualcoordinatetransformationsareexpressedintermsofhomogeneoussolutionstotheLaplaceequationas xi xi s(t)xi si (t)xj1 xjm + , (1.5) → − − j1···jm ··· ··· m=1 X where sij1···jm(t) are symmetric traceless tensors, which satisfy δjj′sij1···j···j′···jm(t) = 0. Here, we abbreviated the non- linear terms in the coordinate transformation. Note that this coordinate transformationsinclude the dilatation transformation with the time dependentfunctions(t). Since the transformationsin Eq. (1.5) are nothingbut coordinatetransformations, the diffeomorphicinvariantactionS = d4xL[ζ, N, N ]shouldpreservethesymmetryunderthesetransformations. Thus,when i weconsideronlythelocalobservableregion,whichisapotionofthewholeuniverse,wefindaninfinitenumberofcoordinate R transformationswhich keep the action invariant. Considering the dilatation transformation in the whole universe is subtle in the sense that the transformationdivergesat the spatial infinity, even if the parameter s is very small. By contrast, restricted tothelocalregion,themagnitudeofthecoordinatetransformationsinEq.(1.5)iskeptperturbativelysmall. Inthispaper,we refer to the local observable (spacetime) region as O. The size of the observable region on each time slicing is supposed to beof order1/a(t)H(t)atleastin thefarpastsincethe pastlightconeasymptotestothatsize. We shouldnotethat, oncewe inserttheexpressionsofN andN intotheactiontoobtaintheactionforthecurvatureperturbationζ,thesymmetryunderthe i 3 residualcoordinatestransformationislost,becausespecificboundaryconditionsarechosenforN andN infixingcoordinates. i Toemphasizethedistinctionbetweenthecoordinatetransformationsassociatedwiththechangeoftheboundaryconditionsand theusualgaugetransformation,whichkeepstheactioninvariant,wedenotetheformerbythegaugetransformationintheitalic font. Removingtheresidualgaugedegreesoffreedom.Onewaytorealizetheinvarianceunderthegaugetransformationisfixing thegaugeconditionscompletely. Theresidualgaugedegreesoffreedomintroducedabovecanbealsoremovedbyemploying additionalgaugeconditions,i.e.,byfixingtheboundaryconditionsof N andN attheboundaryofthelocalregion O. Then, i wenaturallyexpectthattheIRregularitymaybeexplicitlyshownbyperformingthequantizationinthislocalregion,sincethe wavelengthsthatfitwithinthislocalregionOwillbeboundedbythesizeoftheregion. Althoughthequantizationinthelocal regionisaninterestingapproach,itisnotso clearhowtoperformthe quantizationafterremovingtheresidual gaugedegrees offreedom. Oneofthedifficultiesisthateventhetranslationsymmetryofthequantumstatecannotbeeasilyguaranteedinthe localsystem,sinceitismanifestlybrokenbyintroducingtheboundaryconditionatafinitedistance. (Seealsothediscussionin Ref.[27]). As an alternativeway, in Ref. [28], we first set the initial state consideringthe whole universe, and then we performedthe residualgaugetransformation(1.5)tofixthecoordinatessothattheIRcontributionsareabsorbed.Throughthetransformation withs(t)=ζ¯(t),thecurvatureperturbationistransmittedas ζ(t, x) ζ(t, e−ζ¯(t)x) ζ¯(t)=ζ(t, x) ζ¯(t)+O(ζ2). (1.6) → − − Here,ζ(x)istheoriginalcurvatureperturbationdefinedinthewholeuniverseanditsspatialaverageoverthewholeuniverseis setto0asintheconventionalcosmologicalperturbationtheory. Bycontrast,ζ(t, e−ζ¯(t)x) ζ¯(t)isthecurvatureperturbation relevant to the local universe, and its spatial average over the local region Σ O is set−to 0, where Σ is a time constant t t ∩ surface. In Ref. [28] we consideredthe fluctuation of the inflaton, using the flat gauge, but the same discussion follows also for the curvature perturbation ζ. In the recent publication by Senatore and Zaldarriaga [38], the same degrees of freedom in choosingcoordinatesareusedinaslightlydifferentwayto absorbtheIRdivergentcontributions. Ifthenon-lineartermsinthe residualgaugetransformationattheinitialtime(1.6)didnotyieldIRdivergentcontributions,thediscussioninRef.[28]would have provedthe absence of IR divergencein general. What was shown there is that once the field operatorafter the residual gauge transformationis guaranteedto be regularat the initial time, its succeedingevolution doesnot produceIR divergence. Theheartoftheproofisthatζ (x)isreplacedwith ζ (x) ζ¯ (t)intheexpansionofthecompositeoperatorsintermsofthe I I I − interactionpicturefield,aftertheresidualgaugetransformation,andhencetheIRcontributionsfromζ (x)arealwayscanceled I bythosefromζ¯ (t). However,thenon-linearpartofthetransformationattheinitialtimecontainsζ¯(t)whoseIRcontributions I logarithmicallydiverge.ThelessonisthatitisnotstraightforwardtoreformulatethewayofquantizationsothattheIRdivergent contributionsthereinare allabsorbedbythe residual gaugetransformation. (Theabsorptionof theIR modesofthe curvature perturbationwasintendedinotherframeworkssuchas δN formalism[31,32]andthesemi-classicalapproach[33]. ) Theseculargrowth. TheappearanceofIRdivergenceduetotheresidualgaugetransformationmentionedabovemightbe evadedbysendingtheinitialtimetothepastinfinity.ThisisbecausethesizeofthelocalregionΣ Oincomovingcoordinates t ∩ becomes infinitely large in this limit, making the discrepancy between the average in the local region and that in the global universesmallerandsmaller.Thenitmightbeeffectivelyunnecessarytoperformtheresidualgaugetransformationattheinitial time,althoughthisstatementisnotveryrigorous.Weshouldnotethatwhenwesendtheinitialtimetothepastinfinity,itistoo naivetoneglectthenon-IRmodeswhicharecomparabletoorshorterthantheHubblelengthscale,becauseallthemodeswere much shorterthan the Hubble length scale in the distant past. This makes the issue regardingthe secular growth much more complicated. Forinstance,onceweincludethecontributionsfromthenon-IRmodes,wecannotusetheconservationofζk in thelimitk/aH 1,wherekisthecomovingwavenumberoftheexternalleg,relyingonthelongwavelengthapproximation ≪ such as δN formalism. Here, in a simple example, we show that vertex integrations can yield the apparent secular growth throughthenon-linearcontributionsfromthemodesataroundtheHubblescale. EvenifthevertexisconfinedintheregionO, theintegrationregionofeachvertexisstillinfiniteinthe timedirectionas dtd3xa3( ) d(lna)/H4( ), whichmay ··· ≃ ··· causetheseculargrowth. Roughlyspeaking,theintegrand( )willbewrittenintermsofthedimensionlesstimedependent ··· R R slowrollparametersandthewavenumberofthefieldsinthisvertexk /aH normalizedbytheHubblescale. Ifwefocusonthe m non-linearinteractioncomposedofthemodeswithk /aH oforderunity,theintegrand( )areexpressedonlyintermsofthe m ··· parameterswhicharesupposedtochangeveryslowlyintimeandthenthecontributionfromtheinteractionvertexseemstoyield thelogarithmicgrowth.Thisisanotheroriginoftheseculargrowth,whichshouldbedistinguishedfromtheoneinheritedfrom theIRbehaviorof (ζ )2 . Ofcoursetheaboveargumentistoonative,butitshowsthattheabsenceoftheseculargrowthfrom I h i thevertexintegrationisrathersubtle,requiringmorecarefultreatmentaboutthemodesaroundtheHubblescale.Becauseofthis subtlety,introducingtheUVcutoffatthelengthscalelongerorequaltotheHubblelengthscalebyhandmakesthediscussion incomplete. Infact,ifitwereallowedtosimplyneglecttheshortwavelengthmodes,thediscussioninRef.[28]withtheinitial timet sentto wouldhavegivenaroughproofoftheabsenceofIRdivergencewithoutanylimitationtothequantumstate i −∞ bysendingthe initialtime tothe pastinfinity, whichcontradictsourcurrentclaim thatthe quantumstate is restricted in order to avoidIR divergence. Recently, the absenceof the seculargrowthwas claimedrelyingonthe conservationof the curvature perturbationinRefs.[37,38],buttheaspectsmentionedabovewerenotdiscussed. Inaddition,eveniftheconservationofζk 4 inthelimitk/aH 1isproved,thelogarithmicenhancementintheform (k/aH)2ln(k/a H )maygiverise,wherea and i i i ≪ H arethescalefactorandtheHubbleparameterattheinitialtime. Thefactorln(k/a H )canbecomelargetoovercomethe i i i suppressionby(k/aH)whenwesendtheinitialtimetothepastinfinity. B. Summaryofupcomingresults Shortsummaryoftheresults. Inthissubsection,we summarizewhatwewillshowinthispaper. Takingaccountofthe currentstatusofIRissuesmentionedabove,wewillestablishthefollowingthreestatementsinthispaper: 1. ThereisanalternativeequivalentHamiltonianthatdescribesthequantumdynamicsofourinterestandwhoseinteraction partissolelycomposedoftheIRirrelevantoperators(,whichmeanthefieldoperatorsassociatedwiththeoperationsthat manifestlysuppresstheIRcontributionsuchas∂ /aH and∂ /H). i t 2. TheEuclideanvacuumstate, whichisspecifiedbytheregularitywhenthetimecoordinatesinthen-pointfunctionsare analytically continuedto the imaginary in the complexplane, is physically the same both in the alternative description mentionedinitem1,andintheoriginaldescription. 3. Then-pointfunctionsintheEuclideanvacuumstaterespectthespatialtranslationinvarianceandareregularintheIR.The seculargrowthisabsent,evenifweincludetheverticeswithnon-IRmodes,aslongasveryhighorderofloopcorrections arenotconcerned. Belowweaddalittlemoredetailedexplanationsabouttheabovethreeitems. Gauge issue. In this paper, the quantization and fixing the initial quantum state as a starting point of our discussion is performed in the original system which describes the whole universe, where the residual gauge degrees of freedom are left unfixed. Then,followingRefs.[25–27,30,41],weintroduceafieldoperatorwhichpreservestheinvarianceunderanyspatial coordinatestransformations,includingresidualgaugetransformations.Werefertosuchanoperatorasagenuinegaugeinvariant operator.Asarepresentative,weconsideragenuinegaugeinvariantcurvatureperturbation,gR.Aslongastheexpectationvalues ofsuchgenuinegaugeinvariantoperatorsareconcerned,wecanperformtheresidualgaugetransformationwithoutaffectingthe resultsofcomputations. Wewillshowthat,usingthisresidualgaugetransformation,theboundaryconditionsofthenon-local operator∂−2intheactioncanbemodifiedtoberegularintheIR. Requirement of the gauge invariance in quantum state. To calculate the n-point functions which preserve the invari- anceundertheresidualgaugetransformations,theinitialstateshouldbealsospecified inagenuinelygaugeinvariantmanner. However,whenweperformthequantizationconsideringthewholeuniverse,preservingtheresidualgaugeinvariancebecomes obscure, because these residual gaugedegreesof freedomare notpresentas longas we dealwith the whole universe. In our previous paper [27], we discovered a correspondence between the IR regularity and the invariance under the residual gauge transformations,whichwillprovideanimportantcluetotheguidingprincipleinchoosingthegenuinelygaugeinvariantinitial state. Todiscussthispoint,asidefromtheoriginalcanonicalvariablesζ(x)anditsconjugatemomentumπ(x),whoseevolution is governed by the action (1.2), we introduced another set of the canonical variables corresponding to the description in the coordinatesshiftedbyaconstantdilatationtransformation: ζ˜(x):=ζ(t, e−sx), π˜(x), (1.7) wheresisatimeindependentc-numberandπ˜(x)istheconjugatemomentumofζ˜(x). InRef.[27],weshowedthatrequesting theequivalencebetweenthetwoquantumsystemsdescribedby ζ,π and ζ˜,π˜ guaranteestheIRregularityofloopcorrec- { } { } tions.Here,theequivalenceoftwoquantumsystemsmeansthatthesameiterationscheme(orformallythesameinitialcondition oftheinteractingsystem)givesphysicallythesamequantumstateinbothsystemsrelatedtoeachotherbythedilatationtransfor- mation. Namely,alltheexpectationvaluesevaluatedinbothsystemsareequivalentifwetakeintoaccounthowtheytransform underdilatation transformation. Requesting this equivalencewill be thoughtof as the invarianceof the initial state underthe dilatationtransformation. InRef.[27],weemployedtheiterationschemeinwhichtheinteractionisturnedonatafinitepast. Then, it turnedoutthatthe IR regularity/gaugeinvarianceconditioncannotbe consistentlyimposed. In the presentpaperwe willsettheinitialquantumstateattheinfinitepast. Wewillshowthattheabovetransformationcanbeextendedtoallowatime dependenceof the parameter s. As we described in the previoussection, this extensionplays a crucialrole in discussing the absenceoftheseculargrowth. The Euclidean vacuum. The second and third items are related with each other, once we establish the correspondence betweenthegaugeinvarianceandtheIRregularity.Wewillshowthatthetwoquantumsystemsdescribedby ζ,π and ζ˜,π˜ { } { } areequivalentifwechoosetheEuclideanvacuum,whichisdefinedbyrequestingtheregularityofthen-pointfunctionsatthe distantpastwiththetimepathrotatedtowardthecomplexplane. Tobemorespecific,astheseconditem,wewillshowthatthe n-pointfunctionsforζ(x) calculatedby the canonicalvariables ζ,π with the boundaryconditionof the Euclideanvacuum { } 5 agreeswiththen-pointfunctionsforζ˜(t,es(t)x)calculatedbythecanonicalvariables ζ˜,π˜ underformallythesameboundary { } condition,i.e., ζ(t, x )ζ(t, x ) ζ(t, x ) = ζ˜(t, es(t)x )ζ˜(t, es(t)x ) ζ˜(t, es(t)x ) . (1.8) h 1 2 ··· n i{ζ,π} h 1 2 ··· n i{ζ˜,π˜} Combinedwith the previouslymentionedtechniqueto deal with the gaugeissue, we will show that when we choose the Eu- clideanvacuum,theHamiltoniandensityfor ζ˜,π˜ ,canbeexpressedonlyintermsoftheIRirrelevantoperators. { } The IR regularityandthe absence of the secular growth. As forthe third item, we evaluatethe n-pointfunctionof the genuinely gauge invariantoperator. Performingthe quantizationin the canonical system of ζ˜,π˜ , we will show that the IR { } contributions do not diverge and that the secular growth is suppressed. We carefully investigate the contributions from the modeswhicharecomparabletoorlessthantheHubblescale, i.e.,k & aH,withoutemployingtheasymptoticexpansionwith respectto k/aH. As is stressed at the end ofthe precedingsubsection, thispointis one of the necessaryingredientsto show theabsenceoftheseculargrowth. OnemaynaivelyexpectthattheUVmodeswithk/aH & 1willnoteffectivelycontribute tothevertexintegrationbecauseoftheoscillatorybehaviour.Amorecarefulconsiderationtellsusthatthisnaiveexpectationis notnecessarilycorrect.Ingeneral,vertexintegrationsbecomeamixtureofthepositiveandnegativefrequencymodefunctions, whichyieldsthephaseintheUVlimiteiη(k1−k2+k3−···)whereηrepresentstheconformaltimewhichrunsfrom to0.Then, −∞ thephasedoesnotnecessarilyexhibittherapidoscillationevenforthemodeswithk /aH k η &1,wherem=1, 2, , m m ≃− ··· whichcanbeacauseofseculargrowth.Intriguingly,choosingtheEuclideanvacuumplaysacrucialrolenotonlyintheIRlimit butalso in theUV limit. Onecanshowthatthereisnomixingbetweenthe positiveandthe negativefrequencymodes, ifwe choosetheEuclideanvacuum.Therefore,seculargrowthisevadedinthiscase. Theoutlineofthepaper. Theoutlineofthispaperisasfollows. InSec.II,wewillbrieflyreviewthewaytoconstructthe genuinelygaugeinvariantoperatorgR,followingRefs.[25,26]. Then,wewillintroducethecanonicalvariables ζ˜,π˜ andwill { } derivetheHamiltonianforthesevariables.InSec.III,wewilldiscusstheitems1and2thatwementionedabove.InSec.IIIA, we will describethe boundaryconditionsof the Euclideanvacuumand will proveEq. (1.8), which impliesthatthe boundary conditionsoftheEuclideanvacuumselectthesamegroundstatebothin ζ,π and ζ˜,π˜ . InSec.IIIBandSec.IIIC,wewill { } { } formulatethecanonicalquantizationintermsof ζ˜,π˜ andwillshowthattheinteractingverticesforthesecanonicalvariables { } consist only of the IR irrelevant operators. Particularly in Sec. IIIC, we will show that using the residual gauge degrees of freedom, the non-local operator ∂−2 can be made IR regular. In Sec. IV, we will discuss the item 3. In Sec. IVA, we will showthattheboundaryconditionoftheEuclideanvacuumleadstotheso-callediǫprescriptioninaperturbativeexpansion. In Sec. IVB, we will calculate the Wightmanpropagator,by which the n-pointfunctionsare expanded. Then, in Sec. IVC, we explicitlyevaluaten-pointfunctionstoinvestigatetheIRregularityandtheseculargrowth.InSec.V,asconcludingremarks,we discussanotherpossibilityoftheinitialstatewhichsatisfiestheIRregularity/gaugeinvarianceconditions.Wewillalsomention therelatedpaperstoclarifywhatisnewinthispaper. The advantage of the in-in formalism. In our previous publications [27–29], in calculating n-point functions, we used the retarded Green function to solve the non-linearHeisenberg equation. This is because we thoughtthat using the retarded Green function, whose Fourier mode is regular in the IR limit, makes the proof of the IR regularity transparent. However, the perturbativeexpansionusing the retarded Green functionis not suitable forthe present purpose, because the positive and negativefrequencymodesaremixedinthevertexintegrationsoncetheretardedGreenfunctionisused.Therefore,theboundary conditionsoftheEuclideanvacuumdoesnotguaranteetheconvergenceofthetimeintegrationsforallthevertices.Bycontrast, when we calculate the n-point functions in the in-in formalism, all vertex integrals can be made manifestly convergent by adopting the boundary conditions of the Euclidean vacuum (see Sec. IIIA). Since the n-point functions obtained from the solution written in terms of the retarded Green function agree with those obtained in the in-in formalism, the vertices which donotconvergeshouldvanishinthefinalresultofthe n-pointfunctions. However,thecancellationisobscuredin anexplicit perturbativeexpansion. Therefore,inthispaper,wecalculatethen-pointfunctiontotallybasedonthein-informalism,without usingtheretardedGreenfunction. II. CONSTRUCTINGTHEGAUGEINVARIANTQUANTITY Inthispaper,asanexplicitmodelofinflation,weconsiderastandardsinglefieldinflationmodelwhoseactiontakestheform M2 S = pl √ g[R gµνφ φ 2V(φ)]d4x, (2.1) ,µ ,ν 2 − − − Z whereM isthePlanckmassandwesetφtoadimensionlessscalarfield,dividingitbyM . However,aslongasweconsidera pl pl scalarfieldwiththesecond-orderkineticterm,anextensionproceedsinastraightforwardway.InSec.IIA,wewillconstructthe genuinegaugeinvariantoperatorcorrespondingtothespatialcurvature ofaφ-constantsurface. InSec.IIB,wewillintroduce thecanonicalsystem ζ˜,π˜ whoseHamiltoniandensityiscomposedonlyoftheIRirrelevantoperators. { } 6 A. Gauge invariantoperatorandquantization Wefixthetimeslicingbyadoptingtheuniformfieldgaugeδφ=0. UndertheADMmetricdecomposition,whichisgivenby ds2 = N2dt2+h (dxi+Nidt)(dxj +Njdt), (2.2) ij − wetakethespatialmetrich as ij h =e2(ρ+ζ) eδγ , (2.3) ij ij wherea:=eρisthescalefactor,ζ istheso-calledcurvaturepertur(cid:2)batio(cid:3)nandδγ isatracelesstensor: ij δγi =0. (2.4) i Asspatialgaugeconditionsweimposethetransverseconditionsonδγ : ij ∂ δγi =0. (2.5) i j Since thetime slicing isfixedbythe gaugeconditionδφ = 0, thereare remainingresidual gaugedegreesoffreedomonlyin choosingthespatialcoordinates.Inthispaper,weneglectthevectorandtensorperturbations.Thetensorperturbation,whichis massless,canalsocontributetotheIRdivergenceofloopcorrections.Wewilladdressthisissueinourfuturepublication. FollowingRefs.[25,26],weconstructagenuinegaugeinvariantoperator,whichpreservesthe gaugeinvarianceinthelocal observable universe. For the construction, we note that the scalar curvature sR, which transforms as a scalar quantity under spatialcoordinatetransformations,becomesgenuinelygaugeinvariant,ifweevaluateitinthegeodesicnormalcoordinateson eachtimeslice. Thegeodesicnormalcoordinatesareintroducedbysolvingthespatialthree-dimensionalgeodesicequation: d2xi dxj dxk gl +sΓi gl gl =0, (2.6) dλ2 jk dλ dλ where sΓi is the Christoffel symbol with respect to the three dimensional spatial metric on a constant time hypersurface jk and λ is the affine parameter. Here we put the index gl on the global coordinates, to reserve the simple notation x for the geodesic normal coordinates, which will be mainly used in this paper. We consider the three-dimensional geodesics whose affineparameterrangesfromλ=0to1withtheinitial“velocity”givenby dxi (x,λ) gl =e−ζ(λ=0)xi. (2.7) dλ (cid:12)λ=0 (cid:12) A point xi in the geodesic normalcoordinates is identifi(cid:12)ed with the end point of the geodesic, xi (x,λ = 1) in the original (cid:12) gl coordinates. Using the geodesic normal coordinates xi, we perturbatively expand xi as xi = xi +δxi(x). Then, we can gl gl constructagenuinelygaugeinvariantvariableas gR(t, x):=sR(t, xi (x))=sR(t, xi+δxi(x))), (2.8) gl wheretdenotesthecosmologicaltime. B. Dilatationsymmetryintheglobaluniverse Thefocusofthissubsectionisonthedilatationtransformation,shiftingtotherescaledspatialcoordinates: x˜i :=es(t)xi. (2.9) Solving the Hamiltonian and momentumconstraintequations, we can derive the action that is expressed only in terms of the curvatureperturbationζ(x),whichisschematicallywrittenas S = dtd3xL[∂ ζ(x),ζ(x)], (2.10) t Z Usingthecurvatureperturbationζ andtheconjugatemomentumdefinedbyπ := δL/δ(∂ ζ),theHamiltoniandensityisgiven t bytheLegendretransformas H[ζ(x),π(x)] :=π(x)∂ ζ(x) L[∂ ζ(x), ζ(x)]. (2.11) t t − 7 Whatisimportanthereisonlythefactthatthecurvatureperturbationζ appearintheactioneitherwithdifferentiationorin theformofthecombinationofthephysicaldistanceeρ+ζdx[27]. Inthenewcoordinates(2.9),thephysicaldistanceiswritten aseρ+ζ˜(t,x˜)−s(t)dx˜,withthedefinitionofanewvariable ζ˜(t, x˜):=ζ(t, x). (2.12) Thus,ifthefieldζ(x)isreplacedwithζ˜(t, x˜) s(t)underthechangeofthecoordinatesfromxtox˜,theactionbasicallyremains − invariant. Toexpress∂ ζ(x)intermsofthenewvariableζ˜,wedenotethepartialdifferentiationwiththespatialcoordinatesx t fixedas (∂tζ˜(t, x˜))x. Thesubscriptassociated with the parenthesesspecifies the spatialcoordinatesthat we fix in taking the partialdifferentiation.Then,wehave (∂tζ˜(t, x˜))x =∂tζ(x). (2.13) Forbrevity,whenthefixedspatialcoordinatesareidenticaltotheonesintheargumentofthevariable,wesimplyuse∂ . Then, t wecanestablishanidentity dtd3xL[∂tζ(x),ζ(x)] = dtd3x˜L[(∂tζ˜(t,x˜))x,ζ˜(t,x˜) s(t)]. (2.14) − Z Z Recalling the relation between x and x˜ (2.9), this equality also means the equality at the level of Lagrangian density, e−3s(t)L[∂tζ(x),ζ(x)] =L[(∂tζ˜(t,x˜))x,ζ˜(t,x˜) s(t)]. − Weintroducethecanonicalconjugatemomentumcorrespondingtoζ˜(t,x˜)inthestandardwayas π˜(t, x):= ∂L[(∂tζ˜(t, x˜))x,ζ˜(t, x˜)−s(t)]. (2.15) ∂(∂ ζ˜(t, x˜)) t Noticingtherelation ∂tζ˜(t,x˜)=(∂tζ˜(t,x˜))x s˙(t)x˜ ∂x˜ζ˜(t,x˜), (2.16) − · wehave π˜(t, x˜)= ∂L[(∂tζ˜(t, x˜))x,ζ˜(t, x˜)−s(t)] =e−3s(t)∂L[∂tζ(x),ζ(x)] =e−3s(t)π(x). (2.17) ∂((∂tζ˜(t, x˜))x) ∂(∂tζ(x)) Asisexpected,usingthecommutationrelationsforζ andπtogetherwithEqs.(2.12)and(2.17),wecanverify ζ˜(t, x˜), π˜(t, y˜) =e−3s(t)iδ(3)((x y))=iδ(3)(x˜ y˜), (2.18) − − h i aswellas ζ˜(t, x˜), ζ˜(t, y˜) =[π˜(t, x˜), π˜(t, y˜)]=0. (2.19) h i TheHamiltoniandensityforζ˜(x˜)andπ˜(x˜)isobtainedinthestandardwayas H˜ ζ˜(t,x˜), π˜(t,x˜) :=π˜(t,x˜)∂tζ˜(t, x˜) L[(∂tζ˜(t, x˜))x,ζ˜(t, x˜) s(t)] − − h i=π˜(t,x˜)(∂tζ˜(t,x˜))x L[(∂tζ˜(t, x˜))x,ζ˜(t, x˜) s(t)] s˙(t)π˜(t,x˜)x˜ ∂x˜ζ˜(t, x˜) − − − · =H[ζ˜(t, x˜) s(t),π˜(t, x˜)] s˙(t)π˜(t,x˜)x˜ ∂x˜ζ˜(t, x˜), (2.20) − − · whereintheequalityonthesecondlineweusedEq.(2.16). ThelastequalityisexactlythesameLegendretransformationasin theoriginalsystemandthereforewecanusethesamefunctionalformoftheHamiltoniandensityH. Assumingthats(t)isassmallasζ˜(x)andπ˜(x),wedecomposetheHamiltoniandensitiesHandH˜ intothenon-interacting parts,whichincludeonlythequadraticterms,andtheinteractingpartsas H[ζ(x), π(x)]=H [ζ(x), π(x)]+H [ζ(x), π(x)], (2.21) 0 I and H˜ ζ˜(x), π˜(x) =H ζ˜(x), π˜(x) +H˜ ζ˜(x), π˜(x) . (2.22) 0 I h i h i h i 8 Intheaboveweusedthecoordinatesxinsteadofx˜ forthe ζ˜,π˜ system,butitwillnotcauseanyconfusionaftertherelations { } betweenthe ζ,π and ζ˜,π˜ systemshavebeenestablished. Here,wereplacedH [ζ˜(x) s(t), π˜(x)]withH [ζ˜(x), π˜(x)], 0 0 sinceζ(x)alw{ays}appea{rswit}hthespatialderivativeinH [ζ(x),π(x)]. Remarkably,thenon−-interactingpartoftheHamiltonian 0 density doesnot changeat all underthe dilatationtransformation. Using Eq. (2.20), we find that the interactionHamiltonian H˜ [ζ˜, π˜]isgivenby I H˜I ζ˜(x), π˜(x) :=HI ζ˜(x) s(t), π˜(x) s˙(t)π˜(x)x ∂xζ˜(x). (2.23) − − · h i h i Inthisway,wecanwritedownH˜ onlyintermsofζ˜(x) s(t),ζ˜withdifferentiation,π˜ ands˙(t). InRef.[27],weintroduced I − thetwosetsofthecanonicalconjugatevariableswhichareconnectedbythedilatationtransformationwithaconstantparameter s. When we take the limit where s(t) is constant, the Hamiltonian density H˜(x) takes the same functional form as H(x) exceptfortheconstantshiftofζ˜(x)by s. Itisbecause,withoutmodifyingthegaugecondition,wecanperformthedilatation − transformationwith the constant parameter s also in the whole universe. Then the action which preservesthe diffeomorphic invariancebecomesinvariantunderthechangefrom ζ(x)toζ(t,e−sx) s. HerewehaveextendedtheargumentinRef.[27] − toallowstodependontime. AswementionedinSec.I,thisextensionplaysthecrucialroleinourdiscussionaboutthesecular growth. Inthenextsection,wewillshowthatalltheinteractionverticesinthecanonicalsystem ζ˜,π˜ arecomposedonlyof { } theIRirrelevantoperator. III. INTERACTIONHAMILTONIANWITHTHEIRIRRELEVANTOPERATORS In this section, we describe the first two of the three items we raised in Sec. I. In the preceding section, we derived the Hamiltonianforthecanonicalvariablesζ˜(x)andπ˜(x). Since ζ,π and ζ˜,π˜ areconnectedbythecanonicaltransformation, { } { } ifwechoosethesameinitialstateinbothofthetwocanonicalsystems,then-pointfunctionsforthesameoperator,forinstance gR, calculated in these canonical systems should agree with each other. However, even if we adopt operationally the same scheme to select the initial state in these two systems, it does not guarantee that the selected initial states are the same. In Sec.IIIA,afterwedescribethedefinitionoftheEuclideanvacuum,wewillshowthattheconditionoftheEuclideanvacuum operationallyselectsthesamequantumstateirrespectiveofthechoiceofthecanonicalvariables. Thisensurestheequivalence ofthesetwocanonicalsystemsincludingthechoiceoftheinitialquantumstate,whichwementionedintheitem2. InSec.IIIB, wewillperformthequantizationusingthecanonicalvariables ζ˜,π˜ . AswewillshowinSec.IIIC,byvirtueoftheequivalence { } betweenthetwocanonicalsystems,theinteractionverticesfor ζ˜,π˜ canbeexpressedintermsofoperatorproductscomposed { } onlyoftheIRirrelevantoperators. A. Euclideanvacuumanditsuniqueness In the case with a massive scalar field in de Sitter spacetime, the boundaryconditionspecified by rotatingthe time path in thecomplexplanecanbeunderstoodasrequestingtheregularityofcorrelationfunctionsontheEuclideanspherewhichcanbe obtainedbytheanalyticcontinuationfromtheonesondeSitterspacetime. ThevacuumstatethusdefinediscalledEuclidean vacuumstate. Because of the similarity, here we also referto the state which is specified by a similar boundarycondition as theEuclideanvacuum. Tobemoreprecise,wedefinetheEuclideanvacuumasfollows. Inthein-informalism,theinsertionof interactionverticesisorderedalongtheclosedtimepath. Byrotatingthetimepathtowardtheimaginaryplane,theforwardtime evolutionbeginsatη(t ) = (1 iǫ)andendsatthefinaltimet andthebackwardtimeevolutionbeginsatt andendsat i f f −∞ − η(t ) = (1+iǫ). Herewesetǫtoasmallpositivenumber. Sincerotatingthetimepathcanbebetterunderstoodbyusing i −∞ theconformaltimeη,weintroducedtheconformaltimeηas t dt′ ρ(t) dρ′ η(t):= = . (3.1) eρ(t′) eρ′ρ˙(ρ′) Z Z We define the Euclideanvacuum, requestingthe regularityof the n-pointfunctionswith an arbitrarynaturalnumber n in the limitofη(t ) (1 iǫ),i.e., i →−∞ ± F (x , x ):= T ζ(x ) ζ(x ) < as η(t ) (1 iǫ), (3.2) n 1 n c 1 n a ··· h ··· i ∞ →−∞ ± wherea = 1, nandT denotesthetimeorderingalongtheclosedtimepath. We first showthatthen-pointfunctionsofζ c ··· areuniquelyfixedbyrequestingthecondition(3.2). Inthispaper,forsimplicity,weassumethateρρ˙(ρ)israpidlyincreasingin timesothat η(t) =O 1/eρ(t)ρ˙(t) . (3.3) | | (cid:16) (cid:17) 9 Next, we show that the boundary condition of the Euclidean vacuum uniquely determines the n-point functions F (x , x ). WeschematicallydescribetheHeisenbergequationforζ(x)as n 1 n ··· Lζ =S [ζ], (3.4) NL whereListhesecond-orderdifferentialoperator: ∂2 L:=∂2+(3 ε +ε )∂ . (3.5) ρ − 1 2 ρ− e2ρρ˙2 Fornotationalconvenience,weintroducedthehorizonflowfunctions, 1 d 1 d ε := ρ˙, ε := ε , (3.6) 1 n n−1 −ρ˙dρ ε dρ n−1 with n 2, but we do not assume that these functionsare small to keep the backgroundevolution unconstrainedexceptfor ≥ requestingEq.(3.3), which is valid, forinstance, when ε are constantin time. Using the Heisenbergequation(3.4), we can n obtaintheevolutionequationofthepath-orderedn-pointfunctionsF (x , x )as n 1 n ··· L F (x , , x )=V(a)[ F ], (3.7) xa n 1 ··· n NL { m}m>n whereL isthederivativeoperatorLgiveninEq.(3.5)withthecoordinatesxreplacedwithx . Sincetheequationofmotion xa a forζ(x)isnon-linear,theequation(3.7)includesthesourceterm(therighthandside)composedofm-pointfunctionsofζ(x) withm > n. We canverifytheuniquenessofthen-pointfunctionsforζ(x) byshowingthatsolutionofEq.(3.7)isuniquely fixedbytheboundarycondition(3.2). Toshowthisuniqueness,weformallysolvetheequation(3.7)as F (x , , x )=f (x , , x )+L−1V(a)[ F ], (3.8) n 1 ··· n n 1 ··· n xa NL { m}m>n wheref (x , , x )isahomogeneoussolution,whileweassumethatthespecificsolutionL−1V(a)[ F ]satisfiesthe n 1 ··· n xa NL { m}m>n regularityconditioninthelimitsη(t ) (1 iǫ).Nowthequestioniswhethertheboundarycondition(3.2)allowsustoadd a anyhomogeneoussolutions.IntheFou→rie−rs∞pace±,fncanbeexpandedbye−ikη(ta)oreikη(ta)inthelimitsη(ta) (1 iǫ). Theregularityatη(ta) (1+iǫ)acceptse−ikη(ta) only,whiletheregularityatη(ta) (1 iǫ)ac→cep−ts∞theo±ther. → −∞ → −∞ − Thus the regularity condition in the two limits does not allow to add any homogeneoussolutions f , which implies that the n n-pointfunctionsF (x , , x )areuniquelyfixedbytheboundaryconditionoftheEuclideanvacuum. n 1 n ··· Next, weshowthatthisuniquenessisensuredindependentofwhetherweusethecanonicalvariables ζ,π or ζ˜,π˜ . We { } { } employtheboundaryconditionoftheEuclideanvacuumforthecanonicalvariableζ˜aswell,requesting T ζ˜(x ) ζ˜(x ) < as η(t ) (1 iǫ). (3.9) h c 1 ··· n i{ζ˜,π˜} ∞ a →−∞ ± Then,wecanshowthatthepath-orderedn-pointfunctions F˜n(x1, ···xn):=hTcζ˜(t1, es(t1)x1)···ζ˜(tn, es(tn)xn)i{ζ˜,π˜}, (3.10) agreewiththen-pointfunctionsF (x , x )= T ζ(x ) ζ(x ) fixedbytheboundarycondition(3.2),i.e., n 1 n c 1 n {ζ,π} ··· h ··· i F˜ (x , x )=F (x , x ). (3.11) n 1 n n 1 n ··· ··· Hereputtingthesuffixes ζ,π or ζ˜,π˜ ,wedenotethecanonicalvariablesusedinimposingtheboundaryconditionexplicitly. { } { } WeagainschematicallydescribetheHeisenbergequationforζ˜as Lζ˜=S˜ [ζ˜]. (3.12) NL Sinceζ(x)andζ˜(x)areconnectedbythecanonicaltransformation,theequationofmotionobtainedbyoperatingLon ζ(x)=ζ˜(t, es(t)x)=ζ˜(x)+s(t)x ∂xζ˜(x)+ , (3.13) · ··· can be recast into Eq. (3.4) by using Eq. (3.12). A similar argument follows for the equations of motion for the correlation functionsF andF˜ . Usingtheequationofmotionforthen-pointfunctionsofζ˜(x),whichcanbederivedfromEq.(3.12),we n n canconfirmthatanoperationofL on xa F˜n(x1, ···xn)=hTcζ˜(x1)···ζ˜(xn)i{ζ˜,π˜}+s(t1)hTcx1·∂x1ζ˜(t1, x1)···ζ˜(tn, xn)i{ζ˜,π˜}+··· (3.14) 10 leadsto L F˜ (x , , x )=V(a)[ F˜ ]. (3.15) xa n 1 ··· n NL { m}m>n Thisequationtakesthesameformastheequationofmotion(3.7). We alsonotethattheboundaryconditionoftheEuclidean vacuum(3.9)implies F˜ (x , , x , , x )< as η(t ) (1 iǫ). (3.16) n 1 a n a ··· ··· ∞ − →∞ ± Theequivalence(3.11)isnowtransparent,becausetheequationsofmotion (3.7)and(3.15),andtheboundaryconditions(3.2) and(3.16)arethesame,andthelatterspecifythesolutionsoftheformeruniquely. Thisequivalenceisadistinctivepropertyof theEuclideanvacuum1. Herewetooktheboundaryconditionsforn-pointfunctionsasthedefinitionoftheEuclideanvacuum state, assumingtheexistenceofsuchaquantumstate. InSec.IVA,weexplainsuchaEuclideanvacuum,ifexists, shouldbe theonegivenbytheordinaryiǫprescription. B. Rewritingthen-pointfunctions Inthissubsection,werearrangetheexpressionforthe n-pointfunctionsofthegenuinelygaugeinvariantvariablegRintoa moresuitableformtoexaminetheregularityoftheIRcontributions.First,solvingthethreedimensionalgeodesicequations,we obtaintherelationbetweentheglobalcoordinatesxi andthegeodesicnormalcoordinatesxi as gl xi =e−ζ(t,e−ζx)xi+ , (3.17) gl ··· wheretheellipsismeansthetermswhichvanishwhenζ(x)isspatiallyhomogeneous,i.e.,thetermssuppressedintheIRlimit. NotethatchangingthespatialcoordinatesintothegeodesicnormalcoordinatesalsomodifiestheUVcontributions.Tsamisand Woodard[45] showedthatusingthegeodesicnormalcoordinatescanintroduceanadditionaloriginofUV divergence,which maynotbeabletoberenormalizedbylocalcounterterms[46]. Itshouldbeclarifiedwhetherthisissueisaseriousproblemor not,butwedeferittoafuturestudy.Instead,tokeeptheUVcontributionsundercontrol,wereplaceζ(x)inEq.(3.17)withthe smearedcurvatureperturbationgζ¯(t),i.e., xi =e−gζ¯(t)xi, (3.18) gl with d3xW (x)ζ(t,e−gζ¯x) gζ¯(t):= Lt , (3.19) d3xW (x) R Lt where W (x) is a windowfunctionwhich is non-vanishinRgonlyin the localregion Σ O. We approximatethe averaging scaleateLacthtimetbytheHubblescale,i.e.,L 1/ eρ(t)ρ˙(t) . Althoughgζ¯appearsotn∩theright-handsideofEq.(3.19), gζ¯ t isdefinediterativelyateachorderoftheperturbat≃ion.W{ecalcula}tethen-pointfunctionsofR gζ(t,x),insteadofgR,with x gζ(t, x):=ζ(t, e−gζ¯(t)x). (3.20) Here,R denotestheIRsuppressingoperatorsuchas x ∂ , ∂x , 1 d3xWLt(x) , , (3.21) ρ eρ(t)ρ˙(t) − d3yW (y) ··· (cid:18) R Lt (cid:19) where x is the spacetime coordinatesof the field on which thesRe operatorsact. Although R gζ(t, x) is not genuinely gauge x invariant,itisstillinvariantunderthedilatationtransformation,whichisassociatedwiththedominantIRcontributions.Infact, sincethesmearedcurvatureperturbationgζ¯(t)transformsintogζ¯(t) f underthedilatationtransformation: x e−fxwitha constantf,R gζ(x)iskeptinvariantunderthistransformation.Byco−ntrast,theconstantpartofgζ(x)canbemo→difiedunderthe x dilatationtransformationasgζ(x) gζ(x) f. SincethegenuinegaugeinvariantvariablegR(x)shouldnotbeaffectedbythe dilatationtransformation,whichis→apartof−theresidualgaugetransformations,gζ(x)appearsonlyintheformofR gζ(x)when x 1The uniqueness ofthe Euclidean vacuum becomes intuitively clear when the Hamiltonian is time independent and the lowest energy eigenstate is non- degenerate,becausetheiǫprescriptionselectstheuniquegroundstateofthesystem.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.