ebook img

Stress Responses in Plants: Mechanisms of Toxicity and Tolerance PDF

293 Pages·2015·4.488 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stress Responses in Plants: Mechanisms of Toxicity and Tolerance

Bhumi Nath Tripathi · Maria Müller Editors Stress Responses in Plants Mechanisms of Toxicity and Tolerance Stress Responses in Plants ThiSisaFMBlankPage Bhumi Nath Tripathi (cid:129) Maria Mu¨ller Editors Stress Responses in Plants Mechanisms of Toxicity and Tolerance Editors BhumiNathTripathi MariaMu¨ller AcademyofInnovativeResearch InstituteofPlantSciences Ambedkarnagar UniversityofGraz India Graz Austria ISBN978-3-319-13367-6 ISBN978-3-319-13368-3 (eBook) DOI10.1007/978-3-319-13368-3 LibraryofCongressControlNumber:2015940016 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Contents 1 SaltStressinHigherPlants:MechanismsofToxicityandDefensive Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 AnabellaFernandaLodeyroandNe´storCarrillo 2 PhysiologyandBiochemistryofAluminumToxicityandTolerance inCrops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 AnjaliAggarwal,BunichiEzaki,AshokMunjal, andBhumiNathTripathi 3 AdaptiveMechanismsofPhotosyntheticApparatusto UVRadiation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 A.A.Kosobryukhov,V.Yu.Lyubimov,andV.D.Kreslavski 4 SignalPerceptionandMechanismofSaltToxicity/Tolerance inPhotosyntheticOrganisms:CyanobacteriatoPlants. . . . . . . . . . 79 ChhaviAgrawal,SoniaSen,AntraChatterjee,ShwetaRai, ShivamYadav,ShilpiSingh,andL.C.Rai 5 PlantResponsestoSoilFlooding. . . . . . . . . . . . . . . . . . . . . . . . . . . 115 TamaraI.Balakhnina 6 MechanismofArsenicToxicityandToleranceinPlants:Role ofSiliconandSignallingMolecules. . . . . . . . . . . . . . . . . . . . . . . . . 143 MeetuGuptaandEhsanullahKhan 7 ResponseofWheatSeedlingstoCombinedEffectofDrought andSalinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 AnatolyA.Ivanov 8 PlantResponsetoUV-B:FromTolerancetoToxicity. . . . . . . . . . 199 SuruchiSingh,S.B.Agrawal,andMadhoolikaAgrawal v vi Contents 9 MetabolicStrategyofAnnualDesertPlants:AdaptivePhenomenon ofCAMandC PhotosynthesisFunctioninginaLeaf. . . . . . . . . . 217 4 ValeryYu.LyubimovandKarlYa.Biel 10 SalicylicAcidandDroughtStressResponse:Biochemical toMolecularCrosstalk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 SonaliPandeyandDipjyotiChakraborty 11 DroughtResistanceinCrops:PhysiologicalandGeneticBasis ofTraitsforCropProductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 RenuKhanna-ChopraandKalpanaSingh Chapter 1 Salt Stress in Higher Plants: Mechanisms of Toxicity and Defensive Responses AnabellaFernandaLodeyroandNe´storCarrillo Abstract Soil salinity is a major constraint to crop performance. The main con- tributors to salt toxicity at a global scale are Na+ and Cl(cid:1) ions which affect up to 50 % of irrigated soils. Effects of salt exposure occur at the organismic, cellular, and molecular levels and are pleiotropic, involving (1) osmotic and water deficit syndromes, (2) specific Na+ and Cl(cid:1) inhibitions, (3) nutritional imbalance, and (4)oxidativestress.Wereviewhereintheresponseselicitedbysalt-stressedplants to face all these challenges. With the only exception of halobacteria, all other organismsarenothalotolerantatthemolecularlevel.Instead,theyhavedeveloped strategiestokeepsaltsoutofthecell.Then,inductionofsystemsforsaltextrusion totherhizosphereandsaltcompartmentationintothevacuoleplaykeyrolesinsalt tolerance,aidedbythesynthesisandaccumulationofcompatibleosmolytesandof antioxidantenzymesandmetabolites.Expressionoftheseeffectorgenesismodu- lated by a complex network of salt-responsive transcription factors and signaling molecules.Wediscusstheprogressmadetowardsincreasingsalttoleranceincrops byengineeringgeneswhoseproductsoperateatallthesestages,fromsensingand regulation to effector proteins, and identify key open questions that remain to be addressed. Keywords Salt tolerance • Oxidative stress • Nutritional imbalance • Osmotic adjustment•Iontoxicity 1.1 Introduction Earthisapredominantlysaltyplanet,withmostofitswatercontaining~600mM NaCl.About7%ofthefirmland,20%ofthecultivatedland,andnearlyhalfofthe irrigatedlandareaffectedbyhighsaltcontents(Zhu2001,2002,2003).Thethreats of salinity are more obvious in arid and semiarid regions where limited rainfall, highevapotranspiration,andextremetemperaturesassociatedwithpoorwaterand A.F.Lodeyro•N.Carrillo(*) InstitutodeBiolog´ıaMolecularyCelulardeRosario(IBR-CONICET)OcampoyEsmeralda, FacultaddeCienciasBioqu´ımicasyFarmace´uticas,UniversidadNacionaldeRosario, Suipacha531,2000Rosario,SantaFe,Argentina e-mail:[email protected];[email protected] ©SpringerInternationalPublishingSwitzerland2015 1 B.N.Tripathi,M.Mu¨ller(eds.),StressResponsesinPlants, DOI10.1007/978-3-319-13368-3_1 2 A.F.LodeyroandN.Carrillo soilmanagement arethemaincontributingfactors(deAzevedoNetoetal.2006). Whilevirtuallyallsaltsmayhavedeleteriouseffectsonplantwelfare,thetermsalt stressusuallyreferstotheconsequencesofabnormalaccumulationofNa+andCl(cid:1) ions, since this is by far the most extended environmental hardship related to salinity. Salinization might occur by natural causes, primarily by capillary water level elevationandsubsequentevaporationofsalinegroundwater.However,theincrease ofsalinizationataglobalscaleislargelyduetohumanintervention,particularlyin arid regions. Irrigation practices lead to groundwater level elevation and a subse- quentincreaseinevaporation.Saltsnotonlycausedirectdamageonplantsbutalso provokesecondarynegativeeffects,suchasincreaseofthesoilpH.Mostplantsdo not grow well at high pH due to iron starvation. Iron is found in nature mostly as ferric oxides that are sparingly soluble, indicating that the main problem of Fe acquisition is not of abundance but of bioavailability (Curie and Briat 2003). The solubilityproductofferricoxidesdecreasesthreeordersofmagnitudeforeachpH unitraise,whichrepresentsamajordeterrentforagricultureinalkaline,calcareous soilsthatcovermorethanonethirdoftheplanet’scultivableland(MorelandPrice 2003). Salt stress affects plant physiology at whole plant as well as cellular and molecularlevelsandatallstagesofdevelopmentfromgerminationtosenescence (Hasegawaetal.2000;Muranakaetal.2002;Murphyetal.2003;Ranjbarfordoei etal.2002).Reportedeffectsincludechangesingrowthrate,iontoxicity,mineral limitation,membraneinstability,photosynthesis,andincreasedrespiration(Ashraf andShahbaz2003;Hasegawaetal.2000;Munns2002).Buildupofhighamounts ofsaltsintheleafapoplastleadstodehydrationandturgorloss(Marschner1995), whereas salt accumulation in the cytosol and organelles results in inhibition of enzymes and metabolic pathways, including photosynthesis (de Lacerda etal.2003).Thereductionofplantgrowthandbiomassaccumulationundersaline conditionshasbeenreportedinseveralimportantcrops(Tejeraetal.2006). Tofacilitateanalysis,theunfavorableeffectsofsaltstressareclassifiedinfour major groups: (1) osmotically induced water stress, (2) specific salt toxicity inhibiting enzymes and metabolic pathways, (3) nutrient ion imbalance due to highlevelsofNa+andCl(cid:1)competingwiththeuptakeofotheressential ions,and (4)increasedproductionofreactiveoxygenspecies(ROS)whichdamagealltypes ofmacromolecules.Thesedifferentmodesofactionwillbebrieflydescribedinthe forthcomingsections,followedbyasurveyoftheresponseselicitedbysalt-stressed plants,theirregulation,andtheuseoftheknowledgegatheredinthelastdecadesto designsalt-tolerantplants.Severalreviewsonsalt toxicity,sensing, andtolerance have been published in recent years (Bose et al. 2014; Deinlein et al. 2014; Golldack et al. 2011; Huang et al. 2012; Maathuis 2014). The reader is referred tothemforamoreextensivetreatmentofthesesubjects. 1 SaltStressinHigherPlants:MechanismsofToxicityandDefensiveResponses 3 1.2 Osmotic Adjustment and Water Deficit Salt accumulation in soils reduces the plant’s ability to take up water from the rhizosphere,andthisleadstowaterlimitationandgrowthreduction.Thisprocessis thefirsttooccurinasalt-stressedplantandisformallyanalogoustoawater-deficit stress.Indeed,somecellularandmetabolicprocessesinvolvedinosmoticresponses tosalinityarecommontodrought,includingstomatalclosure(seebelow).Therates atwhichnewleavesareproduceddependlargelyonthewaterpotentialofthesoil solution, in the same way as for a drought-stressed plant. At this stage, salts themselves do not build up in the growing tissues at concentrations that could inhibitgrowth,astherapidlyelongatingcellscanaccommodatethesaltthatarrives inthexylemwithintheirexpandingvacuoles(Munns2005).Then,reductionsinthe rateofleafandrootgrowthareduetowaterstressratherthanasalt-specificeffect (Munns 2002), since Na+ and Cl(cid:1) are usually below toxic concentrations in the growingcells.Forexample,inwheatexposedto120mMNaCl,Na+inthegrowing tissues of leaves was at most 20 mM and only 10 mM in the rapidly expanding zones (Hu et al. 2005). Results of experimental manipulation of shoot water relationssuggestthathormonalsignals,probablyinducedbytheosmoticeffectof thesaltontheroots,arecontrollingtherateofcellelongation(Munnsetal.1999). Inhibition of plant growth due to salinity largely depends on the severity of the stress. Mild osmotic challenges rapidly lead to growth inhibition of leaves and stems,whereasrootsmaycontinuetoelongate(HsiaoandXu2000).Thedegreeof growth inhibition due to this osmotic stress also depends on the time scale of the responseforthe particulartissue andspeciesandonwhetherthestress treatments areimposedabruptlyorgradually(Munnsetal.1999). 1.3 Specific Ion Toxicity Assaltsaretakenupbyaplant,theytendtoconcentrateintheoldleaves.However, continued transport into transpiring leaves over a long period of time eventually exceedstheabilityofthecellstoexcludesaltsfromthecellortocompartmentalize theminthevacuole(seebelow).Saltsthenwouldbuildupinthecytosolandinhibit enzyme activity.Alternatively, they might accumulate inthe cellwallsand dehy- drate the cell (Munns 2005). These specific effects of ions such as Na+ and Cl(cid:1) followthewaterandosmoticstressesthatinitiatethesalinitysyndrome. Undernormalgrowthconditions,rootcytosolicNa+concentrationsareprobably in the order of 10–30 mM (Tester and Davenport 2003). Leaf Na+ cytosolic concentrations are considered to be in the same range (Jones and Gorham 2002). Roots mustexclude mostofthe Na+ andCl(cid:1)dissolvedinthe soilsolution,or the salt concentration in the shoot will gradually increase to toxic levels. Plants transpireabout50timesmorewaterthantheyretainintheirleaves(Munns2005).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.