ebook img

Strong Coupling between a Topological Qubit and a Nanomechanical Resonator PDF

0.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Strong Coupling between a Topological Qubit and a Nanomechanical Resonator

Strong Coupling between a Topological Qubit and a Nanomechanical Resonator Fang-Yu Hong,1 Jing-Li Fu,1 and Zhi-Yan Zhu1 1Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China (Dated: January 23, 2013) Wedescribeaschemethatenablesastrongcoherentcouplingbetweenatopologicalqubitandthe quantizedmotionofamagnetizednanomechanicalresonator. Thiscouplingisachievedbyattaching an array of magnetic tips to a namomechanical resonator under a quantum phase controller which coherentlycontrolstheenergygapofatopological qubit. Combinedwithsingle-qubitrotationsthe strong coupling enables arbitrary unitary transformations on the hybrid system of topological and mechanicalqubitsandmaypavethewayforthequantuminformation transferbetweentopological 3 and optical qubits. Numerical simulations show that quantum state transfer and entanglement 1 distributingbetweenthetopological andmechanicalqubitsmaybeaccomplished withhighfidelity. 0 2 PACSnumbers: 03.67.Lx,03.65.Vf,74.45.+c,85.25.-j n a J Introduction.—A major challenge facing the field of state spin qubit [24]. 9 quantum information processing (QIP) arises from the Thus the best solution is to make hybrid systems by 1 delicate nature of a quantum system, their tendency to combining the advantages of topological qubits, robust decohereintoclassicalstatesthroughcouplingto the en- quantumstorageand protectedgates, with those of con- ] vironment. To address this obstacle there emerged some ventional qubits such as high fidelity readout, univer- h p interesting topological quantum computation schemes sal gates, and quantum network. Such hybrid schemes - [1, 2], where quantum information is stored in nonlocal have recently been suggested for the anyons coupled to nt (topological) degrees of freedom of topologically ordered superconducting flux qubits [25–27] and for the anyons a systems. Beingdecoupledfromlocalperturbationsthese in atomic spin lattices [28], in optical lattices [29], and u nonlocal degrees of freedom enable the topological QIP in Majorana nanowires [30] coupled to a semiconduc- q approaches to obtain its extraordinary fault tolerance tor double-dot qubit [17]. Here we propose a scheme [ and to have a huge advantage over conventional ones. for quantum information transfer between a magnetized 1 As the simplest non-Abelian excitation for topological nanomechanicalresonator[31–33]andatopologicalqubit v qubits,thezeroenergyMajoranaboundstate(MBS)[3], encoded on Majorana fermions (MFs) on the surface 7 is conjectured to be exist in the spin lattice systems [1], of a topological insulator (TI) [6]. The motion of the 8 in the p+ip superconductors [4], in the filling fraction resonator under a quantum phase-controller (QPC) [34] 9 ν = 5/2 fractional quantum Hall system [2], in the su- modifies the energy gap between the two topological 4 perconductor Sr RuO [5], in the topological insulators qubit states, resulting in a strong coupling between the . 2 4 1 coupled to s-wave superconductors [6, 7], and in some topological qubit and the quantized motion of the res- 0 semiconductors of strong spin-orbit interaction coupled onator with its strength conveniently controlled by the 3 to superconductors [8–11] where an experimental obser- QPC. Based on this strong coupling arbitrary quantum 1 : vation has recently verified its existence [12]. information transfer and quantum entanglement distri- v On the other hand, the nonlocal nature of topological bution between the topological qubit and the resonator i X qubits makes it tough to measure and manipulate them, can be performed with high fidelity. Considering the co- r because they can only be controlled by globe braiding herentinteractionbetweenlightandananoscalemechan- a operations, i.e., by physical exchange of the associated ical resonator [35–39], this scheme may lay the founda- local non-Abelian anyons [13, 14]. Furthermore these tions for the coherent coupling between topological and braiding operations for Ising anyons alone are not suffi- optical qubits. cient to accomplish universalquantum computation and Hybrid system.—The prototype hybrid quantum sys- have to be combined with topologically unprotected op- tem shown in Fig.1 consists of a topological qubit en- erations [15, 16]. Implementing unprotected operations coded on four MFs, a QPC, and a nanomechanical res- within a topological system proves to be very challeng- onator covered with an array of magnetic tips. The flux ingduetotheexistenceofsignificantnonuniversaleffects QPC is made up of a Josephson junction (JJ) with two [17]. At the same time, stead advancements have been superconducting islands a,b and a rf SQUID loop of in- achievedinconventionalQIPsystems,suchastherecent ductanceLienclosinganexternallyappliedmagneticflux progresses in a basic quantum network of single atoms Φx. The phase difference φ between superconducting is- in optical cavities [18], in long lifetime of nuclear spins landsaandbisdeterminedbyφ= 2πΦx/Φ0[34],where − in a diamond crystal [19, 20], in high fidelity operations Φ0 = h/2e is the flux quantum. The MFs described on trappedions [21] andon superconducting qubits [22], by Majorana fermion operators γi(i = 1,2,3,4) are self- in distributing entanglement between single-atoms at a Hermitian, γi† = γi, and satisfy fermionic anticommuta- distance [23] and between an optical photon anda solid- tion relation γ ,γ = δ . The Majorana fermion γ is i j ij i { } 2 topological qubit 0.5 1.0 0.4 ρs22 ρs11 0.75 ρs22 0.3 0.50 0.2 resonator a JJ--p2 1 g TuI g 2 --p2 0.01 0.250 ρs11 b 1 2 0.5 1 m tiapgnetic --p2 3 g3 TduI g4 4 --p2 0000....4444999999999876 ρs00 0000....6428 x 10−3 ρs01 ρs0ρ0s02 0.4995 0 0.5 0.5 phase controller 00..43 ρs02 −iρs01 00..43 iρs12 0.2 iρ 0.2 FIG. 1. (color online). Schematics for a hybrid system com- s12 0.1 0.1 prising a topological qubit, a QPC, and a nanomechanical 0 0 resonator. The topological qubit is encoded on two pairs -0.5 -0.3 -0.10 0.1 0.3 0.5 -0.25 -0.1 0 0.1 0.25 tg/π tg/π of Majorana fermions ((γ1,γ2) and (γ3,γ4)). Two Majorana fermions (marked with circles) at two superconducting tri- (a) (b) junctions are coupled though STIS quantum wire with cou- pling strength dependent on the phase difference between FIG. 2. (color online). a) Numerical simulation of the phase φu = −π of islands u and phase φd = θ of island d. state transfer: √12(|↓0i + |↑0i) → √12(|↓0i − i|↓1i). The flux QPC consists of a JJ and a rf SQUID loop enclos- The state transfer fidelity is F1 = 0.990. b) Numerical inganexternalfluxΦx whichdeterminesthephasedifference simulation of quantum entanglement generating, 0 φ between superconductor islands a and b. The resonator is ( 0 i 1 )/√2 with a fidelity F2 = 0.993. |T↑heip→a- |↑ i − |↓ i covered with an array of magnetic tips. The motion of the rameters used are g = 20(2π) MHz, g′ = 100(2π) MHz, magnetized resonator modifies themagnetic fluxpenetrating T = 25 mK, Qr = 1 −103, γp = 1(2π) MH−z, ωp = 4.3(2π) × the plane enclosed by the QPC, resulting in changes in the GHz, and ωr = ωt = 1(2π) GHz. The corresponding matrix phase differenceφ and in theenergy splitting of thetopolog- elements of the density matrix ρs of the hybrid system are ical qubit. ρs00 = 0ρs 0 , ρs01 = 0ρs 1 , ρs02 = 0ρs 0 , h↓ | |↓ i h↓ | |↓ i h↓ | |↑ i ρs11 = 1ρs 1 , ρs12 = 1ρs 0 ,ρs22 = 0ρs 0 . h↓ | |↓ i h↓ | |↑ i h↑ | |↑ i localized at trijunction i(i = 1,2,3,4), which comprises three s-wave superconductors patterned on the surface planeofareaS enclosedbytheQPCloop,andthecorre- of a TI [6]. A pair of MFs operators γ ,γ can make i j sponding annihilation and creation operations a and a . up a Dirac fermion operator f = (γ iγ )/√2, which † ij i− j Themotionoftheresonatorcauseamagneticfluxfluctu- creates a fermion and fi†jfij = nij = 0,1 represents the ation∆Φr SGu0(a+a†), where Gis the averagemag- occupationofthecorrespondingstate. Twologicalstates netic field g≃radient produced by the magnetic tips, and of the topological qubit |0it and |1it are encoded on u0 is the amplitude of the resonator’s zero-point fluctu- the four MFs with |0it = |012034i and |1it = |112134i. ations. The Hamiltonian for the QPC can be written as The four MFs γi(i = 1,2,3,4) interacts through the Hp = ωpb†b with the plasma frequency ωp (CLi)−1/2 superconductor-TI-superconductor(STIS)wireofwidth [34],andthecorrespondingannihilationand≈creationop- Wtiv,eleHnagmthiltLo,naianndfpohratsheseφtoup=olo−gπicaanldquφbdit=reθa.dTsh(e~e=ffe1c)- meraagtinoentsicbtaipnsdtbh†e. pThaaksiengθicnatno btheewcrointtternibuastion from the H = E(θ)σz, where the coupling strength [27] t − 2 t E(θ)= vLFqΛ2θ+f02(Λθ), (1) θ =θ0+ξa√+2a† +ζb√+2b†, (3) and Pauli operator σz = (0 0 1 1) . Here f (y) 0isththienvienrvteibrslee dfuonmcatiionnt, Λoθf =y| =i∆vh0FLx|/−stina|nθ2i(hxw)|itdthefithneedinidnu0cthede niwsihtiunerdieetsθo0efqisuqiutlihabenrticuuommrrepflsopusocittniudoanint,igoζnp≈shao2sf√etπwh(heEEeCLQn)Pt41hCeisr[t3eh4seo],nmaaatnogdr- superconducting gap∆ and the effective Fermi velocity 0 ξ =2πSGu /Φ . v [6] 0 0 F The Hamiltonian for the whole hybrid system de- v =v[cosµW + ∆0 sinµW] ∆20 , (2) scribed by a density matrix ρ has the form F µ µ2+∆2 0 1 where µ is the chemical potential of the TI and v is the H =a aω +b bω E(θ)σz. (4) † r † p− 2 t velocity of an electron on the TI’s surface. The nanomechanical resonator is described by the Hamiltonian H = ω a a with the mechanical vibration ExpandingthecouplingstrengthE(θ)tofirstorderinthe r r † frequency ω along the direction zˆ perpendicular to the small parameters ξ dE(θ) and ζ dE(θ) gives r ωr dθ |θ=θ0 ωr dθ |θ=θ0 3 the Hamiltonian To describe dissipative effects we introduce the quan- 1 tumLangenvinequationfortheQPCdegreesoffreedom H =a†aωr+b†bωp− 2E(θ0)σtz in the limit g′ →0: 1 1 γ − 2g(a†+a)σtz − 2g′(b†+b)σtz, (5) b˙ =−i[b,Hp]− 2pb−√γpς (13) where wherethenoiseoperatorςfulfills ς (t)ς(t) =N δ(t t) † ′ p ′ ξ dE(θ) withN =[exp(ω /k T) 1] 1 ahndγ N iistherelev−ant g = p p B − − p p √2 dθ (cid:12) decoherence rate. From QLE (13) by Fourier transfor- (cid:12)θ=θ0 (cid:12) mation the steady-state correlation functions J(ω ) and ζ dE(θ)(cid:12) t g′ = √2 dθ (cid:12) . (6) K(ωt) can be obtained as (cid:12)θ=θ0 (cid:12) γ (N +1) γ γ 1B(y0 r+ew1rit)inagndHamil=ton1ia(n0(5(cid:12)) 1in) taenrmdsapopflyi|n↓gith=e J(ωt)= p 2ωpp [(iωt+iωp− 2p)−1−(iωt−iωp− 2p)−1], √2 | i | i t |↑i √2 | i−| i t (14) rotating-waveapproximationandthe interactionpicture we obtain γ N γ γ K(ω )= p p[( iω +iω p) 1 ( iω iω p) 1] HI =−21g(a†σt−+aσt+)− 21g′(bσt+ei(ωt−ωp)t t 2ωp − t p− 2 − − − t− p− 2 (1−5) +b†σt−e−i(ωt−ωp)t), (7) Rewritingequation(10)givesthefollowingeffectivemas- ter equation where the resonance condition ω = E(θ ) ω is as- r 0 t saunmdelodw,earnidngσot+p=era|t↑oirhs↓,r|easnpdecσtt−ive=ly.|↓Nioh↑w|waerec≡othnecernatirsaintge ∂∂tρs =−i∆2[σtz,ρs]+Γp(Np+1)D(σt−)ρs+ΓpNpD(σt+)ρs on the experimentally relevant regime ω ω ,g,g , +γ (N +1)D(a)ρ +γ N D(a )ρ , (16) p r ′ r r s r r † s ≫ where we can adiabatically remove the fast dynamics of where we have included the dissipation of the res- the phase controller degrees of freedom. Through pro- onator modes for a mechanical quality factor Q = jection operator techniques we have the following Born r ω /γ , D[cˆ]ρ := (2cˆρ cˆ cˆ cˆρ ρ cˆ cˆ)/2, N = adpenpsriotxyimmaattiroinx [o4f0]t:he master equation for the reduced [erxp(rω /k T)s 1] 1, ∆s=†γ−pg′2†, ansd−Γ s=†2γp2ωtg′2.r r B − − 2ωp2 p ωp4 Example.—As an example we discuss a SiC beam of ∂ t ρ (t)= dtTr [H (t),[H (t),ρ (t) ρ ]], (8) dimensions (l,w,t) = (1.1,0.12,0.075)µm with a basic ∂t s −Z ′ p I I ′ s ′ ⊗ p t0 mode of frequency 1(2π) GHz, u0 15 fm, and Q=500 ≈ at temperature T = 4.2 K [31, 48], or Q 2300 at T = where ρp is the steady state of the QPC in the absence ≈ 25 mK according to the temperature dependence of the of the qubit-resonator system. We perform the Markov quality factor Q 1 T0.3 [49]. A magnetic tip of size of approximation on equation (8) by replacing ρs(t′) with 50 nm with hom−oge∝neous magnetization M 2.3 106 ρ (t) and by sending t , resulting in the Marko- s 0 ≈ × → −∞ [32, 43] attached on the resonator produces a magnetic vian quantum master equation gradient of G 1 108 T/m at a distance of 1 µm , ∂ ∞ resulting in ξ ≈> 0.×002 for a surface S 1µm2. The ∂tρs(t)=−Z dτTrp[HI(t),[HI(t−τ),ρs(t)⊗ρp]], QPC comprises a large Josephson junctio≈n [44] and a rf 0 (9) SQUIDloopwithverysmallinductance [45],wemayset This Markovapproximationholds if the QPC modes de- ζ 0.01 and ωp 4.3(2π) GHz [34]. For topological ≈ ≈ cthaye tmoupcohlofgaisctaelrqtuhbaintgb′y−1mourchifmthoeryeatrheafnarg′d−e1tu[3n6e]d. fSruobm- qanudbitvFwe≈m2a.2y×ch1o0o4sem∆/s0b≈y2a5d(j2uπst)inGgHtzhe[1T2]I,’sLc∼hem5µicma,l stituting H (5) into equation (8) gives (neglecting tran- potential µ (2). From equations (1, 6) we obtain g I ≈ sients by dispatching t0 →−∞) −20(2π) MHz and g′ ≈ −100(2π) MHz for θon = 0.09; g 5 KHz and g 25 KHz for θ =3.1 ∂ 1 ≈− ′ ≈− off ∂tρs =−4g′2(cid:2)J(ωt)(σt+σt−ρs−σt−ρsσt+) entAlyppcloicnattrioolnlesd.—byTmheodciofyuipnlgintghestprehnagsethθ:gtchaeninbteercaochtieorn- + K(ωt)(σt−σt+ρs−σt+ρsσt−)+H.c. , (10) betweenthequbitandtheresonatorisswitchedon(off) (cid:3) by tuning θ to θ ( θ ). A unitary transformation where on off µ 0 +ν 0 µ 0 iν 1 , (17) J(ω )= ∞ b(τ)b (0) eiωtτdτ (11) |↓ i |↑ i→ |↓ i− |↓ i t Z h † i 0 can be performed by adiabatically turn on the coupling for a durationcorrespondingto a π pulse g(t)dt= π. − K(ωt)=Z ∞hb†(τ)b(0)ie−iωtτdτ (12) Nishexat qausainntgulem-qustbaittertortaantsiofenrofrnomthethleatttoeprRoclaongictahlenqufibnit- 0 4 ergysplitting E(θ ) may be affectedby some processes, on such as dynamics modulations of the superconducting 0.98 gap and variation of the electromagnetic environment. F Theerrorofthequantuminformationtransferbetween 0.96 the topological qubit and the resonator is estimated in 1 0.94 termsoffidelitybynumericalsolvingtheeffectivemaster 0.95 equation(16). Wemaychooseωr =E(θon)=ωt =1(2π) 0.92 GHz, ω = 4.3(2π) GHz, T = 20 mK [42], γ = 1 MHz p p 0.9 0.9 [22], Qr = 2 103, g = 20(2π) MHz, and g′/2π = × − 100(2π) MHz. The evolution of the state transfer 0.85 0.88 0.8 0.86 1 ( 0 + 0 ) Rtf1g(t)dt=−π ψ 1 ( 0 i 1 ) 1 0 0 √2 |↓ i |↑ i −−−−−−−−−−→| i≡ √2 |↓ i− |↓ i 0.84 (19) 0.1 0.1 0.2 0.2 and the generating of a maximally entangled state 0.3 0.3 γr / g 0.4 0.4 γp / g 0 Rtf2g(t)dt=−π/2 ψ ( 0 i 1 )/√2 (20) 0.5 0.5 |↑ i−−−−−−−−−−−→| 2i≡ |↑ i− |↓ i are shown in Fig. 2a) and b), respectively, with the cor- FIG. 3. (color online). The effect of decoherence sources γr responding fidelity F1 = ψ1 ρs(tf1)ψ1 = 0.990 and a√1n2d(|γ↓p0oin−thi|e↓fi1die)l.itOytohfesrtpataeratmraentsefresr:ar√e12a(s|↓in0Fii+g.2|.↑0i)→ Fco2h=erehnψc2e|ρsos(utrfc2e)s|ψγ2ria=nd0γ.9ph9o3n.|tThheestian|tfleuiternacnesfoefrtfihdeelditey- F is shown in Fig.3. Finally we estimate the influence 1 of the fluctuations in the energy splitting E(θ ) on the on operationfidelitybyassumingunknownerrorsinE(θ ), on to the motion mode of the resonator,where µ and ν are andg: thecorrespondingfidelityF decreasesfrom0.989 1 arbitrary complex numbers satisfying µ2+ ν 2 = 1. A to 0.984 for 1% unknown errors in E(θ ) and g. | | | | on maximally entangled state 0 ( 0 i 1 )/√2 Conclusion.—Insummary,wehavepresentedascheme |↑ i → |↑ i− |↓ i can be generated if g(t)dt = π/2. The choose of for quantum information transfer between topological − g(t)dt = 3π/2 aRccomplishes a √SWAP gate, the qubit and the quantized motion of a nanomechanical − Rsquared root of SWAP gate, up to a single-qubit rota- resonator. Quantum state transfer, quantum entangle- tion. Series of √SWAP gates and single-qubit 90 ro- mentgenerating,andarbitraryunitarytransformationin ◦ tations about zˆ on the subsystem i denoted by R (90) thetopological-qubit-resonatorsystemmaybeperformed z,i gives the controlled-phase (CP ) gate with high fidelity. Considering the advances in coherent t,r transfer of quantum information between the quantized motionoftheresonatorandotherconventionalqubitsin- CP =R (90)R ( 90)√SWAPR (180)√SWAP t,r z,t z,r − z,t cluding optical qubits [32, 35, 36, 42, 47], this quantum (18) interface enables us to store conventional quantum in- forthehybridsystem. Finallyanarbitraryunitarytrans- formation on topologicalqubits for long time storage,to formation on the hybrid system can be decomposed into efficiently detect topological qubit states, to design par- CP gates and single-qubit rotations [46]. t,r tially protected universaltopologicalquantum computa- Numerical simulations.—The main sources of error of tion, where topological qubit can receive a single-qubit thequantummanipulationsdiscussedabovearedecoher- state prepared by a conventional qubit with high accu- ence from the resonatorand the QPC. Low temperature racy,compensatingthetopologicalqubit’sincapabilityof is required to exponentially decrease the probability of generating some single-qubit states. the occupation of the excitation modes of the STIS wire This workwassupportedbythe NationalNaturalSci- by the factor γw ≡ exp(k−BvTFL) [27]: T = 20 mK gives ence Foundation of China ( 11072218and 11272287),by γ < 10 3 for the aforesaid values of v and L. The fi- ZhejiangProvincialNaturalScienceFoundationofChina w − F nitelengthofSTISwirewillhaveverysmalleffectonthe (Grant No. Y6110314),and by Scientific Research Fund coherencetime ofthe topologicalqubit itself: the energy ofZhejiangProvincialEducationDepartment(GrantNo. splittingE(θ ) 1(2π) 103Hzforφ =0.13. Theen- Y200909693). off off ∼ × [1] A.Y.Kitaev, Ann.Phys.(N.Y.) 303, 2 (2003). [3] F. Wilczek, NaturePhys5, 614 (2009). [2] C. Nayak, S.H. Simon, A. Stern, M. Freedman, and S. [4] N. Read and D.Green, Phys. Rev.B 61, 10267 (2000). Das Sarma, Rev.Mod. Phys.80, 1083 (2008). [5] S.DasSarma,C.Nayak,andS.Tewari,Phys.Rev.B73, 5 220502R (2006). M.Hafezi,E.Demler,M.D.Lukin,andP.Zoller,Nature [6] L. Fu and C.L. Kane, Phys. Rev. Lett. 100, 096407 Phys. 4, 482 (2008). (2008). [29] M.Aguado,G.K.Brennen,F.Verstraete,andJ.I.Cirac, [7] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, Phys. Rev.Lett. 101, 260501 (2008). 3045(2010). [30] A.Y. Kitaev, Phys.Usp. 44, 131 (2001). [8] J.D.Sau, R.M. Lutchyn,S.Tewari, andS.Das Sarma, [31] M. Poot and H.S. J. van derZant, arXiv: 1106.2060v2. Phys.Rev.Lett. 104, 040502(2010). [32] P. Rabl, P. Cappellaro, M.V. Gurudev Dutt, L. Jiang, [9] J. Alicea, Phys.Rev. B 81, 125318 (2010). J.R.Maze,andM.D.Lukin,Phys.Rev.B79,041302(R) [10] Y.Oreg, G. Refael, and F. von Oppen,Phys.Rev.Lett. (2009). 105, 177002 (2010). [33] A.K. Hu¨ttel, G.A. Steele, B. Witkamp, M. Poot, L.P. [11] R.M.Lutchyn,J.D.Sau,andS.DasSarma,Phys.Rev. Kouwenhoven, and H.S.J. van der Zant, Nano Lett 9, Lett.105, 077001 (2010). 2547 (2009). [12] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. [34] L.Jiang,C.L.Kane,andJ.Preskill,arXiv: 1010.5862v2. A. M. Bakkers, L. P. Kouwenhoven, Science 336, 1003 [35] T.J. Kippenberg and K.J. Vahala, Science 321, 1172 (2012). (2008). [13] D.A. Ivanov,Phys.Rev.Lett. 86, 268 (2001). [36] K. Stannigel, P. Rabl, A.S. Sørensen, P. Zoller, and M. [14] A.Stern, Nature( London) 464, 187 (2010). D. Lukin,Phys. Rev.Lett. 105, 220501 (2010). [15] P.Bonderson, Phys. Rev.Lett. 103, 110403 (2009). [37] G. Anetsberger, O. Arcizet, Q.P. Unterreithmeier, R. [16] P. Bonderson, D.J. Clarke, C. Nayak, and K. Shtengel, Rivire,A.Schliesser,E.M.Weig,J.P.Kotthaus,andT.J. Phys.Rev.Lett. 104, 180505(2010). Kippenberg, NaturePhys(London) 5, 909 (2009). [17] P. Bonderson and R.M. Lutchyn, Phys. Rev. Lett. 106, [38] M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, 130505 (2011). and O.Painter, Nature(London) 462, 78 (2009). [18] S. Ritter, C. N¨olleke, C. Hahn,A. Reiserer, A. Neuzner, [39] E. Verhagen, S. Del´eglise, S. Weis, A. Schliesser, and T. M. Uphoff, M. Mu¨cke, E. Figueroa, J. Bochmann, and J. Kippenberg,Nature (London) 482, 63 (2012). G. Rempe,Nature (London) 484, 195 (2012). [40] H. P. Breuer and F. Petruccione, The Theory of Open [19] M.V.GurudevDutt,L.Childress,L.Jiang, E.Togan,J. Quantum Systems (Oxford University Press, London, Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, and M.D. 2002). Lukin,Science 316, 1312 (2007). [41] C.Xiong,X.Sun,K.Y.Fong,andH.X.Tang,Appl.Phys. [20] P.C. Maurer, G. Kucsko, C. Latta, L. Jiang, N.Y. Yao, Lett. 100, 171111 (2012). S.D.Bennett,F.Pastawski,D.Hunger,N.Chisholm,M. [42] A.D. OConnell, M. Hofheinz, M. Ansmann, R.C. Bial- Markham, D.J. Twitchen, J.I. Cirac, and M.D. Lukin, czak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Science 336, 1283 (2012). Wang, M. Weides, J. Wenner, J.M. Martinis, and A.N. [21] R. Blatt and D. Wineland, Nature (London) 453, 1008 Cleland, Nature( London) 464, 697 (2010). (2008). [43] H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, [22] J.ClarkeandF.K.Wilhelm,Nature(London)453,1031 Nat. Nanotechnol. 2, 301 (2007). (2008). [44] J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, [23] D.L. Moehring, P. Maunz, S. Olmschenk, K.C. Younge, Phys. Rev.Lett. 89, 117901 (2002). D.N.Matsukevich,L.-M.Duan,andC.Monroe, Nature [45] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and (London) 449, 68 (2007). J. E. Lukens,Nature(London) 406, 43 (2000). [24] E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. [46] M.A. Nielsen and I.L. Chuang, Quantum Computation Childress, M.V.G. Dutt, A.S. Søensen, P.R. Hemmer, andQuantumInformation,(CambridgeUniversityPress, A.S.Zibrov,andM.D.Lukin,Nature(London)466,730 Cambridge, England, 2010). (2010). [47] M.D. LaHaye, J. Suh, P.M. Echternach, K.C. Schwab, [25] F. Hassler, A.R. Akhmerov, C.-Y. Hou, and C.W. J. and M.L. Roukes, Nature(London) 459, 960 (2009). Beenakker,New J. Phys.12, 125002 (2010). [48] X. M. H. Huang, C. A. Zorman, M. Mehregany, and M. [26] J.D.Sau,S.Tewari,andS.DasSarma,Phys.Rev.A82, L. Roukes, Nature(London) 421, 496 (2003). 052322 (2010). [49] X. L. Feng, C. A. Zorman, M. Mehregany, and M. L. [27] L. Jiang, C.L. Kane, and J. Preskill, Phys. Rev. Lett. Roukes, arXiv:cond-mat/0606711v1. 106, 130504 (2011). [50] K. Stannigel, P. Rabl, A.S. Sørensen, M. D. Lukin, and [28] L. Jiang, G.K. Brennen, A.V. Gorshkov, K. Hammerer, P. Zoller, Phys. Rev.A 84, 042341 (2011).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.