ebook img

Strong isomorphism in Eisert-Wilkens-Lewenstein type quantum games PDF

0.11 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Strong isomorphism in Eisert-Wilkens-Lewenstein type quantum games

Strong isomorphism in Eisert-Wilkens-Lewenstein type quantum games PiotrFra¸ckiewicz InstituteofMathematics PomeranianUniversity,Poland January23, 2017 7 1 Abstract 0 2 Theaimofthispaperistobringtogetherthenotionsofquantumgameandgameisomorphism.Theworkisintended as an attempt to introduce a new criterion for quantum game schemes. The generally accepted requirement forces a n quantum scheme to generate the classical game in a particular case. Now, given a quantum game scheme and two a J isomorphic classical games, we additionally require the resulting quantum games to be isomorphic as well. We are concerned with the Eisert-Wilkens-Lewenstein quantum game scheme and the strong isomorphism between games in 9 strategicform. 1 ] T 1 Introduction G . Sixteenyearsofresearchonquantumgameshavegivenusmanyideasofhowquantumgamescouldbedescribed. For s c example, we have learned from [1] that players who are allowed to use some specific unitary operators may gain an [ advantageovertheplayerswhouseonlyclassicalstrategies. Theschemesintroducedin[2]and[3]giveustwodifferent ways of describing quantum2 2 games. The paper [4], in turn, providesus with a quantumscheme for the Cournot 1 × v duopolygame.Whatconnectstheseprotocolsisthecapabilitytoobtaintheclassicalgame.Thisappearstobeagenerally 3 acceptednecessaryconditionimposedonaquantumscheme. Onecanalsofindotherandmoresubjectiveguidelinesfor 3 quantumgameschemes.Paper[5]showshowtogeneralizetheschemeintroducedin[3]byassumingthatthenewmodel 6 should output the classical game (up to the order of players’ strategies) if the initial state is one of the computational 5 basis states. In addition, the work of Bleiler [6] distinguishes between proper and more strict complete quantization. 0 . Roughlyspeaking,thefirstnotionconcernsquantumschemeswherethecounterpartsofclassicalpurestrategiescanbe 1 found in pure quantum strategies. The second one requires the quantumstrategy set to include the counterpartsof the 0 mixedclassicalstrategies. With thesenotionstheMarinatto-Weber(MW) [3] schemeturnsoutto benotevena proper 7 1 quantization. TheEisert-Wilkens-Lewenstein(EWL)[2]scheme,inturn,isacompletequantization,andthisisthecase : as long asthe players’ quantumstrategiesincludethe one-parameterunitaryoperatorsU(θ,0,0)(see formula(11)). In v i particular,wecanfindalotofpaperswheretheEWLschemewasstudiedwiththetwo-parameterunitarystrategies[7], X [8],[9],[10]. However,asitwasnotedin[11]theset U(θ,α,0) appearsnottoreflectanyreasonablephysicalconstraint { } r asthissetisnotclosedundercomposition.Moreover,[12]showedthatdifferenttwo-parameterstrategyspacesintheEWL a schemeimplydifferentsetsofNashequilibria. Inthispaperweexplainwhythesetoftwo-parameterunitaryoperators may not be reasonablefrom the game theory viewpoint. Our criterion is formulatedin terms of isomorphicgames. If we assume thatboth classical gamesare the same with respectto gametheoreticaltools, we requirethe corresponding quantumgamesto beequivalentin the sameway. Itis worthnotingthatquantumgameschemesintroducedin [2], [3] and the refined MW scheme defined in [13] preserve the so-called strategic equivalence. We recall what this means. The following definition can be found in [14]. See the Preliminary section for the definition of strategic form game (N,(S ) ,(u) )anditscomponents. i i N i i N ∈ ∈ Definition1 Two games in strategic form (N,(S ) ,(u) ) and (N,(S ) ,(v) ) with the same set of players and i i N i i N i i N i i N ∈ ∈ ∈ ∈ the same sets of pure strategies are strategically equivalentif for each player i N the function v is a positive affine i transformationofthefunctionu. Inotherwords,thereexistα >0andβ Rsuc∈hthat i i i ∈ v(s)=αu(s)+β, foreach s S . (1) i i i i i ∈ Yi N ∈ ItisclearthatgiventwostrategicallyequivalentgamesΓandΓ,theplayeri’spayoffoperatorsM andM inthequantum ′ i i′ gamesareconnectedbyequation M = αM +β. Then,bylinearityoftrace,thequantumpayofffunctionssatisfy(1), i′ i i i 1 i.e., tr(ρ M ) = αtr(ρ M)+β. Virtually,strategicallyequivalentgamesΓandΓ describethesamegame-theoretical fin i′ i fin i i ′ problem.Inparticular,everyequilibrium(pureormixed)ofthegameΓisanequilibriumofthegameΓ. ′ The strategy equivalence can be extended to take into account different orders of players’ strategies. This type of equivalenceisincludedinthedefinitionofstrongisomorphism. Clearly,ifforexample,twobimatrixgamesdifferonly in the order of a player’s strategies we still have the games that describe the same problem from the game theoretical viewpoint.Givenaquantumscheme,itappearsreasonabletoassumethattheresultingquantumgamewillnotdependon thenumberingofplayers’strategiesintheclassicalgame. Asaresult,ifthereisastrongisomorphismbetweengames, werequirethatthequantumcounterpartsofthesegamesarealsoisomorphic. 2 Preliminaries In order to make our paper self-contained we give the important preliminaries from game theory and quantum game theory. 2.1 Strong isomorphism Firstwerecallthedefinitionofstrategicformgame[14]. Definition2 AgameinstrategicformisatripleΓ=(N,(S ) ,(u) )inwhich i i N i i N ∈ ∈ N = 1,2,...,n isafinitesetofplayers. • { } S isthesetofstrategiesofplayeri,foreachplayeri N. i • ∈ u : S S S Risafunctionassociatingeachvectorofstrategies s = (s) withthepayoffu(s)to i 1 2 n i i N i • × ×···× → ∈ playeri,foreveryplayeri N. ∈ Thenotionofstrongisomorphismdefinesclassesofgamesthatarethesameuptonumberingoftheplayersandtheorder ofplayers’strategies. Thefollowingdefinitionsaretakenfrom[15](seealso[16],[17]and[18]). Thefirstonedefinesa mappingthatassociatesplayersandtheiractionsinonegamewithplayersandtheiractionsintheothergame. Definition3 Given Γ = (N,(S ) ,(u) ) and Γ = (N,(S ) ,(u) ), a game mapping f from Γ to Γ is a tuple i i N i i N ′ i′ i N ′i i N ′ f =(η,(ϕ) )whereηisabijecti∈onfrom∈N toN andforanyi ∈N,ϕ i∈sabijectionfromS toS . i i N i i η(i) ∈ ∈ Example1 Letusconsidertwobimatrixgames l r l r ′ ′ t (a ,b ) (a ,b ) t (a ,b ) (a ,b ) 00 00 01 01 and ′ ′00 ′00 ′01 ′01 . (2) b (a10,b10) (a11,b11)! b′ (a′10,b′10) (a′11,b′11)! Then, N = 1,2 and S = t,b , S = l,r , S = t ,b , S = l,r . As an example of a game mapping let { } 1 { } 2 { } 1′ {′ ′} 2′ {′ ′} f =(η,ϕ ,ϕ ), 1 2 η=(1 2,2 1), ϕ =(t l,b r ), ϕ =(l b,r t ). (3) 1 ′ ′ 2 ′ ′ → → → → → → Sinceϕ : S S andϕ : S S ,itfollowsthat f maps(s ,s ) S S to(ϕ (s ),ϕ (s )). From(3)weconclude 1 1 → 2′ 2 2 → 1′ 1 2 ∈ 1× 2 2 2 1 1 that f =((t,l) (b,l),(t,r) (t,l),(b,l) (b,r ),(b,r) (t,r )). (4) ′ ′ ′ ′ ′ ′ ′ ′ → → → → In general case, mapping f from (N,(S ) ,(u) ) to (N,(S ) ,(u) ) identifies player i N with player η(i) and i i∈N i i∈N i′ i∈N ′i i∈N ∈ maps S to S . This means that strategy profile (s ,...,s ) S S is mapped into profile (s ,...,s ) that i η(i) 1 n ∈ 1 × ···× n ′1 ′n satisfiesequations =ϕ(s)fori N. ′η(i) i i ∈ Thenotionofgamemappingisabasisfordefinitionofgameisomorphism. Dependingonhowrichstructureofthe gameisto bepreservedwe candistinguishvarioustypesofgameisomorphism. Onethatpreservesthe players’payoff functionsiscalledthestrongisomorphism.Theformaldefinitionisasfollows: Definition4 Given two strategic games Γ = (N,(S ) ,(u) ) and Γ = (N,(S ) ,(u) ), a game mapping f = i i N i i N ′ i′ i N ′i i N (η,(ϕ) ) is called a strong isomorphism if relation u∈(s) = u∈ (f(s)) holds for eac∈h i N∈ and each strategy profile i i∈N i ′η(i) ∈ s S S . 1 n ∈ ×···× FromtheabovedefinitionitmaybeconcludedthatifthereisastrongisomorphismbetweengamesΓandΓ,theymay ′ differmerelybythenumberingofplayersandtheorderoftheirstrategies. 2 Example2 Let f beagamemappingdefinedinExample1. Bydefinition, f becomesthestrongisomorphismifcondition u(s)=u (f(s))isimposedonthepayoffsin(2). Thisgives i ′η(i) a =b , a =b , a =b , a =b , 00 ′10 01 ′00 10 ′11 11 ′01 (5) b =a , b =a , b =a , b =a , 00 ′10 01 ′00 10 ′11 11 ′01 where, for instance, a = b follows from equation u ((t,r)) = u ((t,l)). Substituting (5) into (2) we conclude that 01 ′00 1 ′2 ′ ′ games l r l r ′ ′ t (a ,b ) (a ,b ) t (b ,a ) (b ,a ) 00 00 01 01 and ′ 01 01 11 11 . (6) b (a10,b10) (a11,b11)! b′ (b00,a00) (b10,a10)! areisomorphic. Inthiscase,thegamesdifferbythenumberingofplayersandtheorderofstrategiesofplayer2. Indeed, inthesecondgameof(6)player1and2choosenowbetweencolumnsandrows,respectively. Moreover,player1’sfirst (second)strategystillguaranteesthepayoffa ora (a ora )whereasplayer2’sstrategiesareinterchanged:thefirst 00 01 10 11 oneimpliesnowthepayoffb orb . 01 11 RelabelingplayersortheirstrategiesdoesnotaffectagamewithregardtoNashequilibria. If f isastrongisomorphism between games Γ and Γ, one may expect that the Nash equilibria in Γ map to ones in Γ under f. We will prove the ′ ′ followinglemmaasitisneededthroughoutthepaper. Lemma1 Let f beastrongisomorphismbetweengamesΓandΓ. Strategyprofiles =(s ,...,s ) S S isa ′ ∗ ∗1 ∗n ∈ 1×···× n NashequilibriumingameΓifandonlyif f(s ) S S isaNashequilibriuminΓ. ∗ ∈ 1′ ×···× n′ ′ Proof Theproofisbasedonthefollowingobservation.Since f((s ,...,s ))=(s ,...,s )wheres =ϕ(s),itfollows 1 n ′1 ′n ′η(i) i i that f((s,s ))maybewrittenas s ,s . As f isanisomorphism,wehaveu(s)=u (f(s))foreachstrategyprofile i i ′η(i) ′η(i) i ′η(i) s. Thus − (cid:16) − (cid:17) ui(s∗)=u′η(i) s∗1′,...,s∗n′ (7) (cid:16) (cid:17) and ui si,s∗i =u′η(i) f si,s∗i =u′η(i) s′η(i),s∗′η(i) . (8) Thisallowsustoconcludethattheineq(cid:0)ualit−y(cid:1) (cid:0) (cid:0) −(cid:1)(cid:1) (cid:16) − (cid:17) u(s ) u(s,s ) (9) i ∗ ≥ i i ∗−i holdsforeachi N andeachstrategys S ifandonlyif i i ∈ ∈ u′η(i)(cid:16)s∗1′,...,s∗n′(cid:17)≥u′η(i)(cid:16)s′π(i),s∗−′η(i)(cid:17) (10) foreachη(i) N andeachstrategys S . Thisfinishestheproof. (cid:4) ∈ ′i ∈ i′ 2.2 Eisert-Wilkens-Lewenstein scheme LetusconsiderastrategicgameΓ=(N,(S ) ,(u) )withS = si,si foreachi N. ThegeneralizedEisert-Wilkens- LewensteinapproachtogameΓisdefinedibyi∈Ntriplei iΓ∈N =(Ni,(Dn)0 ,1(oM) ),wh∈ere EWL i i N i i N ∈ ∈ D isasetofunitaryoperatorsfromSU(2).ThecommonlyusedparametrizationforU SU(2)isgivenby i • ∈ eiαcosθ ieiβsin θ U(θ,α,β)= 2 2 , θ [0,π], α,β [0,2π). (11) ie−iβsin2θ e−iαcos2θ ! ∈ ∈ Then D isassumedtoincludeset U(θ,0,0): θ [0,π] . ElementsU D playtheroleofplayeri’sstrategies. i i i { ∈ } ∈ Theplayers,bychoosingU D,determinethefinalstate Ψ accordingtothefollowingformula: i i ∈ | i n 1 Ψ = J U(θ,α,β) J0 n where J = 1 n+iσ n (12) (1istheidentitymatrixof|siize2a†ndOi=σ1 isithiePiauliima|triix⊗ X). √2(cid:16) ⊗ ⊗x (cid:17) x M isanobservabledefinedbytheformula i • M = ai j ...j j ... j . (13) i j1...jn| 1 nih 1 n| j1,...X,jn∈{0,1} Thenumbersai aretheplayeri’spayoffsinΓsuchthatai =u si ,...,si . Theplayeri’spayoffu inΓ j1...jn j1...jn i j1 jn i EWL isdefinedastheaveragevalueofmeasurementM,i.e., (cid:16) (cid:17) i n u U(θ,α,β) ≔ ΨM Ψ . (14) i i i i i  h | i| i Oi=1  3 3 Strong isomorphism in Eisert-Wilkens-Lewenstein quantum games HavingspecifiedthenotionofstrongisomorphismandthegeneralizedEisert-Wilkens-Lewensteinschemewewillnow checkiftheisomorphismbetweentheclassicallyplayedgamesmakesthecorrespondingquantumgamesisomorphic.We firstexaminethecasewhentheplayers’unitarystrategiesdependontwoparameters.ThequantumgameΓ with EWL D = U(θ,α,0): θ [0,π],α [0,2π) (15) i i i i i i { ∈ ∈ } isparticularlyinterested. ThatsettingwasusedtointroducetheEWLscheme[2]andhasbeenwidelystudiedinrecent years(see,forexample,[7],[8],[9],[10]). WebeginwithanexampleofisomorphicgamesthatdescribethePrisoner’s Dilemma. Example3 ThegeneralizedPrisoner’sDilemmagameandoneofitsisomorphiccounterpartsmaybegivenbythefol- lowingbimatrices: l r l r ′ ′ t (R,R) (S,T) t (S,T) (R,R) Γ: and Γ : ′ , (16) b (T,S) (P,P)! ′ b′ (P,P) (T,S)! whereT > R > P > S. Notethatthegamesarethesameuptotheorderofplayer2’strategies. Letusnowexaminethe EWLapproachtoΓandΓ definedbytriples ′ Γ = 1,2 ,( U(θ,α,0 : ) ,(M) , EWL i i i i 1,2 i i 1,2 { } { } ∈{ } ∈{ } (17) Γ =(cid:0) 1,2 ,( U (θ,α,0 ) ,(M ) (cid:1), ′EWL { } { i′ i′ ′i } i∈{1,2} i′ i∈{1,2} (cid:0) (cid:1) where (M ,M )=(R,R)00 00 +(S,T)01 01 +(T,S)10 10 +(P,P)11 11, 1 2 | ih | | ih | | ih | | ih | (18) (M ,M )=(S,T)00 00 +(R,R)01 01 +(P,P)10 10 +(T,S)11 11. 1′ 2′ | ih | | ih | | ih | | ih | WefirstcomparethesetsofNashequilibriainΓ andΓ tocheckifthegamesmaybeisomorphic. Werecallfrom EWL ′EWL [2]thatthereistheuniqueNashequilibriumU (0,π/2,0) U (0,π/2,0)inΓ thatdeterminesthepayoffprofile(R,R). 1 2 EWL ⊗ WhenitcomestoΓ ,wesetn=2in(12)andreplace(13)byM andM from(18). Thenwecanrewrite(14)as ′EWL 1′ 2′ (u ,u ) U (θ ,α ,0) U (θ ,α ,0) ′1 ′2 1 1′ ′1 ⊗ 2 2′ ′2 (cid:0) θ (cid:1)θ 2 =(S,T) cos(α +α )cos 1′ cos 2′ ′1 ′2 2 2! θ θ θ θ 2 +(R,R) cosα cos 1′ sin 2′ +sinα sin 1′ cos 2′ ′1 2 2 ′2 2 2! θ θ θ θ 2 +(P,P) sinα cos 1′ sin 2′ +cosα sin 1′ cos 2′ ′1 2 2 ′2 2 2! θ θ θ θ 2 +(T,S) sin(α +α )cos 1′ cos 2′ sin 1′ sin 2′ . (19) ′1 ′2 2 2 − 2 2! LetU (θ ,α ,0)beanarbitrarybutfixedstrategyofplayer2.Thenitfollowsfrom(19)thatstrategyU (θ ,α ,0)specified 2′ 2′ ′2 1′ 1′ ′1 byequation U (θ ,3π/2 α ,0) ifα [0,3π/2], U1′(θ1′,α′1,0)=U1′(θ2′,7π/2−α′2,0) ifα′2 ∈(3π/2,2π), (20)  1′ 2′ − ′2 ′2 ∈ is player 1’s best reply to U2′(θ2′,α′2,0) as it yields player 1 the payoff T. Hence, a possible Nash equilibrium would generatethemaximalpayoffforplayer1. Ontheotherhand,givenafixedplayer1’sstrategyU (θ ,α ,0),player2can 1′ 1′ ′1 obtainapayoffthatisstrictlyhigherthanS bychoosing,forexample,U (θ ,α ,0)withθ =0,α =2π α . Thismeans 2 2′ ′2 2′ ′2 − ′1 thattheplayer1wouldobtainstrictlylessthanT. Hence,thereisnopureNashequilibriuminthegamedeterminedby Γ . Asaresult,wecanconcludebyLemma1thatgames(17)arenotstronglyisomorphic. ′EWL TheexamplegivenaboveshowsthattheEWL approachwith thetwo-parameterunitarystrategiesmayoutputdifferent Nashequilibriadependingontheorderofplayers’strategiesintheclassicalgame. Thisappearstobea strangefeature sincegames(16)representthesamedecisionproblemfromagame-theoreticalpointofview. Onewaytomakegames(17)isomorphicistoreplaceplayeri’sstrategyset(15)withthealternativetwo-parameter strategyspace F = U(θ,0,β): θ [0,π],β [0,2π) (21) i i i i i i { ∈ ∈ } every time player i’s strategies are switched in the classical game. In the case of games (17) this means that quantum games Γ = 1,2 ,(D ,D ),(M) , Γ = 1,2 ,(D ,F ),(M ) (22) EWL { } 1 2 i i∈{1,2} ′EWL { } ′1 2′ i′ i∈{1,2} (cid:0) (cid:1) (cid:0) (cid:1) 4 are isomorphic. Indeed, define a gamemap f˜ = (η,ϕ˜ ,ϕ˜ ) with η(i) = i for i = 1,2 and bijectionsϕ˜ : D D and 1 2 1 1 → ′1 ϕ˜ : D F satisfying 2 2 → 2′ ϕ˜ (U (θ ,α ,0))=U (θ ,α ,0), ϕ˜ (U (θ ,α ,0))=U (π θ ,0,π α ). (23) 1 1 1 1 1′ 1 1 2 2 1 1 2′ − 2 − 2 Themapϕ˜ shouldactuallydistinguishcasesα [0,π)andα [π,2π)tobeawell-definedbijectionasitwasdonein 2 2 2 ∈ ∈ equation(20).Tosimplifytheproofwesticktotheform(23)throughoutthepaperbearinginmindthatforπ α <[0,2π) 2 − wecanalwaysfindtheequivalentangle3π α [0,2π).Wehavetoshowforgames(22)that 2 − ∈ u(U U )= ΨM Ψ = Ψ M Ψ =u(f˜(U U )) (24) i 1⊗ 2 h | i| i h ′| i′| ′i ′i 1⊗ 2 for i = 1,2, where Ψ = J (U U )J00 and Ψ = J (f˜(U U ))J00 . First, note that U (π θ ,0,π α ) = | i † 1 ⊗ 2 | i | ′i † 1 ⊗ 2 | i 2′ − 2 − 2 iσ U (θ ,α ,0). Hence,weobtain x 2′ 2 2 Ψ = J f˜(U (θ ,α ,0) U (θ ,α ,0))J00 ′ † 1 1 1 2 2 2 | i ⊗ | i = J (U (θ ,α ,0) U (π θ ,0,π α ))J00 † 1′ 1 1 ⊗ 2 − 2 − 2 | i =(1 ( iσ ))J (U (θ ,α ,0) U (θ ,α ,0))J00 ⊗ − x † 1′ 1 1 ⊗ 2′ 2 2 | i =(1 ( iσ ))Ψ . (25) x ⊗ − | i Applicationof(25)finallyyields Ψ M Ψ = Ψ(1 iσ )M (1 ( iσ ))Ψ = ΨM Ψ . (26) h ′| i′| ′i h | ⊗ x i′ ⊗ − x | i h | 1| i In similar way we can provea more generalfact. Namely, if F is player2’s strategyset in one of games(17) and D 2 2 isinthetheotheronethengames(17)becomestronglyisomorphic. ThisobservationsuggeststhattheEWLschemeis robustwithrespecttochangingtheorderofplayers’strategiesintheclassicalgameiftheplayerscanusestrategiesfrom D F,orequivalentlyfromthesetSU(2).Beforestatingthegeneralresultwestudyaspecificexample. i i ∪ Example4 Letusconsiderthefollowingthree-persongames: l r l r t (a ,b ,c ) (a ,b ,c ) t (a ,b ,c ) (a ,b ,c ) v 000 000 000 010 010 010 w 001 001 001 011 011 011 b (a100,b100,c100) (a110,b110,c110)! b (a101,b101,c101) (a111,b111,c111)! and l r l r ′ ′ ′ ′ t (a ,b ,c ) (a ,b ,c ) t (a ,b ,c ) (a ,b ,c ) v ′ 000 000 000 010 010 010 w ′ 001 001 001 011 011 011 . ′ b′ (a100,b100,c100) (a110,b110,c110)! ′ b′ (a101,b101,c101) (a111,b111,c111)! Thegamesare(strongly)isomorphicviagamemapping f =(η,ϕ ,ϕ ,ϕ )suchthat 1 2 3 η=(1 2,2 3,3 1), → → → (27) ϕ =(t l,b r ), ϕ =(l w,r v), ϕ =(v b,w t ). 1 ′ ′ 2 ′ ′ 3 ′ ′ → → → → → → Weseefrom(27)thattheisomorphismmapsstrategyprofilesasfollows: f(t,l,v)=(b,l,w), f(t,r,v)=(b,l,v), f(b,l,v)=(b,r ,w), ′ ′ ′ ′ ′ ′ ′ ′ ′ f(b,r,v)=(b,r ,v), f(t,l,w)=(t,l,w), f(t,r,w)=(t ,l,v) (28) ′ ′ ′ ′ ′ ′ ′ ′ ′ f(b,l,w)=(t,r ,w), f(b,r,w)=(t,r ,v). ′ ′ ′ ′ ′ ′ Let us now define the EWL quantum extensions Γ and Γ for the three-player game where we identify the EWL ′EWL players’firstandsecondstrategieswithvalues0and1,respectively.Thatis, Γ =(N,(D) ,(M) ) and Γ =(N,(D) ,(M ) ) (29) EWL i i N i i N ′EWL ′i i N i′ i N ∈ ∈ ∈ ∈ whereN = 1,2,3 ,D = D =SU(2)foreachi N, { } i ′i ∈ (M ,M ,M )= (a ,b ,c )P , (30) 1 2 3 j1j2j3 j1j2j3 j1j2j3 j1j2j3 j1,jX2,j3=0,1 (M ,M ,M )= (c ,a ,b )P , (31) 1′ 2′ 3′ j1j2j3 j1j2j3 j1j2j3 f(j1j2j3) j1,jX2,j3=0,1 5 where P = j j j j j j . Given f = (η,(ϕ) )letusdefineamapping f˜= (η,(ϕ˜) )suchthatϕ˜ : D D j1j2j3 | 1 2 3ih 1 2 3| i i∈N i i∈N i i → ′η(i) fori N and ∈ ϕ˜ (U (θ ,α ,β ))=U (θ ,α ,β ), 1 1 1 1 1 2′ 1 1 1 ϕ˜ (U (θ ,α ,β ))=U (π θ ,2π β ,π α ), (32) 2 2 2 2 2 3′ − 2 − 2 − 2 ϕ˜ (U (θ ,α ,β ))=U (π θ ,2π β ,π α ). 3 3 3 3 3 1′ − 3 − 3 − 3 Then, f˜inducesabijectionfromD D D toD D D suchthat 1⊗ 2⊗ 3 ′1⊗ ′2⊗ ′3 f˜(U U U )=(ϕ˜ (U (θ ,α ,β )),ϕ˜ (U (θ ,α ,β )) ϕ˜ (U (θ ,α ,β ))) 1 2 3 3 3 3 3 3 1 1 1 1 1 2 2 2 2 2 ⊗ ⊗ ⊗ =U (π θ ,2π β ,π α ) U (θ ,α ,β ) U (π θ ,2π β ,π α ). 1′ − 3 − 3 − 3 ⊗ 2′ 1 1 1 ⊗ 3′ − 2 − 2 − 2 AccordingtotheEWLscheme,thepayofffunctionsforΓ andΓ areasfollows: EWL ′EWL u(U U U )= ΨM Ψ , where Ψ = J (U U U )J000 i 1 2 3 i † 1 2 3 ⊗ ⊗ h | | i | i ⊗ ⊗ | i (33) u(U U U )= Ψ M Ψ , where Ψ = J (U U U )J000 ′i 1′ ⊗ 2′ ⊗ 3′ h ′| i′| ′i | ′i † 1′ ⊗ 2′ ⊗ 3′ | i fori N. InordertoprovethatΓ andΓ areisomorphicwehavetocheckif ∈ EWL ′EWL u(U U U )=u (f˜(U U U ))fori N. (34) i 1⊗ 2⊗ 3 ′η(i) 1⊗ 2⊗ 3 ∈ Withoutlossofgeneralitywecanassumethati=1. Letusfirstevaluatestate Ψ , ′ | i Ψ = J U (π θ ,2π β ,π α ) U (θ ,α ,β ) U (π θ ,2π β ,π α ) J000 . (35) | ′i † 1′ − 3 − 3 − 3 ⊗ 2′ 1 1 1 ⊗ 3′ − 2 − 2 − 2 | i (cid:16) (cid:17) Notethat U (π θ ,2π β ,π α ) U (θ ,α ,β ) U (π θ ,2π β ,π α ) 1′ − 3 − 3 − 3 ⊗ 2′ 1 1 1 ⊗ 3′ − 2 − 2 − 2 =( σ 1 σ )(U (θ ,α ,β ) U (θ ,α ,β ) U (θ ,β ,α )) (36) − x⊗ ⊗ x 1′ 3 3 3 ⊗ 2′ 1 1 1 ⊗ 3′ 2 2 2 and U (θ ,α ,β ) U (θ ,α ,β ) U (θ ,α ,β ) 1′ 3 3 3 ⊗ 2′ 1 1 1 ⊗ 3′ 2 2 2 =S U (θ ,α ,β ) U (θ ,α ,β ) U (θ ,α ,β ) S , (37) η 2′ 1 1 1 ⊗ 3′ 2 2 2 ⊗ 1′ 3 3 3 η† (cid:16) (cid:17) whereS isapermutationmatrixthatchangestheorderofqubitsaccordingtoη, η S = 000 000 + 001 010 + 010 100 + 011 110 η | ih | | ih | | ih | | ih | + 100 001 + 101 011 + 110 101 + 111 111. (38) | ih | | ih | | ih | | ih | Using (36), (37), the fact that [J†, σx 1 σx] = [J†,Sη] = [J,Sη] = 0 and Sη†000 = 000 we may write Ψ′ as − ⊗ ⊗ | i | i | i follows: Ψ = (σ 1 σ )S J U (θ ,α ,β ) U (θ ,α ,β ) U (θ ,α ,β ) J000 | ′i − x⊗ ⊗ x η † 2′ 1 1 1 ⊗ 3′ 2 2 2 ⊗ 1′ 3 3 3 | i = (σ 1 σ )S Ψ(cid:16) (cid:17) (39) x x η − ⊗ ⊗ | i Note that j1j2j3Sη = Sη† j1j2j3 †. This means that Sη is the inverse operation when acting on dual vectors. This h | | i observationtogetherwith(cid:16) thefactth(cid:17)at f changesthestrategyorderforplayer1and3leadustoconclusionthatoperator (σ 1 σ )S canbeviewedas f 1 inthesenseofthefollowingequality: x x η − ± ⊗ ⊗ j j j ( σ 1 σ )S = f 1(j j j ). (40) 1 2 3 x x η − 1 2 3 |h | − ⊗ ⊗ | |h | Letusnowconsiderterm Ψ P Ψ for Ψ givenby(35). From(39)and(40)itfollowsthat h ′| f(j1j2j3)| ′i | ′i Ψ P Ψ = f(j j j )Ψ 2 = f(j j j )(σ 1 σ )S Ψ 2 h ′| f(j1j2j3)| ′i |h 1 2 3 | ′i| |h 1 2 3 | x⊗ ⊗ x η| i| = j j j Ψ 2 = ΨP Ψ . (41) |h 1 2 3| i| h | j1j2j3| i Hence, u (f˜(U U U ))= Ψ M Ψ = ΨM Ψ =u (U U U ). (42) η(1) 1⊗ 2⊗ 3 h ′| η′(1)| ′i h | 1| i 1 1⊗ 2⊗ 3 Similarreasoningappliestothecasei=2,3. Wehavethusprovedthatgamesgivenby(29)areisomorphic. ThesameconclusioncanbedrawnforgameswitharbitrarybutfinitenumberN ofplayers. 6 Proposition1 LetΓ=(N,(S ) ,(u) )andΓ =(N,(S ) ,(u) )bestronglyisomorphicstrategicformgameswith i i N i i N ′ i′ i N ′i i N S = S = 2 and let Γ =∈ (N,(D∈) ,(M) ) and Γ∈ =∈(N,(D ) ,(M ) ) with D = D = SU(2) be the c|oir|resp|oni′|dingquantumgaEmWLes.ThenΓ i i∈NandΓi i∈N arestr′oEWngLlyisomorp′ihii∈cN. i′ i∈N i ′i EWL ′EWL Proof The prooffollowsby the same methodas in Example4. Let f = (η,(ϕ) ) be a strongisomorphismbetween i i N Γ and Γ. Depending on ϕ : S S such that ϕ(si) = sη(i) for A = si,si∈and A = sη(i),sη(i) we construct ′ i i → η′(i) i k l i { 0 1} η(i) { 0 1 } f˜=(η,(ϕ˜) )where i i N ∈ U (θ,α,β) ifϕ si = sη(i) ϕ˜(U(θ,α,β))= η′(i) i i i i k k (43) i i i i i U (π θ,2π β,π α) ifϕ (cid:16)si(cid:17)= sη(i) . Then f˜ N U = N U ,whereU =ϕ˜(Uη′(i))for−i=i 1,.−..Ni. S−inceiηisapie(cid:16)rmk(cid:17)utatiko⊕n21andU(π θ,2π β,π α)= i=1 i i=1 i′ η′(i) i i − − − iσxU((cid:16)θN,α,β),w(cid:17)ecaNnwriterelation(43)as − U (θ ,α ,β ) ifϕ si = sη(i) ϕ˜ (U (θ ,α ,β ))= i′ η−1(i) η−1(i) η−1(i) i k k (44) η−1(i) η−1(i) η−1(i) η−1(i) η−1(i)  iσ U (θ ,α ,β ) ifϕ (cid:16)si(cid:17)= sη(i) . Asaresult, f˜maps N U onto N U asfollow−s: x i′ η−1(i) η−1(i) η−1(i) i(cid:16) k(cid:17) k⊕21 i=1 η−1(i) i=1 i′ N N N N N 1 ifϕ si = sη(i) f˜ U = V U (θ ,α ,β ), V = i k k (45)  i i i′ η−1(i) η−1(i) η−1(i) i  iσ ifϕ (cid:16)si(cid:17)= sη(i) . LetusnowconsideraOpi=e1rmutatioOni=1matriOxi=1S M thatrearrangestheorder−ofbxasisstait(cid:16)esk(cid:17)j k⊕210 , 1 inthetensor η 2N i product j j ... j . SinceS permutesthe∈elementsinasimilarwayas f˜,itisnotdifficu{l|ttio}s∈ee{|thia|t i} 1 2 N η | i| i | i N N S U(θ,α,β)ST = U(θ ,α ,β ) (46) η i i i i η i η−1(i) η−1(i) η−1(i) Oi=1 Oi=1 Itisalsoclearthatσ N commuteswith N V andS andsodoes J = (1 N +iσ N)/√2. Thusthefinalstate Ψ = ⊗x i=1 i η ⊗ ⊗x | ′i J f˜ N U(θ,α,β) J0 N maybewNrittenas † i=1 i i i i | i⊗ (cid:16)N (cid:17) N N N Ψ = VS J U(θ,α,β) J0 N = VS Ψ . (47) | ′i i η † i i i i  | i⊗ i η| i Oi=1 Oi=1  Oi=1 Analysissimilartothatinequations(40)-(42)showsthat N N u f˜ U =u U , (48) η(i)  i i i  Oi=1  Oi=1  whichisthedesiredconclusion. (cid:4) Asthefollowingexampleshows,theconverseisnottrueingeneral. Example5 Letusconsidertwo2 2bimatrixgamesthatdifferonlyintheorderofpayoffprofilesintheanti-diagonal, × i.e., l r l r ′ ′ t (a ,b ) (a ,b ) t (a ,b ) (a ,b ) Γ: 00 00 01 01 and Γ : ′ 00 00 10 10 . (49) b (a10,b10) (a11,b11)! ′ b′ (a01,b01) (a11,b11)! TheEWLquantumcounterpartsΓ andΓ forthesegamesarespecifiedbytriples(29),whereinthiscaseN = 1,2 , EWL ′EWL { } D = D =SU(2)andthemeasurementoperatorstaketheform i ′i (M ,M )= (a ,b )P , (M ,M )= (a ,b )P , (50) 1 2 j1j2 j1j2 j1j2 1′ 2′ j1j2 j1j2 j2j1 j1,Xj2=0,1 j1,Xj2=0,1 where P = j j j j . Let us set a mapping f˜ = (η,(ϕ˜ ,ϕ˜ )) with η(i) = i and ϕ˜ (U(θ,α,β) = U (π θ,π/4 j1j2 | 1 2ih 1 2| 1 2 i i i i i i′ − i − β,π/4 α))fori=1,2.Aneasycomputationshowsthat i i − Ψ = J f˜(U U )J00 ′ † 1 2 | i ⊗ | i π π π π = J U π θ , β , α U π θ , β , α J00 † 1 1 1 1 2 2 2 2 (cid:18) (cid:18) − 4 − 4 − (cid:19)⊗ (cid:18) − 4 − 4 − (cid:19)(cid:19) | i =SFJ (U (θ ,α ,β ) U (θ ,α ,β ))J00 =SFΨ , (51) † 1 1 1 1 2 2 2 2 ⊗ | i | i 7 whereS hastheouterproductrepresentationS = 00 00 + 01 10 + 10 01 + 11 11 andF = 00 00 + 01 10 + | ih | | ih | | ih | | ih | | ih | | ih | 10 01 11 11.Applicationofequation(51)gives | ih |−| ih | u f˜(U U ) = Ψ M Ψ = ΨFSM SFΨ = ΨM Ψ =u(U U ). (52) ′i 1⊗ 2 h ′| i′| ′i h | i′ | i h | i| i i 1⊗ 2 (cid:16) (cid:17) Asaresult,gamesproducedbyΓ andΓ arestronglyisomorphic.Thisfact,however,isnotsufficienttoguarantee EWL ′EWL theisomorphismbetweenΓandΓ. Indeed,onecancheckthatthereisno f = (η,(ϕ ,ϕ ))tosatisfyu(s) = u (f(s)) ′ 1 2 i ′η(i) for each s t,b l,r and i = 1,2. Alternatively, given specific payoff profiles (a ,b ) = (4,4),(a ,b ) = 00 00 01 01 ∈ { } × { } (1,3),(a ,b ) = (3,1),(a ,b ) = (2,2), we can find three Nash equilibria in the game Γ and just one in the game 10 10 11 11 Γ. Hence,byLemma1games(49)arenotisomorphic. ′ 4 Conclusions Thetheoryofquantumgameshasnorigorousmathematicalstructure.Therearenoformalaxioms,definitionsthatwould givecleardirectionsofhowaquantumgameoughttolooklike. Infact,onlyoneconditionistakenintoconsideration.It saysthataquantumgameoughttoincludetheclassicalwayofplayingthegame. Asaresult,thisallowsustodefinea quantumgameschemeinmanydifferentways. Theschemewehavestudiedinthepaperisdefinitelyingenious. Ithas madeasignificantcontributiontoquantumgametheory.However,itleavesthefreedomofchoiceoftheplayers’strategy sets. Our criterion for quantum strategic game schemes requires the quantum model to preserve strong isomorphism. This specifies the strategy sets to be SU(2). We have shown that a proper subset of SU(2) in the EWL scheme may imply different quantumcounterpartsof the same game-theoreticalproblem. In that case, the resulting quantum game (inparticular,itsNashequilibria)dependsontheorderofplayers’strategiesintheinputbimatrixgame. Hence,givena classicalgame,forexamplethePrisoner’sDilemma,wecannotsayanythingaboutthepropertiesoftheEWLapproach withthetwo-parameterunitarystrategiesuntilwe specifyanexplicitbimatrixforthatgame. Thisisnotthecaseinthe EWLschemewithSU(2)where,givenaclassicalbimatrixgameoritsisomorphiccounterpart,wealwaysobtainthesame fromthegame-theoreticalpointofviewquantumgame. Acknowledges WewouldliketothanktheReviewersfordiscussionwhichundoubtedlyimprovedthequalityofourwork. This work was supported by the Ministry of Science and Higher Education in Poland under the project Iuventus Plus IP2014010973intheyears2015–2017. References [1] MeyerDA1999QuantumStrategiesPhys.Rev.Lett.821052–55 [2] EisertJWilkensMandLewensteinM1999QuantumGamesandQuantumStrategiesPhys.Rev.Lett.833077-80 [3] MarinattoLandWeberT2000AquantumapproachtostaticgamesofcompleteinformationPhys.Lett.A272291 [4] LiHDuJandMassarS2002Continuous-variablequantumgamesPhys.Lett.A30673–8 [5] FrackiewiczP2013AcommentonthegeneralizationoftheMarinatto-Weberquantumgamescheme,Acta.Phys. Pol.B4429 [6] Bleiler S A 2008 A formalism for quantum games and an application, preprint arXiv:0808.1389v1 [quant-ph] availableathttp://arxiv.org/abs/0808.1389 [7] DuJLiHXuXShiMWuJZhouXandHanR2002Experimentalrealizationofquantumgamesonaquantum computer,Phys.Rev.Lett88137902 [8] ChenLKAngHKiangDKwekLCandLoCF2003QuantumprisonerdilemmaunderdecoherencePhys.Lett. A316317 [9] LiQ IqbalA Chen M and AbbotD 2012Quantumstrategieswin in a defector-dominatedpopulationPhysicaA 3913316 [10] NawazA2013ThestrategicformofquantumPrisoners’DilemmaChinesePhys.Lett.30050302 [11] BenjaminSCandHaydenPM2001Commenton”Quantumgamesandquantumstrategies”Phys.Rev.Lett.87 069801 8 [12] FlitneyAPandHollenbergLCL2007Nashequilibriainquantumgameswithgeneralizedtwo-parameterstrate- giesPhys.Lett.A363381 [13] Fra¸ckiewiczP2015Anewquantumschemefornormalformgames,QuantumInf.Process.141809 [14] MaschlerMSolanEandZamirS2013GameTheory,CambridgeUniversityPress. [15] Gabarro´ JGarc´ıaAandSernaM2011ThecomplexityofgameisomorphismTheor.Comput.Sci.4126675 [16] NashJ1951Non-cooperativegamesAnnMath54286 [17] PelegBRosenmu¨llerJandSudho¨lterP1999TheCanonicalExtensiveFormofaGameForm-PartI-Symmetries InCurrentTrendsinEconomics,AdvancementofStudiesinEconomics367 [18] Sudho¨lterPRosenmu¨llerJandPelegB2000TheCanonicalExtensiveFormofaGameForm-PartII-Represen- tationJMathEcon33299 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.