Strong atom-light interactions along nanostructures: Transition from free-space to nanophotonic interfaces Thesisby AkihisaGoban InPartialFulfillmentoftheRequirements fortheDegreeof DoctorofPhilosophy CaliforniaInstituteofTechnology Pasadena,California 2015 (SubmittedMay20,2015) ii c 2015 (cid:13) AkihisaGoban AllRightsReserved iii Tomyfamily, iv Acknowledgments Firstandforemost,IwouldliketothankmyadvisorJeffKimbleforhissupportandencouragementduring thecompletionoftheworkpresentedinthisthesis. Hiskeenscientificinsightandrelentlesscuriosityhave neverceasedtobeinspiringandhavekeptmechallengedduringthoseyearsthatIhadtheprivilegetobehis student.Needlesstosay,histirelesseffortshaveplayedakeyroleintheprogresswehavemadethesepastfew years. Oneofthemostmemorablemomentsoutsidethelabwas“QuantumOpticsFrontier”symposiumin celebrationofJeff’s65thbirthday.Ienjoyedcatchingaglimpseofthehistoryofquantumopticsandquantum information science, and felt excited about the future of these fields. I have also been fortunate to interact with Oskar Painter, whose creativity and perspective opened a new opportunity to investigate atom-photon interactioninthephotonicscrystalwaveguide. The work described in this thesis is a result of contributions of many people that I would like to ac- knowledge here. During the completion of this work, I have had the privilege to work with many talented colleagues, in particular, Kyung Soo Choi and Chen-Lung Hung. From day one in Lab 2, Kyung was my mentor. He taught me all the details of complicated experiments patiently, and how critical it is to set the highstandardsformakingthingsworkwellinthelab. IadmireKyungforhisprecise,thoroughapproachto physics,andhisextremelyhardworkdrivenbyhisunquenchablecuriosityinphysics. Chen-Lung’sarrival in Quantum optics group triggered another exciting journey. Taking apart the historic cavity QED experi- mentsinLab11andbuildingupthenewlabwithhimwasagreatexperience. Overthenextthreeyears, I learnedatremendousamountfromhimandenjoyedworkingwithhimgreatly. JonathanHoodandSu-Peng Yu’srelentlesseffortsondevicefabricationacceleratedourprogressdramatically. Withouttheirhardwork and dedication, this project would not have taken off as of today. I owe them a special debt of gratitude. I havenodoubtthatitsfuturewillbebrightinthehandsoftheLab11crewofJonathanHood,Su-PengYu, v andMingwuLu. IhavealsobeenfortunatetointeractwithDarrickChang,whohasbroughtabroadrange ofexcitingproposalsandgrandchallengesforourexperiments. Ihavealsoworkedwithanamazingsetof colleaguesonthisnewproject: JuanAndre´sMuniz,AndrewMcClung,JaeHoonLee,MichaelMartin,and LucasPenginLab2, andRichardNorte, JustinCohen, andSea´nMeenehaninPaintergroup. Particularly, Juanhasbeenagoodfriendandco-worker,andaseparateparagraphofgratitudecouldbewrittenabouthim. It was great to have so many other graduate students and postdocs to talk to and learn from over the past years,includingDalzielWilson,DanielAlton,DingDing,ScottPapp,CindyRegal,Kang-KuenNi,Cle´ment Lacrouˆte,MartinPototshcnig,andPolForn-Diaz. IwouldalsoliketoacknowledgetheNakajimaFoundationfortheirfinancialsupportthroughoutmyPhD research. Finally,IdeeplyappreciatethesupportIhavereceivedfrommyfamily. Theirunquestioningsupporthas beenessentialtothecompletionofthiswork. vi Abstract An exciting frontier in quantum information science is the integration of otherwise “simple” quantum ele- mentsintocomplexquantumnetworks. Thelaboratoryrealizationofevensmallquantumnetworksenables the exploration of physical systems that have not heretofore existed in the natural world. Within this con- text,thereisactiveresearchtoachievenanoscalequantumopticalcircuits,forwhichatomsaretrappednear nano-scopicdielectricstructuresand“wired”togetherbyphotonspropagatingthroughthecircuitelements. Single atoms and atomic ensembles endow quantum functionality for otherwise linear optical circuits and therebyenablethecapabilityofbuildingquantumnetworkscomponentbycomponent. Towardthesegoals, we have experimentally investigated three different systems, from conventional to rather exotic systems : free-space atomic ensembles, optical nano fibers, and photonics crystal waveguides. First, we demonstrate measurement-inducedquadripartiteentanglementamongfourquantummemories. Next,followingtheland- markrealizationofananofibertrap,wedemonstratetheimplementationofastate-insensitive,compensated nanofibertrap. Finally, wereachmoreexoticsystemsbasedonphotonicscrystaldevices. Beyondconven- tionaltopologiesofresonatorsandwaveguides,newopportunitiesemergefromthepowerfulcapabilitiesof dispersion and modalengineering in photonic crystal waveguides. We have implemented anintegrated op- ticalcircuitwithaphotonicscrystalwaveguidecapableofbothtrappingandinterfacingatomswithguided photons, and have observed the collective effect, superradiance, mediated by the guided photons. These advances provide an important capability for engineered light-matter interactions, enabling explorations of novelquantumtransportandquantummany-bodyphenomena. vii Contents Acknowledgments iv Abstract vi 1 Introduction 1 1.1 Quantumnetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Conventionalstrongatom-photoninteraction . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 CavityQEDwithasingleatom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Collectiveatom-photoncouplingwithatomicensembles . . . . . . . . . . . . . . . 3 1.3 Integrationofatomsandnanophotonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 CavityQEDwithmicro-andnanoscopiccavities . . . . . . . . . . . . . . . . . . . 4 1.3.2 WaveguideQED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Newavenuewithphotoniccrystalwaveguides . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.1 Many-bodyphysicswithstronglyinteractingphotons . . . . . . . . . . . . . . . . . 6 1.5 Thesisoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Entanglementofspinwavesamongfourquantummemories 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 GenerationandcharacterizationofW-state . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Experimentalprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 W-stateamongfouratomicensembles . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Dissipativedynamicsofatomicentanglement . . . . . . . . . . . . . . . . . . . . . . . . . 16 viii 2.4 Conclusionandoutlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Experimentaldetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.1 Preparationofcoldatomicensembles . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.2 Quantuminterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.3 Spin-wavequantummemories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.4 Quantumuncertaintyrelationsandgenuinemultipartiteentanglement . . . . . . . . 20 2.5.5 Generationandcharacterizationofa‘crossed’quantumstate . . . . . . . . . . . . . 20 2.5.6 Relationshipbetweenquantumuncertaintyandoff-diagonalcoherences. . . . . . . . 21 2.5.7 Derivationofentanglementfidelity . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5.8 Prospectsforimprovingmemorytimeandmatter-lighttransferefficiency . . . . . . 22 2.5.9 Quantum-enhancedparameterestimationwithentangledspin-waves . . . . . . . . . 23 3 Atom-lightinteractions: waveguideQED 26 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Singleatomcoupledtoa1Dwaveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1 SystemHamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.2 Basicratesofasingleatom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 Coherentfieldtransport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.4 Photoncorrelationforcoherentincidentfield . . . . . . . . . . . . . . . . . . . . . 30 3.2.5 Transfermatrixintheweakexcitationlimit . . . . . . . . . . . . . . . . . . . . . . 32 3.3 Multipleatomscoupledtothe1Dwaveguide . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 InteractingspinHamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1.1 Twoatoms: superradianceattheseparationϕ=π . . . . . . . . . . . . . 35 3.3.1.2 Twoatoms: dipole-dipoleinteractionattheseparationϕ=π/2 . . . . . . 35 3.3.2 Fieldresponseintheweak-excitationlimit . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2.1 Superradianceattheseparationϕ=π . . . . . . . . . . . . . . . . . . . 36 3.3.2.2 Dipole-dipoleinteractionattheseparationϕ=π/2 . . . . . . . . . . . . 37 3.4 Photoniccrystalwaveguidenearthebandedge . . . . . . . . . . . . . . . . . . . . . . . . 37 ix 3.4.1 Outsidethebandgap: Superradiance . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2 Insidethebandgap: Finite-rangedipole-dipoleinteraction . . . . . . . . . . . . . . 39 4 Designofastate-insensitive,compensatednanofibertrap 40 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Astate-insensitivenanofibertrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.1 ACStarkshiftHamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.2 HE mode-Electricfielddistributionandpolarization . . . . . . . . . . . . . . . 44 11 4.2.3 3Dnanofibertrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.4 Cancellationofthevectorshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.5 Magicwavelengthsforanevanescentfieldtrap . . . . . . . . . . . . . . . . . . . . 49 4.3 Numericalresults: Trappingpotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Totalpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.2 State-insensitivetrappingpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 Demonstrationofastate-insensitive,compensatednanofibertrap 55 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Trappotentialwithstate-insensitive,compensatedscheme . . . . . . . . . . . . . . . . . . 56 5.3 Experimentalprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.4 Transmissionspectroscopyoftrappedatoms . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.5 Reflectionspectroscopyoftrappedatoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.6 Conclusionandoutlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.7 Experimentaldetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.7.1 Polarizationcharacterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.7.2 Opticaldepthestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.7.3 Atomnumberestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 x 6 Atom-lightinteractionsinphotoniccrystals 68 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2 Designandcharacterizationof1Dphotonicscrystalwaveguide . . . . . . . . . . . . . . . . 69 6.3 Atom-lightcouplingintheAPCW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.1 Reflectionmeasurementsaton-andoff-resonantcavity . . . . . . . . . . . . . . . . 72 6.3.2 Reflectionmeasurementsandtheoreticalfit . . . . . . . . . . . . . . . . . . . . . . 76 6.3.3 Saturationmeasurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.4 Conclusionandoutlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.5 Experimentaldetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.5.1 Designprinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.5.2 Atom-photoncoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.5.3 Devicecharacterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.5.4 Devicemodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.5.5 Simulationsofrelativedensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.5.6 Experimentalprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.5.7 Modelofreflectionspectrumofatoms . . . . . . . . . . . . . . . . . . . . . . . . . 87 7 Superradianceforatomstrappedalongaphotoniccrystalwaveguide 90 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.2 TrappingatomsalongtheAPCW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.3 Observationofsuperradiancefortrappedatoms . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1 Superradiantemissionintimedomain . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.2 Superradiantemissioninfrequencydomain . . . . . . . . . . . . . . . . . . . . . . 98 7.4 Conclusionandoutlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.5 Experimentaldetails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.5.1 Devicecharacterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.5.2 Finitedifferenttimedomaincalculationsforcollectivecouplingrates . . . . . . . . 103 7.5.3 LifetimeoftrappedatomsalongtheAPCW . . . . . . . . . . . . . . . . . . . . . . 105
Description: