Springer Monographs in Mathematics A. Bonfiglioli • E. Lanconelli • F. Uguzzoni Stratified Lie Groups and Potential Theory for their Sub-Laplacians A.Bonfiglioli F.Uguzzoni UniversitàBologna,Dip.toMatematica UniversitàBologna,Dip.toMatematica PiazzadiPortaSanDonato5 PiazzadiPortaSanDonato5 40126Bologna,Italy 40126Bologna,Italy e-mail:bonfi[email protected] e-mail:[email protected] E.Lanconelli UniversitàBologna,Dip.toMatematica PiazzadiPortaSanDonato5 40126Bologna,Italy e-mail:[email protected] LibraryofCongressControlNumber:2007929114 MathematicsSubjectClassification(2000):43A80,35J70,35H20,35A08,31C05,31C15, 35B50,22E60 ISSN1439-7382 ISBN-103-540-71896-6 SpringerBerlinHeidelbergNewYork ISBN-13978-3-540-71896-3 SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned,specifically therightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilmorinanyother way,andstorageindatabanks.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisionsofthe GermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer.ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:2)c Springer-VerlagBerlinHeidelberg2007 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply,eveninthe absenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsandtherefore freeforgeneraluse. TypesettingbytheauthorandVTEXusingaSpringerLATEXmacropackage Coverdesign:WMXDesign,Heidelberg,Germany Printedonacid-freepaper SPIN:12029525 VA41/3100/VTEX-543210 ToProfessorBrunoPini andtoourFamilies Preface WiththisbookweaimtopresentanintroductiontothestratifiedLiegroupsandto theirLiealgebrasoftheleft-invariantvectorfields,startingfrombasicandelemen- tary facts from linear algebra and differential calculus for functions of several real variables. The second aim of this book is to perform a potential theory analysis of thesub-Laplacianoperators (cid:2)m L= X2, j j=1 where the X ’s are vector fields, i.e. linear first order partial differential operators, j generatingtheLiealgebraofastratifiedLiegroup. In recent years, these operators have received considerable attention in litera- ture, mainly due to their basic rôle in the theory of subelliptic second order partial differentialequationswithsemidefinitecharacteristicform. 1. SomeHistoricalOverviews Generalsecondorderpartialdifferentialequationswithnon-negativeanddegenerate characteristicformhaveappearedinliteraturesincetheearly1900s.Theywerefirst studiedbyM.Picone,whocalledthemelliptic-parabolicequationsandprovedthe celebratedweakmaximumprinciplefortheirsolutions[Pic13,Pic27]. The interest in this type of equations in application fields was originally found byA.D.Fokker,M.PlanckandA.N.Kolmogorov.Theydiscoveredthatpartialdif- ferential equations with non-negative characteristic form arise in the mathematical modelingoftheoreticalphysicsandofdiffusionprocesses[Fok14,Pla17,Kol34]. Since then, over the past half-century, this type of equations appeared in many otherdifferentresearchfields,boththeoreticalandapplied,includinggeometricthe- ory of several complex variables, Cauchy–Riemann geometry, partial differential equations, calculus of variations, quasiconformal mappings, minimal surfaces and convexity in sub-Riemannian settings, Brownian motion, kinetic theory of gases, VIII Preface mathematicalmodelsinfinanceandinhumanvision.Wereportashortlistofrefer- encesforthesetopicsattheendofthispreface. Afirstsystematicstudyofboundaryvalueproblemsforwideclassesofelliptic- parabolicoperatorswasperformedbyG.Fichera.In1956[Fic56a,Fic56b],heproved existencetheoremsofweaksolutionsofthe“Dirichletproblem”andfoundtheright subsetoftheboundaryonwhichthedatahavetobeprescribed. Some years later, several existence and regularity results for elliptic-parabolic operators were proved by O.A. Ole˘ınik and E.V. Radkevicˇ and by J.J. Kohn and L. Nirenberg (see the monograph [OR73] for a presentation and a wide survey on this subject). The methods used by these authors required particular assumptions ontheFicheraboundaryset andledtoregularityresultsstronglydependingonthe regularityoftheboundarydata. 1.1.L.Hörmander’sTheorem The investigations of the local regularity properties of the solutions to elliptic- parabolic equations, that is, regularity properties only depending on the given op- erator, have produced more interesting results. The most beautiful ones have been obtainedforelliptic-parabolicequationswithunderlyingalgebraic-geometricstruc- tures of sub-Riemanniantype.The milestone of these research fieldis a celebrated theoremofL.Hörmanderprovedin1967. Theorem1(L.Hörmander,[Hor67]). Let X ,...,X and Y be smooth vectors 1 m fields,i.e.linearfirstorderpartialdifferentialoperatorswithsmoothcoefficientsin theopensetΩ ⊆RN.Suppose (cid:3) (cid:4) rank Lie{X ,...,X ,Y}(x) =N ∀x ∈Ω. (P.1) 1 m Thentheoperator (cid:2)m L= X2+Y (P.2) j j=1 is hypoelliptic in Ω, i.e. every distributional solution to Lu = f is of class C∞ ∞ wheneverf isofclassC . Condition (P.1) simply means that at any point of Ω one can find N linearly independentdifferentialoperatorsamongX ,...,X ,Y andalltheircommutators 1 m (theLiealgebrageneratedby{X ,...,X ,Y}). 1 m Hörmander’s work opened up a research field, the most remarkable contribu- tions to which have been given by G.B. Folland, L.P. Rothschild and E.M. Stein. They developed and applied to (P.2) the singular integral theory in nilpotent Lie groups.1 1Theapplicationofthistheoryalsooccursinthedevelopmentsstartedfromtheworksby ¯ ¯ J.J.Kohnonthe∂-Neumannproblemandthe∂bcomplex. 1. SomeHistoricalOverviews IX By using these techniques, in 1975, G.B. Folland accomplished a functional analytic study of sub-Laplacians on stratified Lie groups [Fol75]. One year later L.P.RothschildandE.M.Steinprovedtheircelebratedliftingtheorem(see[RS76]), enlighteningthebasicrôleplayedbythesub-Laplaciansinthetheoryofsecondor- derpartialdifferentialequationswhicharesumofsquaresofvectorfields.Inforce ofthistheorem,indeed,wecanroughlysaythat: (cid:5) Every operator L = m X2 satisfying the Hörmander rank condition j=1 j (cid:6) (P.1) can be lifted to an operator L “as close as we want” to a sub- Laplacian. 1.2.TheRankCondition Thegeometricalmeaningoftherankcondition(P.1)isclarifiedbytheC.Carathéod- ory,W.L.ChowandP.K.Rashevskytheorem: If(P.1)issatisfied,thengiventwopointsx,y ∈Ω,sufficientlyclose,thereexists apiecewisesmoothcurve,containedinΩ andconnectingx andy,whichisthesum ofintegraltrajectoriesofthevectorfields±X ,...,±X ,±Y. 1 m Theappearanceof(P.1)inHörmander’stheoremseemstobesuggestedbysome deeppropertiesoftheKolomogorovoperators(seealsotheIntroductionin[Hor67]), whichwenowaimtodiscuss. In studying diffusion phenomena from a probabilistic point of view, A.N. Kol- mogorovshowedthattheprobabilitydensityofasystemwith2ndegreesoffreedom satisfiesanequationwithnon-negativecharacteristicform Ku=0 inR2n×R, where R2n is the phase-space of the system. A prototype for K is the following operator (cid:2)n (cid:2)n K = ∂2 + x ∂ −∂ , (P.3) xj j yj t j=1 j=1 wherex = (x ,...,x )andy = (y ,...,y )denotethevelocityandtheposition 1 n 1 n vectorsofthesystem,respectively.TheoperatorK is“verydegenerate”:itssecond orderpartonlycontainsderivativeswithrespecttothevariablesx ,...,x .Never- 1 n theless,asKolmogorovshowed,ithasafundamentalsolutionΓ whichissmoothout of its pole.This impliesthatK is hypoelliptic,that is, every distributionalsolution toKu=f isofclassC∞ wheneverf isofclassC∞.TheexplicitexpressionofΓ isgivenby (cid:3) (cid:4) Γ(z,t;ζ,τ)=γ ζ −E(t −τ)z,t −τ , z=(x,y), ζ =(ξ,η), (P.4) whereγ(z,t)=0ift ≤0,and (cid:7) (cid:10) (4π)n 1(cid:8) (cid:9) γ(z,t)= √ exp − C−1z,z ift >0. (P.5) detC(t) 4 X Preface Here, (cid:9)·,·(cid:10) stands for the usual inner product in R2n; E(t) and C(t), respectively, denotethe2n×2nmatrices (cid:7) (cid:7) (cid:10)(cid:10) (cid:11) 0 0 t E(t)=exp −t , C(t)= E(s)AE(s)T ds. I 0 n 0 (cid:3) (cid:4) Moreover, I denotes the identity matrix of order n and A = In 0 . We explicitly n 0 0 remarkthat C(t)>0 foreveryt >0. (P.6) Thisconditionmakesexpression(P.5)meaningfulandcanberestatedingeometrical– differentialterms.Indeed,denoting (cid:5) X =∂ and Y = n x ∂ −∂ , j xj k=1 k yk t itcanbeprovedthat(P.6)isequivalenttothefollowingrankcondition: (cid:3) (cid:4) rank Lie{X ,...,X ,Y}(z,t) =2n+1 ∀(z,t)∈R2n+1. (P.7) 1 n ItisalsoworthwhiletonotethattheKolmogorovoperatorK canbewrittenas (cid:2)n K = X2+Y. (P.8) j j=1 1.3.TheLeftTranslationandDilationInvariance Thestructure(P.4)ofKolmogorov’sfundamentalsolutionsuggeststherelevancethat aLiegrouptheoreticalapproachhasintheanalysisofHörmanderoperators.Indeed, fromtheexplicitexpressionofΓ onerealizesthat (cid:3) (cid:4) Γ(z,t;ζ,τ)=γ (ζ,τ)−1◦(z,t) , where ◦ is the following composition law making K := (R2n × R,◦) a non- commutativeLiegroup (cid:3) (cid:4) (z,t)◦(z(cid:12),t(cid:12)):= z(cid:12)+E(t(cid:12))z,t +t(cid:12) , i.e.moreexplicitly, (cid:3) (cid:4) (x,y,t)◦(x(cid:12),y(cid:12),t(cid:12))= x+x(cid:12),y+y(cid:12)+t(cid:12)x,t +t(cid:12) . In K one has (ζ,τ)−1 = (−E(−t)ξ,−τ). It is easy to check that K is invariant w.r.t.thelefttranslationsonKandcommuteswiththefollowingdilations: d (z,t):=(λx,λ3y,λ2t), λ>0. λ Foreveryλ>0,d isanautomorphismofK,sothat(R2n×R,◦,d )isahomoge- λ λ neousLiegroup.Itcanbe(cid:5)seenthatitsLiealgebraistheonegeneratedbythevector fieldsX =∂ andY = n x ∂ −∂ appearingin(P.8). j xj k=1 k yk t 1. SomeHistoricalOverviews XI 1.4.TheEllipticCounterpart:StratifiedGroupsandSub-Laplacians Forapropercomprehensionandappreciationofthistypeof“parabolic”-typeopera- torssuchastheaboveKolmogorovoperatorK,itiscrucialtopossessadeepknowl- edgeoftheir“elliptic”counterpart.Thisseemsunavoidable,alsobearinginmindthat theunderlyingalgebraic–geometricstructuresofthesetwodifferentclassesofoper- ators are almost identical. Let us go back again, for a mom(cid:5)ent, to the Kolmogorov operator (P.3). If in that operator we square the term Y = n x ∂ −∂ , we j=1 j xj+n t obtainthefollowing“sumofsquare”-operator(whichwemayrefertoasthe“elliptic counterpart”ofK): (cid:12) (cid:13) (cid:2)n (cid:2)n 2 L:= ∂2 + x ∂ −∂ . (P.9) xj j xj+n t j=1 j=1 ThecharacteristicformofLisanon-negativequadraticformwithnon-trivialkernel. ThenLhastobeconsideredasadegenerateellipticoperator.However,itishypoel- liptic: the Hörmander rank condition (P.7) does not distinguish between L and K! Moreover,Lisleft-invarianton(R2n ×R,◦)(aswealreadyknow,soarethe∂ ’s xj andY)but,thistime,itcommuteswiththedilations δ (z,t)=(λx,λ2y,λ2t), λ>0. λ Alsothesedilationsareautomorphismsof(R2n×R,◦),andG:=(R2n×R,◦,δ ) λ becomes a stratified Lie group whose generators are the vector fields ∂ ’s and Y. xj Then,accordingtoourgeneralagreement,Lisasub-Laplacian2onG. 1.5.TheHeisenbergGroup Inthelower-dimensionalcasen=1,theoperator(P.9)is ∂2+(x∂ −∂ )2, (x,y,t)∈R3. (P.10) x y t Uptoachangeandarelabelingofthevariables,thiscanbewrittenasfollows: (∂2+2y∂ )2+(∂ −2x∂ )2, (x,y,t)∈R3, x t y t which,inturn,isthelower-dimensionalversionofthecelebratedsub-Laplacianon theHeisenberggroup. TheHeisenberggroupHn isthestratifiedLiegroup(R2n+1,◦)whosecomposi- tionlawisgivenby (cid:3) (cid:4) (z,t)◦(z(cid:12),t(cid:12))= z+z(cid:12),t +t +2Im(cid:9)z,z(cid:12)(cid:10) . (P.11) HereweidentifyR2n withCn,andweusethenotation 2AllthesenotionswillbeproperlyintroducedinChapter1.