ebook img

String Theory: From Gauge Interactions to Cosmology: Proceedings of the NATO Advanced Study Institute on String Theory: From Gauge Interactions to Cosmology Cargèse, France 7–19 June 2004 PDF

394 Pages·2006·7.471 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview String Theory: From Gauge Interactions to Cosmology: Proceedings of the NATO Advanced Study Institute on String Theory: From Gauge Interactions to Cosmology Cargèse, France 7–19 June 2004

StringTheory:From Gauge Interactions to Cosmology NATO Science Series A Series presenting the results of scientific meetings supported under the NATO Science Programme. The Series is published by IOS Press, Amsterdam, and Springer (formerly Kluwer Academic Publishers) in conjunction with the NATO Public Diplomacy Division Sub-Series I. Life and Behavioural Sciences IOS Press II. Mathematics,Physics and Chemistry Springer (formerly Kluwer Academic Publishers) III.Computer and Systems Science IOS Press IV.Earth and Environmental Sciences Springer (formerly Kluwer Academic Publishers) The NATO Science Series continues the series of books published formerly as the NATO ASI Series. The NATO Science Programme offers support for collaboration in civil science between scientists of countries of the Euro-Atlantic Partnership Council.The types of scientific meeting generally supported are “Advanced Study Institutes”and “Advanced Research Workshops”, and the NATO Science Series collects together the results of these meetings.The meetings are co-organized by scientists from NATO countries and scientists from NATO’s Partner countries – countries of the CIS and Central and Eastern Europe. Advanced Study Institutes are high-level tutorial courses offering in-depth study of latest advances in a field. Advanced Research Workshops are expert meetings aimed at critical assessment of a field, and identification of directions for future action. As a consequence of the restructuring of the NATO Science Programme in 1999, the NATO Science Series was re-organized to the four sub-series noted above.Please consult the following web sites for information on previous volumes published in the Series. http://www.nato.int/science http://www.springer.com http://www.iospress.nl Series II:Mathematics,Physics and Chemistry – Vol.208 String Theory: From Gauge Interactions to Cosmology edited by Laurent Baulieu Université Pierre et Marie Curie, Paris, France Jan de Boer University of Amsterdam, The Netherlands Boris Pioline Université Pierre et Marie Curie, Paris, France and Eliezer Rabinovici Hebrew University, Jerusalem, Israel Published in cooperation with NATO Public Diplomacy Division Proceedings of the NATO Advanced Study Institute on String Theory:From Gauge Interactions to Cosmology Cargèse, France 7-19 June 2004 A C.I.P.Catalogue record for this book is available from the Library of Congress. ISBN-10 1-4020-3732-5 (PB) ISBN-13 978-1-4020-3732-0 (PB) ISBN-10 1-4020-3731-7 (HB) ISBN-13 978-1-4020-3731-3 (HB) ISBN-10 1-4020-3733-3 (e-book) ISBN-13 978-1-4020-3733-7 (e-book) Published by Springer, P.O.Box 17, 3300 AADordrecht, The Netherlands. www.springer.com Printed on acid-free paper All Rights Reserved © 2006 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. TableofContents Preface xi I Lectures 1 STRINGSINALANDSCAPE 3 byTOMBANKS 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Ghostcondensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 Stringsinalandscape . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 Phenomenologyofthelandscape . . . . . . . . . . . . . . . . . . . . . . 13 QUANTIZATIONOFHOLOMORPHICFORMS ANDN =1SUPERSYMMETRYONSPECIALMANIFOLDS 19 byLAURENTBAULIEU 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 N =1supersymmetryandtheholomorphicBFtheory . . . . . . . . . . 20 3 Fourdimensions:Ka¨hlermanifold . . . . . . . . . . . . . . . . . . . . . 22 4 Sixdimensions:Calabi–Yauthree–fold . . . . . . . . . . . . . . . . . . 27 5 Eightdimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 LOEWNERCHAINS 41 byMICHELBAUERANDDENISBERNARD 1 Criticalinterfacesandstochasticprocesses . . . . . . . . . . . . . . . . . 44 2 Loewnerchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 THEORYOFCOSMOLOGICALPERTURBATIONSAND APPLICATIONSTOSUPERSTRINGCOSMOLOGY 79 byROBERTH.BRANDENBERGER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2 OverviewofInflationaryCosmology . . . . . . . . . . . . . . . . . . . . 81 3 NewtonianTheoryofCosmologicalPerturbations . . . . . . . . . . . . . 86 4 RelativisticTheoryofCosmologicalFluctuations . . . . . . . . . . . . . 92 5 QuantumTheoryofCosmologicalFluctuations . . . . . . . . . . . . . . 99 6 ConceptualProblemsofInflationaryCosmology. . . . . . . . . . . . . . 104 7 TheTrans-PlanckianWindowforSuperstringCosmology . . . . . . . . . 106 v vi 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 TOWARDSATOPOLOGICALG STRING 117 2 byJANDEBOER,ASADNAQVIANDASSAFSHOMER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2 G sigmamodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 2 3 Tri-CriticalIsingModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4 TopologicalTwist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5 TheBRSTOperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6 TopologicalG Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 2 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 CHALLENGESOFMATRIXMODELS 129 byALEXEIMOROZOV 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 2 Classicalperiod:introductionofmodels . . . . . . . . . . . . . . . . . . 130 3 Firststringyperiod:generalizationsandhuntforstructures . . . . . . . . 131 4 Transcendentalperiod:absolutizationofstructures . . . . . . . . . . . . 135 5 Towardsexhaustivetheoryof1-matrixmodel:theDijkgraaf-Vafatheory . 143 6 Neoclassicalperiod:backtoconcreteresultsandbacktophysics? . . . . 155 PHENOMENOLOGYOFNEUTRINOOSCILLATIONS 163 byLEVB.OKUN 1 Ashorthistoryofneutrinos[1-16] . . . . . . . . . . . . . . . . . . . . . 163 2 Simpleformulasforoscillations . . . . . . . . . . . . . . . . . . . . . . 164 3 “Sameenergy”vs“samemomentum”[12-14],[17-25] . . . . . . . . . . 166 4 Solarneutrinos[26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5 Reactorantineutrinos[27-30] . . . . . . . . . . . . . . . . . . . . . . . . 169 6 Atmosphericneutrinos[26] . . . . . . . . . . . . . . . . . . . . . . . . . 170 7 Acceleratorneutrinos[27] . . . . . . . . . . . . . . . . . . . . . . . . . 171 8 Patternsofmixinganglesandmasses[25,31] . . . . . . . . . . . . . . . 171 9 Doublebetadecay[32] . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 10 Cosmologicalandstellarinputs[33] . . . . . . . . . . . . . . . . . . . . 172 11 ChallengesandProspects[31,34] . . . . . . . . . . . . . . . . . . . . . . 173 CLOSEDSTRINGSINMISNERSPACE: ATOYMODELFORABIGBOUNCE? 177 byBRUNODURINANDBORISPIOLINE 1 Semi-classicsofclosedstringsinMisnerspace . . . . . . . . . . . . . . 178 2 One-loopvacuumamplitude . . . . . . . . . . . . . . . . . . . . . . . . 187 3 Tree-levelscatteringamplitudes . . . . . . . . . . . . . . . . . . . . . . 191 4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 vii PHENOMENOLOGICALGUIDETOPHYSICS BEYONDTHESTANDARDMODEL 201 bySTEFANPOKORSKI 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 2 TheStandardModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 3 HintsfromtheStandardModelforitsextensions . . . . . . . . . . . . . 211 4 SupersymmetricextensionsoftheStandardModel . . . . . . . . . . . . 221 5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 INTRODUCTIONTOCOSMICF-ANDD-STRINGS 229 byJOSEPHPOLCHINSKI 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 2 Cosmicstringreview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 3 Cosmicstringsfromstringtheory . . . . . . . . . . . . . . . . . . . . . 236 4 ProductionofcosmicF-andD-strings . . . . . . . . . . . . . . . . . . . 239 5 Stabilityofstrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 6 SeeingCosmicStrings . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 7 DistinguishingSuperstrings . . . . . . . . . . . . . . . . . . . . . . . . . 248 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 LONGTIMESCALESANDETERNALBLACKHOLES 255 byJOSEL.F.BARBO´NANDELIEZERRABINOVICI 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2 Long-timedetailsofthermalquasi-equilibrium . . . . . . . . . . . . . . 257 3 Topologicaldiversityandunitarity . . . . . . . . . . . . . . . . . . . . . 260 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 SEMICLASSICALSTRINGSANDADS/CFT 265 byARKADYA.TSEYTLIN 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 2 Effectiveactionsforcoherentstates . . . . . . . . . . . . . . . . . . . . 272 3 GeneralfastmotioninS5andSO(6)scalaroperators . . . . . . . . . . . 280 4 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 II SEMINARS 291 BARYOGENESISWITHLARGEEXTRADIMENSIONS 293 byKARIMBENAKLI BRANEWORLDCOSMOLOGYALMOSTWITHOUTBRANES 297 byGIANLUCACALCAGNI 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 3 Slow-rollparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 4 Cosmologicalperturbations:theoryandobservations . . . . . . . . . . . 300 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 viii CHAOTICCASCADESFORD-BRANESONSINGULARITIES 305 bySEBASTIA´NFRANCOETAL. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 2 Cascadesincouplingspace . . . . . . . . . . . . . . . . . . . . . . . . . 305 3 DualityWallsandFractals . . . . . . . . . . . . . . . . . . . . . . . . . 306 4 SupergravityDuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 5 Recentdevelopments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 N =1GAUGETHEORYEFFECTIVESUPERPOTENTIALS 311 byBENM.GRIPAIOS 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 2 TheGaugeTheory/MatrixModelCorrespondence. . . . . . . . . . . . . 312 3 PureGaugeTerms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 GROMOV-WITTENTHEORYANDAUTOMORPHICFORMS 319 byDANIELGRU¨NBERG 1 RecapTFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 2 CorrelationFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 3 BPSInvariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 4 GWPotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 5 KdVHierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 6 AutomorphicProducts . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 BLACKHOLEINSTABILITIESANDPHASETRANSITIONS 325 bySEANHARTNOLL 1 GeneralisedAdSblackholes . . . . . . . . . . . . . . . . . . . . . . . . 325 2 Dualphasetransition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 PROBINGSINGULARITIES 329 byVERONIKAE.HUBENY 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 2 Blackholesingularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 3 Cosmologicalsingularity . . . . . . . . . . . . . . . . . . . . . . . . . . 332 4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 INFLATIONUNLOADED 337 byMATTHEWKLEBAN 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 2 Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 D-BRANEEFFECTIVEACTIONS 341 byPAULKOERBER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 2 Derivativecorrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 ix ADS ×S2ASANEXACTHETEROTICSTRINGBACKGROUND 345 2 byDOMENICOORLANDO 1 Intro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 2 SU(2)asymmetricdeformation . . . . . . . . . . . . . . . . . . . . . . 345 3 SL(2,R)deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 4 AdS ×S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 2 STRINGSANDD-BRANESINHOLOGRAPHICBACKGROUNDS 351 byDANISRAE¨LANDARIPAKMAN 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 2 SL(2,R)/U(1)andN=2Liouville . . . . . . . . . . . . . . . . . . . . . . 352 3 D-branesfromboundaryAdS . . . . . . . . . . . . . . . . . . . . . . . 353 3 4 stringsnearNS5branes . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 COSMICCENSORSHIPINADS/CFT 355 byMUKUNDRANGAMANI 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 2 TheFramework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 3 TheSizeofthesingularity . . . . . . . . . . . . . . . . . . . . . . . . . 358 4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 TOPICSINBLACKHOLEPRODUCTION 363 byVYACHESLAVS.RYCHKOV 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 2 WavepacketsandSemiclassics . . . . . . . . . . . . . . . . . . . . . . . 363 3 MultipleBlackHoleProduction . . . . . . . . . . . . . . . . . . . . . . 365 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 TOWARDSTHEEXACTDILATATIONOPERATOROFN =4 SUPERYANG-MILLSTHEORY 371 byANTONV.RYZHOV 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 2 ConstraintsonD(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 3 SummingD(1) toallorders . . . . . . . . . . . . . . . . . . . . . . . . . 374 4 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 MODULITRAPPINGANDSTRINGGASCOSMOLOGY 379 bySCOTTWATSON 1 InitialConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 2 StringsatFiniteTemperature . . . . . . . . . . . . . . . . . . . . . . . . 380 3 ModuliTrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 STRINGYGEOMETRY: GENERALIZEDCOMPLEXSTRUCTURE 385 byMAXIMZABZINE 1 Mathematicalpreliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 385 x 2 Topologicalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 3 TopologicalmodelwithWZterm. . . . . . . . . . . . . . . . . . . . . . 390 INTEGRABILITYOFSUPERCONFORMALFIELDTHEORY ANDSUSYN=1KDV 393 byANTONM.ZEITLIN 1 RTT-relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 2 TheQ-operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 APPENDIX 397 LISTOFSPEAKERS 399 LISTOFPARTICIPANTS 401

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.