Stratified SIFT Matching for Human Iris Recognition SambitBakshi,HunnyMehrotra,andBanshidharMajhi DepartmentofComputerScienceandEngineering, NationalInstituteofTechnologyRourkela Odisha,India [email protected],[email protected],[email protected] http://www.nitrkl.ac.in 3 Abstract. This paper proposes an efficient three fold stratifiedSIFT matching 1 foririsrecognition. Theobjectiveistofilterwronglypairedconventional SIFT 0 matches.InStrataI,thekeypointsfromgalleryandprobeirisimagesarepaired 2 usingtraditionalSIFTapproach.Duetohighimagesimilarityatdifferentregions n ofiristheremaybesomeimpairments.Thesearedetectedandfilteredbyfind- a inggradientofpairedkeypointsinStrataII.Further,thescalingfactorofpaired J keypoints is used to remove impairments in StrataIII. The pairs retained after 6 Strata III are likely to be potential matches for iris recognition. The proposed systemperformswithanaccuracyof96.08%and97.15%onpubliclyavailable ] CASIAV3andBATHdatabasesrespectively.Thismarkssignificantimprovement V ofaccuracyandFARovertheexistingSIFTmatchingforiris. C . Keywords: IrisRecognition,StratifiedSIFT,Keypoint,Matching. s c [ 1 Introduction 1 v Irisisthesphincterhavinguniquefloweryrandompatternaroundthepupil.Itisanin- 8 9 ternalorganwithcomplexuniquefeaturesthatarestablethroughoutthelifetimeofan 9 individual.Therehasbeensignificantresearchdoneintheareaofirisrecognitionusing 0 globalfeatures[1,2,3,4].However,theseapproachesfailtopossessinvariancetoaffine . 1 transformations,occlusionandrobustnessto unconstrainedirisimages.Thus,there is 0 astringentrequirementtodevelopirisrecognitionsystemsuitablefornon-cooperative 3 images.Keypointdescriptorsareinvarianttoaffinetransformationaswellaspartialoc- 1 clusion.ScaleInvariantFeatureTransform(SIFT)isawellknownkeypointdescriptor : v for object recognition [5]. Due to inherent advantages, SIFT is capable of perform- i X ingrecognitionusingnon-cooperativeirisimages[6].InSIFTmatchingapproach,the differenceof Gaussianimagesareused toidentifykeypointsatvaryingscale andori- r a entation.Theorientationis assignedto eachdetectedkeypointanda windowistaken relativetodirectionoforientationtofindthedescriptorvector.Duringrecognition,the keypointsaredetectedfromgalleryandprobeimagesandmatchingisperformedusing nearestneighbourapproach.ThechallengewithconventionalSIFTmatchingwhenap- plied to iris recognitionis to find texturesimilarity between same regionsof two iris. SIFT fails as itdoesnotconsiderspatialinformationofthe keypoints.To makeSIFT functionalforiris,anovelmatchingapproachhasbeendevelopedthatcombinesspatial informationalongwithlocaldescriptorofeachkeypoint. (a) StrataI:η=98 (b) StrataII:η=65 (c) StrataIII:η=54 Fig.1.Matches(η)atdifferent strataobtained betweentwoinstancesof sameindividual taken fromCASIAV3 Theorganizationofthepaperisasfollows.ConventionalSIFTmatchingapproach forlocaldescriptorsisdiscussedinSection2.ProposedstratifiedSIFTmatchingisex- plainedindetailinSection3.Thejoboffilteringisdoneintwosequencialsteps:Gra- dientbased filtering and Scale based filtering. Section 4 providesthe results obtained usingproposedapproach.Finally,conclusionsaregivenattheendofthepaper. 2 Conventional SIFTMatching Thematchingalgorithmplaysasignificantroleinanybiometricsystemasitactslike aonewaygatewaythroughwhichonlygenuinematches(iftwoimagesarefromsame subject) will pass and imposter matches (if two images are from different subjects) are blocked. In local feature matching, the total number of paired keypoints is used to find the authenticity of an individual. Let I be the set of all images available in the iris database. For understanding, I be a gallery iris image and I be a probe iris m n imagewhere I ,I ǫ I. The matchingalgorithmvalidates I against I . Inthe conven- m n n m tional SIFT matching, for each keypoint in I the Euclidean distance is found with m everykeypointin I . Thenearestneighbourapproachpairstheith keypointin I with n m jth keypointin I ,iffthedescriptordistancebetweenthetwo(aftermultiplyingwitha n threshold)isminimum[5].Thetwokeypointsarepairedandremovedfromthesetof keypointsdetectedfromI andI .Thisprocessisiteratedfortheremainingkeypoints m n untilanytwo keypointscan be matched.Thisapproachperformsmoderatelywellfor unconstrainedirisrecognition[6].However,asSIFTdeterminesimagesimilarityusing 128-dimensionallocalfeaturesonly,henceitmaywronglypair(impairment)somekey- pointsforiris.Thus,theexistingapproachismodifiedusingtwostratawhichremoves impairedmatchesusingspatialinformationofthematchingkeypointsandcontributes inachieveingbetterrecognitionaccuracy. 3 Stratified SIFTMatching IntheproposedpaperaneffortismadetoimprovisetheconventionalSIFTmatching. Thepupilandiriscirclesareassumedtobeconcentric,hencealllocalizedimageshave pixelsize 2r×2r, where r is the radiusofiris. Thepupilcenter aswell as iriscentre are located at (r,r). Therefore the localized images do not have transformation due to translation. However,there is a possibility of iris images being transformeddue to rotation(tiltofsubject’shead),scaling(changeincameratoeyedistance)orboth[6]. TheSIFTmatchingalgorithmmatcheskeypointsthathavesimilaritybetweenthelocal descriptors(asdiscussedinSection2)butfailstoconformtospatialrelationship.The removal(filtering)ofimpairmentsbytheproposedapproachretainsonlythosematches thataremoreprobabletobepotentialmatches.LetK bethesetofm keypointsfound m 1 in I and K be the set of n keypointsfoundin I by applyingSIFT detector. These m n 1 n setsofkeypointsareusedtocomprehendthestratifiedSIFTmatching. 3.1 StrataI:SIFTMatching Let R be the orderedset containingthe matches between K and K by conventional m n SIFTmatchingasdiscussedinSection2.Hence,Rcontainsonlythosepairs(i, j)where ithkeypointinK ismatchedwith jthkeypointinK asshowninFig.1(a).Letηbethe m n numberofmatchesfoundwhereηǫ[0,min(m ,n )].AssetRisgeneratedsolelyonthe 1 1 basisoflocaldescriptorpropertyitmaywronglypairkeypointsfromdifferentregions of iris. Hence, there is a need to combinespatial informationwith local descriptorto filteroutimpairedkeypointsasdiscussedinsubsequentstrata. 3.2 StrataII:GradientBasedFiltering In this strata gradientbased filtering is performedto removeimpairmentsfromR. To compute gradient for each pair of keypoints (i, j) in R, the angles are obtained from respectiveimagecenters(r,r).Thus,θ iscomputedfromI andφ iscomputedfrom i m j I .Theangleofrotationforkthpairiscalculatedasγ =(φ −Θ)mod360°(depictedin n k j i Fig.3(a)).ConsideringSIFTtobecompletelyflawless(duetorobustnessproperty,no falsematchisfound)andefficient(duetopropertyofrepeatability,allpossiblematches arefound)[5];thevalueofγ derivedshouldbesame∀k.Butinpractice,SIFTdoesnot k givesuchprecisematches.Thus,itisdifficulttoobtainuniquevalueofγevenwhenI m andI belongtothesamesubject.Ratheradistributionofγisobtained.Ahistogramis n plottedwithx-axiscomprisingbinswitharangeofvaluesofγ,andy-axiscomprising numberofmatchesfallinginaparticularbinasshowninFig.2.Thenumberofbinsin thehistogram(nobins)issubjecttoimplementationissue.Inproposedsystem,nobins istakenas10.Thedistributionofγgivesasinglepeakincasethetwoirisimages(I m andI )arefromthesamesubject.Incontrast,nodistinctpeakshouldbefoundincase n thetwoirisimagesarefromdifferentsubjects.Theremaybeerrorduetodiscretization ofbins,sotwoadjacentbinsofthepeakarecombinedtoimprovepeakdensity(number ofmatches).Theideaistofindwhetherthedensityofthepeakexceedstheboundary criteria.Itisinferredthata peakisstrongif thedensityexceedscertainhigherbound (hp%oftotalnumberofmatches). 40 Peak 35 30 es atch25 Rejected Matches M of 20 er b m15 u N 10 5 0 0 36 72 108 144 180 216 252 288 324 360 γ (in degree) Fig.2.Distributionofγfornumberofmatchesbetweentwoinstancesofsameindividualfrom CASIAV3 Likewise peak is weak if the density is less than lower bound(lp% of total num- ber of matches). If a strong peak is found, an angular range is specified around the peak.ThosematchesinRforwhichγarenotwithintheangularrangearefoundtobe impairedandremovedfromRtogenerateRinter. θ i φ j d 1 d 2 (a) γ=(φ −θ)mod360° (b) ψ= d2 j i d1 Fig.3.(a)GradientcomputationinStrataII,(b)LocalscalingfactorcomputationinStrataIII For example, as shown in histogram in Fig. 2, the peak is found at 0th bin which represents gradient value of 0° to 36° with a central value of 18°. Hence only those pairshavingangularrangebetween(18±90)mod360°areretained.Thus,itisevident thatRinter ⊆ Rafterremovingsomeimpairments.Fig.1(b)showspairedkeypointsin Rinterwithconsiderablereductionofη.Ifnostrongpeakisfounditisinferredthatall matchesinRarefaulty,andremoved.AsaresultRinterbecomesempty. 3.3 StrataIII:ScaleBasedFiltering In this strata further filtering of Rinter is performed on the basis of global and local scaling factor between the gallery and probe images. The global scaling factor (sf) betweentwoimagesisdefinedasratioofprobeirisradius(r )togalleryirisradius(r ). n m A scale rangewithcertaintolerancearound sf isempiricallytakento handlealiasing artifact.Fromimplementationperspective,thescalerangeistakenas(sf±0.2).Inideal case,ifgalleryandprobebelongtosameindividualthescalingfactorbetweenallpaired keypointsshouldbeunique.However,thisdoesnotholdgoodinpracticalscenarios. Duringfiltering,foreachelementinRinter,twoEuclideandistancesarecalculated- (a)d :distanceofith keypointofI fromitscenterand(b)d :distanceof jth keypoint 1 m 2 of I fromits center. Localscaling factor (ψ) foreach elementof Rinter is calculated n as ψ = d /d (shown in Fig. 3(b)). Matches having ψ within scale range discussed 2 1 abovequalifiestobepotentialandstoredinRnew,elsearelabeledasfaultyandfiltered. Fig.1(c)showspairedkeypointsinRnewafterfurtherreductionofη. 4 EXPERIMENTAL RESULTS The proposed stratified SIFT matching is tested on publicly available BATH [8] and CASIAV3 (CASIAV3) [9] databases. Database available from BATH University in- cludesimagesfrom50subjects(20imagespersubjectfromboththeeyes).CASIAV3 (CASIAV3)comprises249subjectswithtotalof2655imagesfromboththeeyes.The experiments are carried out on 2.13GHz Intel(R) CPU using Matlab. To validate the system performancesome standard error measures [7] are used1. The results are car- riedoutinthreedifferentstrataasgiveninTable1.InStrataI,thetwoirisimagesare matchedusingconventionalSIFTapproach.Thisapproachperformswithanaccuracy of85.81%onCASIAV3database.Likewise,forBATHdatabaseanaccuracyof97.04% Table1.PerformancemeasuresforstratifiedSIFTmatching Databases→ CASIAV3 BATH Approach↓ FAR FRR ACC d’ FARFRR ACC d’ StrataI(ConventionalSIFT) 17.4810.9185.811.20 1.57 4.35 97.042.73 StrataII(GradientbasedFiltering) 2.49 5.45 96.032.46 0.97 6.09 96.472.81 StrataIII(ScalebasedFiltering) 2.39 5.45 96.082.20 1.34 4.35 97.152.90 is obtained.To improvethe performanceof the system, the objectiveof the proposed researchis to reducefalse acceptances.In Strata II, the impairmentsare removedus- ing gradient filtering which significantly increases the seperability measure between false andgenuinematchesas indicatedbyd’ valuesgivenin the Table 1. Furtherim- provementinseparabilityandaccuracyarebroughtbyscalefilteringinStrataIII.The accuracyvaluesareplottedagainstchangeinnumberofmatchesasshowninFig.4(a). 1FAR:FalseAcceptanceRate,FRR:FalseRejectionRate,ACC:Accuracy,d’:d-primevalue 100 100 Strata I Strata I 95 Strata II 90 Strata II Strata III Strata III 90 R) 80 Accuracy (in %) 667788050505 False Rejection Rate (FR 234567000000 55 10 50 0 0 50 100 150 200 10−2 10−1 100 101 102 Matching score False Acceptance Rate (FAR) (a) (b) Fig.4.(a)Accuracycurveforthreestrata,(b)ROCcurveforthreestrataonCASIAV3 The Receiver Operating Characteristic (ROC) curves [7] for three different strata are shown in Fig. 4(b). The distribution of genuine and imposter scores after Strata III is shown in Fig. 5. All graphical results are obtained for CASIAV3 and similar observationsaremadeforBATHdatabase. Imposters Genuine 103 n o uti strib102 Di e or c S 101 100 0 20 40 60 80 100 120 140 160 Matching Score Fig.5.FinalhistogramofscoresonCASIAV3 5 CONCLUSIONS In this paper, a novel stratified SIFT matching technique is proposed that improvises conventional SIFT by removing wrong pairs. This approach provides boost in accu- racyduetoconsiderablereductioninFAR.TheFARisreducedby15.09%and0.23% for CASIAV3 and BATH respectively. From the results it has been observed that the proposedalgorithmiscompletelyflawless,i.e.,matchesremovedareguaranteedtobe wrongmatcheswhereasitisnotcompletelyefficient,i.e.,allimpairmentsbySIFTare notguaranteedtobefiltered.However,thegaininaccuracyissubstantialwhichmarks itsapplicabilityforunconstrainedirisrecognition. References 1. Daugman,J.:Theimportanceofbeingrandom:Statisticalprinciplesofirisrecognition.Pat- ternRecognition36(2),pp.279291(2003) 2. Kim,J.,Cho,S.,Choi,J.,Marks,R.J.:IrisRecognitionUsingWaveletFeatures.The.Journal ofVLSISignalProcessing(38),147156(2004) 3. Monro,D.M.,Rakshit,S.,Zhang,D.:Dct-basedirisrecognition.IEEETransactionsonPattern AnalysisandMachineIntelligence29(4),586595(2007) 4. Tisse,C.,Martin,L.,Torres,L.,Robert,M.:Personidentificationtechniqueusinghumaniris recognition.In:Proc.ofVisionInterface,pp.294299(2002) 5. Lowe,DG:Distinctiveimagefeaturesfromscale-invariantkeypoints.InternationalJournalof ComputerVision6(2),91110(2004) 6. Belcher, C., Du, Y.: Region-based sift approach to iris recognition. Optics and. Lasers in Engineering47(1),139147(2009) 7. Jain,A.,Flynn,P.,Ross,A.:HandbookofBiometrics.Springer-VerlagNewYork,.Inc.,Se- caucus,NJ,USA(2007) 8. BathUniversityDatabase,http://www.bath.ac.uk/elec-eng/research/sipg/irisweb 9. ChineseAcademyofSciences’InstituteofAutomation(CASIA)IrisImageDatabaseV3.0, http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp