ebook img

Strong dynamics behind the formation of the $125$ GeV Higgs boson PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Strong dynamics behind the formation of the $125$ GeV Higgs boson

Strong dynamics behind theformationofthe125 GeVHiggsboson M.A. Zubkov ∗ University of Western Ontario, London, ON, Canada N6A 5B7 We consider the scenario, in which the new strong dynamics is responsible for the formation of the 125 GeV Higgs boson. The Higgs boson appears as composed of all known quarks and leptons of the Standard Model. Thedescription of the mentioned strong dynamics isgiven usingthe ζ - regularization. Itallowsto construct the effective theory without ultraviolet divergences, in which the 1/Nc expansion works naturally. Itisshown, thatintheleadingorderofthe1/Nc expansion themassofthecompositeh-bosonisgivenby Mh=mt/√2 125GeV,wheremtisthetop-quarkmass. ≈ 4 PACSnumbers: 1 0 2 I. INTRODUCTION r a M Inthepresentpaperwesuggestthescenario,inwhichtherecentlydiscovered125GeVh-boson[1,2]iscomposite. AccordingtothesuggestedmodelitiscomposedofallfermionsoftheStandardModel(SM).Thescaleofthehidden 0 strong dynamics is supposed to be of the order of several TeV. We suppose, that the W and Z boson masses are 2 determinedbythecondensateofthe125GeVh-bosonaccordingtotheHiggsmechanism[3,4]. AllDiracfermion massesaredeterminedbytheh-bosonaswell. InthepresentpaperwedonotconsidertheMajoranamassesatall ] andassume,thatneutrinoshaveextremelysmallDiracmasses[5]. Thelowenergyeffectivetheorycontainsthefour- h p fermioninteraction[8]betweenallSMfermions.Ourmodeldiffersfromtheconventionalmodelswithfour-fermion - interactions[6], inwhichthe topquarkiscondensed. Themodeloftop- quarkcondensationwasfirstsuggestedin p [7] (and developed later in [9–13]). The idea, that the Higgs boson may be composed of the known SM fermions e wasdiscussed evenearlier, in [14], togetherwith the certainpreonmodels(however,in [14] therewas noemphasis h [ in thedominatingroleof thetop quarkandthe compositenessofthe Higgsbosonwas consideredtogetherwith the compositenessofquarksandleptons). Therearetwomainaspects,inwhichthemodeldiscussedinthepresentpaper 4 differsfromtheconventionalmodelsoftop-quarkcondensation: v 1 1. Thefour-fermioninteractionisnon-local. Itcontainstheform-factorsGthatcorrespondtotheinteraction 1 betweenthecompositeHiggsbosonandthepairfermion-antifermion.Theformfactorsdependonthreescalar 3 3 parametersofthedimensionofmasssquared:q2,p2,k2,wherepandkarethe4-momentaofthefermionand . anti- fermionwhile q = p k is the 4 - momentumofthe compositescalar boson. G(p,k) = g(q2,p2,k2) 1 − aredifferentfordifferentfermionsatlargedistances(bothtime-likeandspace-like),i.e. ifatleastoneofthe 0 4 quantities q2 , p2 , k2 ismuchsmaller,thantheElectroweakscaleMZ 90GeV.However,atsmallspace | | | | | | ≈ 1 - like and time - like distances (i.e. for q2 p2 k2 M2) those form- factorsbecome equalfor all | | ∼ | | ∼ | | ∼ Z : SM fermions. Unlikefor the otherfermionsthe mentionedform - factorfor the top - quarkis assumedto be v independentofmomenta. i X 2. Ourmodelwith the four- fermioninteractionis notrenormalizable. Therefore,it is theeffectivetheoryonly r a anditsoutputstronglydependsontheregularizationscheme. Contrarytotheapproachofthementionedabove papersonthetop-quarkcondensationmodelswedonotusetheconventionalcutoffregularization.Weusezeta regularization[15,16]. Itallowstoconstructtheeffectivetheorywithoutanyultravioletdivergencies. The1/N expansionisagoodapproximationwithinoureffectivetheory. Thisisbecausethedangerousultraviolet c divergencesare absent. This is well - known, that these divergencesbreak the 1/N expansion in the NJL models c defined in ordinarycutoff regularization. For example, in [17] it is shown, that when the ultravioletcutoff is much larger, than the generatedmasses, the nextto leading order1/N approximationto variousquantities doesnotgive c the correctionssmaller, than theleadingone. However,thisoccursbecauseof the termsthatare formallydivergent in the limit of infinite cutoff. Therefore, in the regularization, that is free from divergencesthe next to leading ap- proximationissuppressedbythefactor1/N comparedtotheleadingapproximation. Moreover,forthecalculation c ∗onleaveofabsencefromITEP,B.Cheremushkinskaya25,Moscow,117259,Russia 2 of variousquantitiesrelated to the extra high energyprocesses (the processes with the characteristic energiesmuch larger, than m ) the next- to leading orderapproximationis suppressedby the factor 1/N , where N = 24 t total total is the total number of the Standard Model fermions (the color components are counted as well, so that we have N =3generations (3colors+1lepton) 2isospincomponents=24). total × × Zetaregularization[15,16]providesthenaturalmechanismofcancellingtheunphysicaldivergentcontributionsto variousphysicalquantitiesinthefieldtheories.Forexample,beingappliedtoquantumhydrodynamicsitprovidesthe absenceof the unphysicaldivergentcontributionsto vacuumenergydue to the phononloops. The latter are known to be cancelled exactly by the physics above the naturalcutoff of the hydrodynamics[18]. If zeta regularizationis applied to quantum hydrodynamics,those divergencesdo not appear from the very beginning. The cancellation of thementioneddivergencesinquantumhydrodynamicsoccursduetothe thermodynamicalstabilityofvacuum[18]. That’s why zeta regularization is the natural way to incorporate the principle of the thermodynamical stability of vacuumalreadyattheleveloflowenergyapproximation(i.e. atthelevelofthehydrodynamics).Itwassuggestedto applythesimilarprinciplesofstabilitytosubtractdivergencesfromthevacuumenergyinthequantumtheoryinthe presenceofgravity[19]andtosubtractquadraticdivergencesfromthecontributionstotheHiggsbosonmassesinthe NJLmodelsofcompositeHiggsbosons[20–23].Nowweunderstand,thatthezetaregularizationallowstoimplement suchprinciplesofstabilitytovarioustheoriesinaverynaturalandcommonway. That’swhythisregularizationmay appeartobenotonlytheregularization,buttheessentialingredientofthequantumfieldtheory. The approachpresentedin the given paperallows to derivethe relationM2 = m2/2 on the level of the leading H t orderofthe1/N expansion.Inthesimplestmodelsofthetop-quarkcondensationthemassofthecompositeHiggs c bosonis typicallyrelatedto themassof thetopquarkbythe relationM2 = 4m2. The resultingmass 350GeV H t ≈ contradicts to the recent discovery of the 125 GeV h - boson. It is worth mentioning, that there were attempts to constructthetheorythatincorporatestheexistenceofseveralcompositeHiggsbosonsM relatedtothetop-quark H,i massbythe NambuSum rule M2 = 4m2. Thosemodelsadmitthe appearanceofthe 125GeV h - bosonand H,i t predicttheexistenceofitsNamPbupartners[21–23]. Theapproachofthe presentpaperpredictstheonlycomposite Higgsbosonwiththeobservedmassaroundm /√2 125GeV. t ≈ Thepaperisorganizedasfollows. InSectionIIwedefinethemodelunderconsideration.InSectionIIIwepresent theeffectiveactionandevaluatephysicalquantities(thepracticalcalculationsusingzetaregularizationareplacedin Appendix).InSectionIVweendwiththeconclusions. II. THEMODELUNDERCONSIDERATION A. Notations SMfermionscarrythefollowingindices: 1. Weilspinorindices. WedenotethembylargeLatinlettersA,B,C,... 2. SU(2) doublet indices (isospin) both for the right - handed and for the left - handed spinors are denoted by small Latin letters a,b,c,... For the left - handed doublets index a may be equal to 0 and 1. For the right - handedsingletsoftheStandardModelthisindextakesvaluesU,D,N,Ethatdenotetheupquark,downquark, neutrinoandelectronofthefirstgenerationandthesimilarstatesfromthesecondandthethirdgenerations. 3. ColorSU(3)indicesaredenotedbysmallLatinlettersi,j,k,... 4. ThegenerationindicesaredenotedbyboldsmallLatinlettersa,b,c,... Besides,space-timeindicesaredenotedbysmallGreeklettersµ,ν,ρ,...Letusintroducethefollowingnotations: L1 = uL , L2 = cL , L3 = tL (cid:18) dL (cid:19) (cid:18)sL (cid:19) (cid:18)bL (cid:19) 1 2 3 R =u , R =c , R =t U R U R U R 1 2 3 R =d , R =s , R =b (II.1) D R D R D R and 3 1 = νL , 2 = νµL , 3 = ντL L (cid:18) eL (cid:19) L (cid:18) µL (cid:19) L (cid:18) τL (cid:19) 1 2 3 =ν , =ν , =ν RN R RN µR RN τR 1 2 3 =e , =µ , =τ (II.2) RE R RE R RE R B. Theaction Inourconsiderationweneglectgaugefields. Thepartitionfunctionhastheform: Z = Dψ¯DψeiS, (II.3) Z ByψwedenotethesetofallStandardModelfermions. TheactionS = d4xψ¯i∂γψ+S containstwoterms. The I firstoneisthekineticterm. ThesecondoneisrelatedtothehiddenstrongRinteractionbetweentheSMfermions,that resultsintheappearanceoftheadditionalfour-fermionnon-localinteractionterm 1 S = d4x d4x d4y d4y d4z L¯a(x )Ra(x )Ga(x z,x z)+ ¯a(x ) a (x )Ga (x z,x z) I MI2 Xa Z 1 2 1 2 (cid:16) b 1 U 2 U 1− 2− Lb 1 RN 2 N 1− 2− +R¯a(x )La(x )ǫ Ga(x z,x z)+ ¯a(x ) a(x )ǫ Ga(x z,x z) D 1 c 2 bc D 1− 2− RE 1 Lc 2 bc E 1− 2− (cid:17) G¯a(y z,y z)L¯a(y )Ra(y )ǫ +G¯a(y z,y z)¯a(y ) a(y )ǫ (cid:16) D 2− 1− d 1 D 2 bd E 2− 1− Ld 1 RE 2 bd +G¯a(y z,y z)R¯a(y )La(y )+G¯a (y z,y z)¯a (y ) a(y ) , (II.4) U 2− 1− U 1 b 2 N 2− 1− RN 1 Lb 2 (cid:17) Here M2 is the dimensionalparameter(itwill be shownbelow thatit’s barevalue is negativeandis aroundM2 M2 I [90GeV]2). Functions Ga(y z,y z) for a = U,D,N,E are the form - factors mentioned inIth≈e i−ntroZdu≈ctio−ndefined in coordinate spaace1(G−¯a me2a−ns complex conjugation, ǫ is defined in such a way, that ǫ = a ab 12 ǫ =1). Inmomentumrepresentationwehave 21 − V S = L¯a(p)Ra(k)Ga(p,k)+ ¯a(p) a (k)Ga (p,k) I MI2 Xa q=p Xk=p′ k′(cid:16) b U U Lb RN N − − +R¯a(p)La(k)ǫ Ga(p,k)+ ¯a(p) a(k)ǫ Ga(p,k) D c bc D RE Lc bc E (cid:17) G¯a(p,k )L¯a(k )Ra(p)ǫ +G¯a(p,k )¯a(k ) a(p)ǫ (cid:16) D ′ ′ d ′ D ′ bd E ′ ′ Ld ′ RE ′ bd +G¯aU(p′,k′)R¯Ua(k′)Lab(p′)+G¯aN(p′,k′)R¯aN(k′)Lab(p′)(cid:17), (II.5) Here V is the four - volume. Fermionfields in momentumspace are denotedas ψ(q) = 1 d4xe iqxψ(x) while V − theform- factorsinmomentumspacearedefinedasGa(p,k) = d4xd4ye ipx+ikyGa(x,yR) fora = U,D,N,E. a − a Accordingto our suppositionall functionsGa(p,k) = ga(q2,p2,Rk2) vary between fixed valuesmuch smaller than a a unityatsmallmomentaandunityatlargevaluesof q2 , p2 , k2 : | | | | | | Ga(p,k) = ga(q2,p2,k2) 1 a a → (q2 , p2 , k2 M2 [90GeV]2); | | | | | |∼ Z ∼ Ga(p,k) = ga(q2,p2,k2) κa a a → a (q2 , p2 , k2 M2) | | | | | |≪ Z Ga(p,k) = ga(q2,p2,k2) 1 | a | | a |≪ (q2 M2; p2 , k2 M2; | |∼ Z | | | |≪ Z exceptfortopquark) (II.6) 4 Here M 90 GeV is the Electroweak scale, κa are the dimensionless coupling constants that are all much smaller Zthan≈unity except for the top quark. Becaause of the isotropy of space - time all Ga are the functions a of the invariants p2,k2, and q2 = (p k)2 only. Besides, in order to provide the left - right symmetric mass matrix (see below) we require Ga(x,y−) = G¯a(y,x) that leads to G(p,k) = G¯(k,p) and to ga(q2,p2,k2) = a a a g¯a(q2,k2,p2). In principle, we may consider the real - valued form - factors G(x,y) = G(y,x) that would result a in Ga(p,k) = d4xd4ye ipx+ikyGa(x,y) = d4xd4ye ipy+ikxGa(x,y) = G¯a(k,p) = Ga( k, p). Since G(k,ap) = G( kR, p)= g−((p k)2,ak2,p2)wewRouldarriv−eatthereaal-valuedforma -factorsinam−ome−ntumspace. Weimplythat−Eq.−(II.6)isvali−dforthecomplex-valuedp2,q2,k2 intheupperhalfofthecomplexplane. Besides, werequire,thatforthethetopquark 3 G (p,k) G (p,k) 1, (II.7) t ≡ U ≈ foranyp,k. Wemaychoose,forexample, q4+αaM4 p4+βaM4 k4+βaM4 ga(q2,p2,k2)= a I a I a I (II.8) a q4+γaM4 × p4+λaM4 × k4+λaM4 a I a I a I withsomeconstantsα,β,γ,λsuchthat αaaβaaβaa =κawhileαa,βa,γa,λa 1,andα3 =β3 =γ3 =λ3 =1. We γaaλaaλaa a a a a a ≪ U U U U mayalsointerpolatetheForm-factorsasfollows(forallfermionsexceptforthetop-quark): gaa(q2,p2,k2)=(cid:26)1foκra|q<2|<,|p12o|,t|hke2r|w>iseM02 (cid:12) (II.9) a (cid:12) (cid:12) withadimensionalparameterM suchthatM M (whereM istheZ -bos(cid:12)onmass). Forthetop-quarkweset 0 0 Z Z G3(p,k) = g3(q2,p2,k2) = κ3 = 1. Letusi≪ntroducetheauxiliaryscalarSU(2)doubletH. Theresultingaction U U U receivestheform S = d4x ψ¯i∂γψ H 2M2 Z h −| | I(cid:3) d4x d4x d4z L¯a(x )Ra(x )Ga(x z,x z)Hb(z)+ ¯a(x ) a (x )Ga (x z,x z)Hb(z) −Xa Z 1 2 h(cid:16)h b 1 U 2 U 1− 2− Lb 1 RN 2 N 1− 2− i + L¯a(x )Ra(x )G¯a(x z,x z)H¯b(z)ǫ + ¯a(x ) a(x )G¯a(x z,x z)H¯b(z)ǫ +(h.c.) h c 1 D 2 D 2− 1− bc Lc 1 RE 2 E 2− 1− bci (cid:17)i Inmomentumspacewehave: S = V ψ¯(p)pγψ(p) H+(p)H(p)M2 Xp h − Ii V L¯a(p)Ra(k)Ga(p,k)Hb(q)+ ¯a(p) a (k)Ga (p,k)Hb(q)+(h.c.) − Xa q=Xp kh b U U Lb RN N i − V L¯a(k)Ra(p)G¯a(p,k)H¯b(q)ǫ + ¯a(k) a(p)G¯a(p,k)H¯b(q)ǫ +(h.c.) , (II.10) − Xa q=Xp kh c D D bc Lc RE E bc ii − whereH(q)= 1 d4xH(x)e iqx. V − TheimportantpRropertyofthefunctionsga(q2,p2,k2)isthattheWickrotationfromthepositivevaluesofp2,q2,k2 a tonegativevaluesofp2,q2,k2(i.e. positivevaluesofEuclideanmomentasquared)keepstherelation Ga(p,k)=ga(q2,p2,k2) 1 a a → (q2 , p2 , k2 M2 [90GeV]2) (II.11) | | | | | |∼ Z ∼ ThiswillallowustoevaluateloopintegralsusingtheEuclideanexpressons(seeAppendix). Itisworthmentioning, thattheinvarianceofEq.(II.11)undertheWickrotationisseendirectlyintheformoftheForm-factorsofEq.(II.8). 5 C. Fermionmasses InthefollowingwefixUnitarygaugeH = (v+h,0)T,wherevisvacuumaverageofthescalarfield. Wedenote the Dirac 4 - componentspinorsin this gaugecorrespondingto the SM fermionsby ψa. We omitangle degreesof a freedomtobeeatenbythegaugebosons. InthisgaugethepropagatorQa ,a = U,D,N,E oftheSMfermionhas a theform: [Qaa]−1 =pˆγ−vGaa(p,p) (II.12) Foreachfermionexceptforthetop-quarkthereisthepoleofthispropagatorat p2 M2 thatgivesthefermion | | ≪ Z mass a a a m vG (0,0) vκ (II.13) a ≈ a ≈ a Forthetopquarkwe havem3 = v. Thevalueofv isto becalculatedusingthegapequationthatisthe extremum U conditionfortheeffectiveactionasafunctionofh. TheeffectiveactionofEq. (II.10)canberewrittenas S = d4x ψ¯(x)(i∂γ M)ψ(x) ψ¯(x) Gˆ ψ (x) h Z (cid:16) − − h i M2(v+h(x))2 , (II.14) − I (cid:17) whereM isthemassmatrix.Itisdiagonal,withthediagonalcomponentsma(a=U,D,N,E;a=1,2,3)givenby a κav. Weuseherethefollowingnotationfortheh-dependentoperatorGˆ : a h [Gˆ ξ](x )= d4zd4x ξ(x )G(x z,x z)h(z) (II.15) h 1 2 2 1 2 Z − − ThisoperatorishermitianasfollowsfromtheconditionG(x,y)=G¯(y,x). Weimply,thattheh-bosonofEq.(II.10) isresponsiblefortheformationofmassesofW andZ bosons.Hereandbelowweomitindicesa,aforGandκ. The sumovertheseindicesisimpliedinthefollowingexpressions. Gandκareconsideredasthediagonalmatriceswith thediagonalelementsGa andκa correspondingly. a a Theinteractionatthemomentaoffermions p2 , k2 [90GeV]2 andthemomentumoftheHiggsboson q2 = (p k)2 [90GeV]2givesrisetotheU(N | )|(w|ith|N∼ =24)symmetricinteractionbetweenthereal-v|alu|ed total total | − |∼ HiggsfieldexcitationshandtheSMfermions. Theinteractionatmomenta (p k)2 0correspondstotheHiggs | − | ≈ fieldcondensate. TheexistingpolesoffermionpropagatorsgivethemassesofallSMquarksandleptons. Thevalue of v is to be determined through the requirement, that δ S (h) = 0 at h = 0, where S is the effective action δh eff eff (obtainedaftertheintegrationoverthefermions). III. EFFECTIVELOWENERGYACTIONANDTHEEVALUATIONOFPHYSICALQUANTITIES. A. Effectiveactionfortheh-boson.GapequationandHiggsbosonmass. The effective action for the theory with action Eq. (II.14) as a function of the field h is obtained as a result of the integration over fermions. In zeta regularization this effective action is calculated in Appendix up to the terms quadraticinh. Thiscorrespondstotheleading1/N approximation. c Thetotalone-loopeffectiveactionfortheh-bosonreceivestheform: S[h]= d4x M2(v+h)2 Cˆv2(v+h)2+h(x)Z2(w(pˆ2)pˆ2 M2)h(x) , (III.1) Z h− I − h − H i 6 where w(p2) 1, (p2 M2) ≈ | |∼ H w(p2) 1/8, (p2 M2) ≈ | |≪ H N µ2 Z2 totallog h ≈ 16π2 m2 t M2 =4N m2/N ; H c t total N µ2 Cˆ = c log (III.2) 8π2 m2 t According to our supposition κ = 1, and the mass of the top - quark is given by v = m . Here we neglect the t t imaginarypartoftheeffectiveactionthatismuchsmaller,thantherealpartforthemomentasquaredoftheh-boson smaller,than4m2. Forp2 4m2thedecayoftheh-bosonintothepairtt¯shouldbetakenintoaccountthroughthe t ≥ t imaginarypartofeffectiveaction. Recall,thattheresultingexpressionsforvariousquantitiesinzeta-regularizationcontainthescaleparameterµ.We identifythisparameterwiththetypicalscaleoftheinteractionthatisresponsiblefortheformationofthecomposite Higgsboson. Below itwillbeshown, thatthe valueofµ consistentwith theobservedmasses ofHiggs, W, andZ- bosonsisµ 5TeV. ≈ ThevacuumvaluevofH satisfiesgapequation δ S[h]=0 (III.3) δh Thenwegetthenegativevalueforthebaremassparameterofthefour-fermioninteraction: N µ2 M2 = c m2log (III.4) I −8π2 t m2 t ThisnegativevalueM2 M2 means,thatthebarefour-fermioninteractionatthehighenergyscaleµ m of I ≈ − Z ≫ t Eq.(II.4)isrepulsive.However,theappearanceofthevacuumaveragemeans,thatthisrepulsiveinteractionissubject tofiniterenormalization: atlowenergies µ, wheretheHiggsbosonmassisformed,therenormalizedinteraction ≪ betweenthefermionsisattractive.Onecansee,thatthereisonlyonepoleofthepropagatorforthefieldh.Asaresult theHiggsmassisindeedgivenby M2 4N m2/N =m2/2 125GeV H ≈ c t total t ≈ B. WandZbosonmasses.Thenewinteractionscaleµ. We may considerEq. (III.1) as the low energyeffectiveactionat most quadraticin the scalar field. There exists theeffectiveactionwrittenintermsofthefieldH. ItshouldcontaintheλH 4 terminordertoprovidethenonzero vacuumaverage H = (v,0)T. Comparingthecoefficientsatthedifferen|tte|rmsofthiseffectiveactionwiththatof h i Eq. (III.1)wearriveat Z2 S[H]= d4x H+(x)Z2w( D2) D2 H(x) h(H 2 v2)2 (III.5) Z (cid:16) h − (cid:16)− (cid:17) − 8 | | − (cid:17) HerethegaugefieldsoftheSMaretakenintoaccount. Asaresulttheusualderivative∂ ofthefieldH issubstituted bythecovariantoneD =∂+iBwithB =Ba σa+YB (whereY = 1isthehyperchargeofH).Functions w,Z aredefinedinAppendix.TheydependsStUro(n2)glyontheUp(a1r)ticularchoice−oftheform-factorsGaandsatisfythe h a conditionsofEq.(III.2). In orderto calculate gaugebosonmasses we needto substitute into Eq. (III.5) the SU(2) U(1) gaugefield B ⊗ insteadofiDand(v,0)T insteadofH. AsaresultweobtaintheeffectivepotentialforthefieldB: V m2Z2w( B 2) B 2 (III.6) B ≈ t h k k k k 7 Herewedenote B 2 =(1,0)B2(1,0)T = (B3 B )2+[B1 ]2+[B2 ]2 . Uptothetermsquadratic k k (cid:16) SU(2)− U(1) SU(2) SU(2) (cid:17) inB weget: η2 V(2) B 2 (III.7) B ≈ 2 k k The renormalized vacuum average of the scalar field η should be equal to 246 GeV in order to provide the ≈ appropriatevaluesof the gauge boson masses. In order to evaluate the gauge boson masses in the given modelwe cannotneglectnontrivialdependenceofw( B 2)onB inEq. (III.6). Todemonstratethisletusevaluatethetypical k k valueofB thatentersEq. (III.6). Ourcalculationfollowstheclassicalmethodforthecalculationoffluctuationsin quantumfieldtheoryandstatisticaltheory(see,forexample,volume5,paragraph146of[30]). Thetypicalvalueof Bisgivenbytheaveragefluctuation B¯ 2 withinthefour-volumeΩofthelinearsize 1 ,whereM istheZ- hk k i ∼ MZ Z bos1onmasMs,2w.h(iWleekBc¯aklc2u=late|Ω1t|hReΩinktBegkr2adl4inx.spTahceed-irteimcteeostfimEuatceligdievaensshikgBnakt2uire≈an−d∂t|hΩe∂|nMrZ2otlaotgeRbadcBketh−e|Ωfi|nMaZ2lkrBesku2lt=.) A|Ωs|MaZ2res∼ultinZEq. (III.6)wemaysubstitutew(M2) 1insteadofw( B 2). Thisgives Z ≈ k k η2 N µ2 S B 2 totalm2log B 2 B ≈ 2 k k ≈ 16π2 t m2 k k t B 2 M2 [90GeV]2 (III.8) k k ∼ Z ≈ That’swhywearriveatthefollowingexpressionforη 2N µ2 η2 2Z2v2 = totalm2log (III.9) ≈ h 16π2 t m2 t Fromhereweobtainµ 5TeV. ∼ C. BranchingratiosandtheHiggsproductioncross-sections The Higgs boson production cross - sections and the decays of the Higgs bosons are described by the effective lagrangian[27]: 2m2 m2 α L = WhW+W + ZhZ Z +c s hGa Ga eff η µ µ− η µ µ g12πη µν µν α m m m +c hA A c bh¯bb c chc¯c c τhτ¯τ. (III.10) γπη µν µν − b η − c η − τ η HereG andA arethefieldstrengthsofgluonandphotonfields,ηtheconventionallynormalizedvacuumaverage µν µν ofthescalarfieldη 246GeV. Thiseffectivelagrangianshouldbeconsideredatthe treelevelonlyanddescribes the channels h g≈g,γγ,ZZ,WW,¯bb,c¯c,τ¯τ. The fermions and W bosons have been integrated out in the terms → correspondingtothedecaysh γγ,gg,andtheireffectsareincludedintheeffectivecouplingsc andc (thesimilar g γ → constantsintheSM aregivenbyc 1.03,c 0.81,see[27]). TheeffectivelagrangianEq. (III.10)issimilar g γ to that of the Standard Model. This≃results from≈ou−r initial requirement, that the Form - factors Ga(p,k) 1 for (p k)2 M2; p2 , k2 M2 forallfermionsexceptforthetopquark. Thisreducesconsideraablythe≪ratesof | − | ∼ Z | | | | ≪ Z thedirectdecaysoftheHiggsbosontolightfermions.However,unliketheSMthevaluesofc ,c ,c maydifferfrom b c τ unityandaregivenby c g(M2,m2,m2)/κ3, b ≈ H b b D c g(M2,m2,m2)/κ2 c ≈ H c c U c g(M2,m2,m2)/κ3 (III.11) b ≈ H τ τ E ThesimilardecayconstantsmaybedefinedforallSMfermions: cfaa ≈ g(MH2,m2f,m2f)/κaa. Weassume,thatthese constantsarenotmuchlargerthanunity,sothatthedecaysintotheheavyfermionsdominatelikeintheSM. 8 The consideration of constants c and c is more involved. Those constants contain the fermion loops. Let us g γ consider for the definiteness the constant c (the consideration of c is similar). The contribution of each fermion g γ (otherthanthetop-quark)isgivenbytheloopintegral. Thetypicalvalueofmomentumcirculatingwithintheloop isof theorderof thelargestofthe two externalparameters: M andm . Asa resultwe cannotneglectthe form- H f factorG(p,k) g(M2,M2,M2)forthelightfermionscomparedtothatofthetopquark.Withinthisintegralthere arethreefermi∼onpropHagatoHrsandHtwoverticesproportionaltoγµ. Wearriveattheexpressionthatisproportionalto m that results in δc(f) = 2mfδr(f). We may estimate quantity δr(f) as follows. It is given by the dimensionless f g MH g g loop integral. For the definiteness let us consider the expression for the Form - factors given by Eq. (II.9). We insert G(p,k) g(M2,M2,M2) 1 into expressionfor the loop integral. However, while evaluatingthis loop integralweare∼toconsHiderthHeregHion≈ofmomentasquaredboundedfrombelowbyM2. Besides,weshouldomitthe 0 contributionofthepartofthisexpressionrelatedtothedecayoftheHiggsbosonintotheintermediatestatecomposed oftwolightfermions. Suchacontributionisrelatedtotheimaginarypartofthefermionpropagatorproportionalto δ(p2 m2). Therefore,duringtheevaluationofsuchacontributionrelatedtotheintermediatefermionstatesonmass − f shell one should substitute the value of the form - factor g(M2,m2,m2) 1 instead of g(M2,M2,M2) 1. H f f ≪ H H H ≈ Thus,thiscontributionissuppressedforthelightfermions. Thevalueg(M2,M2,M2) 1istobesubstitutedinto H H H ≈ the remaining (the main) part of the amplitude, and we should omit the imaginary - valued expressions during the calculation.Fortheroughevaluationofr(f) weusetheexpressionforA (τ)giveninEq.(2.5)of[27].Wesubstitute g f intotheexpressionthevalueτ = MH2 insteadofτ = MH2 andmultiplytheresultingexpressionbythetwofactors: 0 4M2 4m2 0 f mt MH√2 = 2√2√τ (takesintoaccountthevertexg(M2,M2,M2) 1insteadofM /m )and√τ (takes M0 ≈ M0 0 H H H ≈ 0 t 0 intoaccountthatwedealwithδr(f) insteadofδc(f)): g g 3√2 τ 1 1 1/τ +1 2 δr(f) τ 0− log − 0 (III.12) g ≈ τ0 (cid:16) 0− 4 h (cid:12)p1 1/τ0 1(cid:12)i (cid:17) (cid:12) − − (cid:12) (cid:12)p (cid:12) Asitwasexplainedabove,weomittedtheimaginarypartofthelogarithm. Onecansee,thatthevalueδr = δr(f) g g calculatedinthiswaydoesnotdependonthefermionflavor. Thisvaluerangesbetween 20atM =10GeVand 0 ∼− 0 atM = 35GeV.We shouldnoticethatthisisveryroughevaluationthatshouldbeconsideredastheorderof 0 ∼ magnitudeestimateonly. Theoutputfromthisestimateisthattheexpressionforthequantityr dependsstronglyon g theparticularformoftheForm-factors,isnegativeandisoftheorderof 10.Nevertheless,wefeelthisinstructive ∼− togivetheestimateforc usingtheparticularformofr ofEq.(III.12). Namely,thecontributionsofthetop-quark, g g bottom quarkand charm quarkdominate. The ratio c /c(SM) (where c(SM) is the SM value) rangesfrom 1.0 g g g ∼ − forM = 10GeVto +1.0forM = 35GeV.Weconclude,therefore,thatthecontributionofthelightfermions 0 0 dependsstronglyonth∼eparticularformoftheFrom-factorsga. However,thereexiststhepossibility,thatthevalue a ofthe gluonfusioncross- sectionmatchesthe presentexperimentalconstraints(see Fig. 12of [28] and Fig. 47 of [29]).Inparticular,thevaluesc /c(SM) 1.0givethesamecross-sectionfortheprocessgg hastheStandard g g ∼± → Model. Thecontributionofthelightfermionstothedecayconstantc mayberoughlyestimatedinthesimilarway. Now, γ theb,c-quarksandτ -leptondominate,andtheircontributionisgivenbyδc(b,c,τ) = 3(1/3)2m +3(2/3)2m + γ b c (cid:16) m 2 δr . In the Standard Model value c(SM) the contribution of the W - boson dominates. The modeling τ(cid:17)6MH g γ expression for r of Eq. (III.12) gives the value of c /c(SM) that ranges from 1.4 for M = 10 GeV to 1.0 g γ γ 0 ∼ ∼ for M = 35 GeV. One can see, that the constant c also depends on the particular form of the Form - factors. 0 γ Therecertainlyexiststhechoiceoftheform-factorssuchthattheresultingexpressionsforc ,c matchthepresent g γ experimentalconstraints given by Fig. 12 of [28] and Fig. 47 of [29]. There is a hint in the present experimental results. Thebestfittotheratio c /c(SM) reportedbyATLASis 1.2whilethebestfitreportedbyCMSis 1.4. γ γ | | ∼ ∼ Atthesametimeourroughestimatedescribedabovegivesthisratiowithintheinterval(1.0,1.4). Thebestfittothe ratio c /c(SM) reportedbyATLASis 1.0,thebestfitreportedbyCMSis 0.7whileourestimategivesthisratio g g | | ∼ ∼ withintheinterval(0.0,1.0). We conclude, that in the model suggested here the branching ratios of Higgs decay into the light fermions, the branchingratioforthedecayintotwophotonsandtheproductioncross-sectionfortheprocessthatgoesthroughthe gluonfusiongg hdependstronglyontheparticularformoftheForm-factorsofEq. (II.5). Inthetwolattercases → thedependenceontheparticularformoftheForm-factorsandthepotentialdeviationfromtheSMvalueisthemost 9 dramatic. Nevertheless, in this subsection we demonstrated, that the values of the branching ratios and production cross-sectionscanbemadematchingthepresentexperimentalconstraints(given,forexample,in[28]and[29])bya certainchoiceoftheForm-factors. IV. CONCLUSIONSANDDISCUSSION Inthispaperwesuggest,thatthereexiststhehiddenstrongdynamicsbehindtheformationofthe125GeVHiggs boson. Accordingto ourscenarioitis composedofallknownSM fermions. Thecorrespondinginteractionhasthe formofthenon-localfour- fermiontermofEqs. (II.4), (II.5). Thescale ofthe giveninteractionbetweentheSM fermionsis of the order of µ 5 TeV. The form - factors entering this term of the action dependon the values of the fermion momenta p,k. At≈large values (p k)2 , p2 , k2 [90GeV]2 all form - factors are equal to unity, | − | | | | | ∼ and the interaction with real - valued excitation of the Higgs boson becomes identical for all SM fermions. In the oppositelimitofsmallmomentathesymmetryislost,andtheform-factorsaredifferentfordifferentfermions. This allowsto obtaintheobservedhierarchyofmassesforquarksandleptons. TheHiggsproductioncross-sectionand thebranchingratiosoftheHiggsbosondecaydependstronglyontheparticularformoftheForm-factors. Themost dramaticdependenceisencodedintheconstantsc ,c ofeffectivelagrangianEq. (III.10)whichareverysensitiveto g γ thenewphysics. TheseconstantsarerelatedtothecrosssectionoftheHiggsbosonproductionthatgoesthroughthe gluonfusionandthebranchingratioforthedecayoftheHiggsbosonintotwophotons.AcertainchoiceoftheForm - factorsgivesthe observablebranchingratiosandproductioncross- sectionsthatdonotdeviatesignificantlyfrom theSMvalues,andthepresentmodelmatchesexistingexperimentalconstraints.ThefurtherinvestigationoftheLHC datamaygivemoreinformationandmorestrongconstraintsontheexperimentallyalloweddependenceoftheForm- factorsgaofEq. (II.5)onthevaluesofmomenta. a Inourmodelthecondensateofthecompositeh-bosonisresponsibleforthefermionmasses. Thisdistinguishesit fromtheones,inwhichthe125GeVh-bosonisresponsibleforthemassesofWandZwhiletherearethesourcesof thefermionmassesdifferentfromtheh-boson(see,forexample,[24–26]). Itisworthmentioning,thatintheusual modeloftop-quarkcondensation[7],theinteractionscalewasextremelyhighΛ 1015 GeVwhileinourcasethe ∼ interactionscaleisµ 5TeV. ∼ InordertodefinetheeffectivetheorywiththeinteractiontermofEqs. (II.4),(II.5)weusezetaregularizationthat givesthefiniteexpressionsfortheconsideredobservables. Bareinteractiontermatthescaleofµisrepulsive. How- ever,theloopcorrectionsprovidetheappearanceofthecondensateforthecompositescalarfield. Thisdistinguishes oureffectivetheorydefinedusingzetaregularizationfromthemodelswiththefour-fermioninteractiondefinedusing theusualcutoffregularization.Gapequationappearsasanextremumconditionfortheeffectiveactionconsideredasa functionofthefieldh(representstheexcitationsofthecompositescalarfieldaboveitscondensate). Thevalueofthe HiggsbosonmassM2 m2/2followsfromthesymmetryoftheinteractiontermthattakesplaceatsmalldistances H ≈ t (i.e. large momenta (p k)2 , p2 , q2 M2 [90GeV]2). At these values of momentawe have the effective | − | | | | | ∼ Z ≈ interactiontermbetweenthecompositeHiggsbosonandtheSMfermionsoftheform: S = V L¯a(p)Ra(k)Hb(q)+ ¯a(p) a (k)Hb(q)+(h.c.) (IV.1) I − Xa q=Xp kh b U Lb RN i − V L¯a(k)Ra(p)H¯b(q)ǫ + ¯a(k) a(p)H¯b(q)ǫ +(h.c.) , ((p k)2 , p2 , k2 M2) − Xa q=Xp kh c D bc Lc RE bc ii | − | | | | |∼ Z − All SM fermionsenter this interaction term in an equal way. This form of the interaction term points out, that the ultravioletcompletionoftheStandardModelpreservesthe symmetryofEq. (IV.1)alreadyatthevaluesoffermion and scalar boson momenta of the order of Electroweak scale M 90 GeV. (Recall, that this implies the light Z ∼ fermionstobefaroutofthemassshell.) We suppose,thattheappearanceoftheeffectiveinteractionoftheformof Eq. (IV.1) maybecheckedalreadyusingtheexistingdata. Atleast, wemayobservetheregimeofapproachingthe effectiveinteractionbetweenthefermionsandtheHiggsbosontothatofEq.(IV.1). Finally, we would like to remark, that the interaction term of the specific form Eq. (II.4) suggested here may be too idealized. The actual interactionbetween the fermionsthat leadsto the formationof their masses may be more complicated.However,weexpectthatifNaturechoosesthepatternofthecompositeHiggsbosonsuggestedhere,the interactionbetweenthecompositeHiggsbosonandthe SM fermionsshouldanywayhavetheformof Eq. (IV.1)at smallenoughdistances. Thisis, probably,the mainoutputof thepresentpaper: we suggesttolookcarefullyat the existingexperimentaldatainordertoconfirmorrejecttheexistenceoftheinteractionoftheformofEq. (IV.1). 10 Acknowledgements The author is grateful to V.A.Miransky for useful discussions and careful reading of the manuscript, and to G.E.Volovik,whonoticedtherelationM2 m2/2soonafterthediscoveryofthe125GeVHiggsboson.Theauthor H ≈ t isbenefitedfromdiscussionofthemodelwithYu.Shylnov,andespeciallyfromthediscussionswithZ.Sullivanofthe experimentalconstraintsontheHiggsbosoncrosssectionsandthedecaybranchingratios. Theworkissupportedby theNaturalSciencesandEngineeringResearchCouncilofCanada. Appendix.Applicationofzeta-regularizationtechniquetothecalculationofvariouscorrelators. A. Evaluationofthefermiondeterminant HereweusethemethodforthecalculationofvariousGreenfunctionsusingzeta-regularizationdevelopedin[16]. InordertocalculatethefermiondeterminantweperformtherotationtoEuclideanspace-time. Itcorrespondstothe change:t ix4,ψ¯ iψ¯,γ0 Γ4,γk iΓk(k =1,2,3).(Thenewgamma-matricesareEuclideanones.) The →− → → → resultingEuclideanfunctionaldeterminanthastheform: Z[h] = det PˆΓ+iM +iGˆ (IV.2) h h i = Dψ¯Dψexp d4xψ¯ PˆΓ+i(M +Gˆ ) ψ h Z (cid:16)Z h i (cid:17) HereψinvolvesallSMfermions,M isthefermionmassmatrixthatoriginatesfromthecondensateofh.Theoperator Gˆ dependsonthefunctionsG(x,y)andh(x)andisgivenbyEq.(II.15). Thetransformationψ Γ5ψ,ψ¯ ψ¯Γ5 h → →− resultsinZ[h]=det PˆΓ+i(M +Gˆ ) =det PˆΓ i(M +Gˆ ) . Therefore, h h h i h − i 1/2 Z[h]= det PˆΓ+i(M +Gˆ ) PˆΓ i(M +Gˆ ) (IV.3) h h (cid:16) h ih − i(cid:17) WegetthefermionicpartoftheEuclideaneffectiveaction: 1 S [h]= Trlog Pˆ2+M2+(2MGˆ +Gˆ2 Γ[∂,Gˆ ]) (IV.4) f −2 h h h− h i WedenoteA=Pˆ2+M2,andV =2MGˆ +Gˆ2 Γ[∂,Gˆ ]. Itisworthmentioning,thatinmomentumspacewe h h− h have [[∂,Gˆ ]ξ](P)=i Qξ(K)g( Q2, P2, K2)h(Q) (IV.5) h − − − Q=XP K − Inzeta-regularizationwehave: 1 1 Sf[h]= ∂s µ2s dtts−1Trexp (A+V)t (IV.6) 2 Γ(s) Z h− i At the end of the calculation s is to be set to zero. Here the dimensional parameter µ appears. We identify this dimensionalparameterwiththeworkingscaleoftheinteractionthatisresponsiblefortheformationofcompositeh- boson.Furtherweexpand: ( t)2 1 Trexp (A+V)t =Tr e−At+( t)e−AtV + − due−(1−u)AtVe−uAtV +... (IV.7) h− i (cid:16) − 2 Z0 (cid:17)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.