ebook img

String Theory for Undergraduates- Lecture 26 PDF

0.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview String Theory for Undergraduates- Lecture 26

Lecture 26 8.251 Spring 2007 8.251 Final Exam Review Practice Problems Problem 1. Assume standard, space-filling Virasoro brane. a. Calculate L⊥ |0� in terms of normal order oscillations. −6 b. Calculate L⊥ αI |0�. −6 −1 (Hint: αI |0� =0, � mom. vacuum) 0 Problem 2. √ D2: z = 0, D1: y =0,z = π α�, D = 26. a. Find the M2 formula in terms of N⊥ b. Ground states? Describe the lowest mass levels. c. Generating f(x)= �a(r)xr where a(r) is the number of states of α�M2 = r. Problem 3. Consider the Ramond sector of a superstring in D = 18. Naive α�M2 = 1 � αI αI + ndI dI. 2 n�=0 −n n −n n a. Range of I? Write the precise (n.o) ∝ M 2 1 Lecture 26 8.251 Spring 2007 b. Write the generating function f (x). R Solutions Problem 1. a. 1 � L⊥ = α α −6 2 −6−p p p∈Z p = 0: 1 (α ·α +α ·α +α ·α +...+α ·α +α α +α α +α α +α α +α α +α α ) 2 −6 0 −7 1 −8 2 −5 −1 −4 −2 −3 3 −2 −4 −1 −5 0 −6 1 −7 Since n> 0, α’s are annihilation operators and kill the vacuum state. 1 = α α + α α + α α + α α +(α α + α α + ...) 2 −3 −3 −2 −4 −1 −5 0 −6 −7 1 −8 2 1 L⊥ |0� =( α α + α α + α α )|0� −6 2 −3 −3 −2 −4 −1 −5 b. 1 L⊥ αI |0� = ( α α +α α +α α )αI |0�+α α αI |0� = L⊥ |0�+αI |0� −6 −1 2 −3 −3 −2 −4 −1 −5 −1 −7 1 −1 −6 −7 Alternative method: LI αI |0� =[L ,αJ ]|0� + αI L⊥ |0� −6 −1 −6 1 −1 −6 � �� � � �� � αI know −7 2 Lecture 26 8.251 Spring 2007 Problem 2. a. x+ ,x− y z xx4x25 . . . D2 - - stretched · · localized D1 - · · · localized [D2, D1] NN ND DD DD DD 1 ND coordinate; all of the rest are DD α�M2 = N⊥+ α�(TL)2 a 1 1 1 a = = − + ND 48 24 16 1 15 −1+ = − = a 16 16 1 a = −1 + (p − q) 16 √ �π α� �2 α(TL)2 = α� 2πα� 15 4 11 α�M2 = N⊥ − + = N⊥ − 16 16 16 b. Ground state: ��p+,p2,...,pq � in book, but here q = 1 ⇒ GS = |p+�. No mo­ mentum in ND (fractional oscillators) or all the DDs. The states live on the D1 brane. c. GS has α�M2 = − 11 . Suppose GS |0� and just oscillator α(3), then could build 16 −1 α(3) |0�, (α(3))2 |0�, ..., so: −1 −1 � � 1 f(x)= x −1161 (1 + x + x2 + ...)= x− 1161 1 − x 3 Lecture 26 8.251 Spring 2007 But we have more! � 1 �23� 1 �23� 1 �23 f(x)= x− 1116 ... 1 − x 1 − x2 1 − x3 = x− 1116 �∞ 1 (1 − xn)23 n=1 Now have to account for the fractional oscillators. f(x)= x− 1116 �∞ 1 1 (1 − xn)23 (1 − xn−1/2) n=1 Plug into Mathematica to get specific answers. 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.