Strategic use of Additive Manufacturing Ebba Nystedt DIVISION OF PRODUCT DEVELOPMENT | DEPARTMENT OF DESIGN SCIENCES FACULTY OF ENGINEERING LTH | LUND UNIVERSITY 2017 MASTER THESIS Strategic use of Additive Manufacturing A case study at Atlas Copco Construction Tools Author: Ebba Nystedt Strategic use of Additive Manufacturing A case study at Atlas Copco Construction Tools Copyright © 2017 Ebba Nystedt Published by Division of Product Development, Department of Design Sciences, Faculty of Engineering LTH, Lund University P.O. Box 118, SE-221 00 Lund, Sweden Subject: Machine Design for Engineers (MMK820) Division: Product Development Supervisor: Olaf Diegel Examiner: Axel Nordin Abstract As additive manufacturing is developing at an exponential rate and is stepping towards industrialization, it is difficult to keep track of what is possible to achieve today and also what can be expected tomorrow. The starting point of this thesis work is a global picture valid today of what is possible to achieve with additive manufacturing and also inspiration of its use in the manufacturing industry. Additive manufacturing provides increased degrees of design freedom in product realization. Using additive manufacturing strategically can decrease the development time for some components by allowing manufacturing of prototypes not possible before and drastic reduction of lead times. When prototyping, there are needs to be met from several functions within the organization including design engineers, purchasers, test-lab, material specialists and production development. Introducing additive manufacturing, certain needs are not possible to fulfil and trade-offs are needed to be done. In order to understand these trade-offs, a decision-making process has been developed to be used as a foundation to decision-making during the product development process, including the project preparatory phase, design phase, prototype and test-phase and production preparatory phase. Keywords: Additive Manufacturing, Rapid Prototyping, Atlas Copco, Design Thinking, Sammanfattning Då additiv tillverkning utvecklas i en exponentiell takt och är på väg mot industrialisering är det svårt att hålla reda på vad som är möjligt att uppnå idag och vad som kan förväntas imorgon. Utgångspunkten för detta examensarbete är en återspegling av en global bild giltig idag för vad som är möjligt att uppnå med additiv tillverkning och inspiration av dess användning inom tillverkningsindustrin. Additiv tillverkning tillåter ökad grad av designfrihet vid produktrealisering. Strategisk användning av additiv tillverkning kan minska utvecklingstid för vissa komponenter då prototypframtagning som ej varit möjlig tidigare tillåts och ledtider minskas drastiskt. Vid prototypframtagning behöver behov från flera funktioner i organisationen mötas inklusive designingenjörer, inköpare, testlabb, materialspecialister och produktionsutveckling. När additiv tillverkning introduceras, är vissa behov inte möjliga att uppfylla och kompromisser är nödvändiga att göras. För att förstå dessa avvägningar har en beslutsprocess utvecklats som ska användas som grund för beslutsfattandet under produktutvecklingsprocessen, inklusive projektets förberedande fas, design- fas, prototyp och test-fas och produktionsförberedande fas. Nyckelord: Additiv tillverkning, Rapid Prototyping, Atlas Copco, Design Thinking Acknowledgments I would like to say thank you to my supervisor Mats Åhlin at Atlas Copco who this thesis project would not have been possible without. I would also like to say thank you to Olaf Diegel at the Department of Design Sciences for the help I have received. Lund, June 2017 Ebba Nystedt Table of contents List of acronyms 12 1 Introduction 13 1.1 Company description 13 1.2 Background 13 1.3 Goal with thesis 14 1.4 Scope and delimitations 14 2 Method 15 2.1 Research method 15 2.2 Literature review 16 2.3 Interviews 16 2.4 Semi-structured interviews 17 2.5 Case studies 17 2.6 Corporate documents 17 3 Additive Manufacturing 18 3.1 Seven AM Processes 18 Powder bed fusion 18 Material Extrusion 20 Material Jetting 20 Binder Jetting 21 Sheet Lamination 22 Vat Photo Polymerization 22 Directed Energy Deposition 23 Seven categories matrix 23 3.2 Materials 25 3.3 Post-processing 26 Support material removal 26 Surface texture improvements 27 Accuracy 27 Improve material properties 28 Colour 28 3.4 Design guidelines 28 Holes and internal channels 29 Overhang areas 29 Wall thickness 30 Supports 30 Design guidelines matrix 31 3.5 Cost structure 31 Well-structured costs 31 Ill-structured costs 32 Costs sourced components 33 3.6 Tooling applications of AM 37 Injection molding 37 Injection molding vs AM 39 3.7 Successful Additive Manufacturing Applications 40 Manufacturing of injection mold 40 Precision parts for engines and transmission in automotive industry 41 Additive manufactured gas-turbine blades 42 4 Theory of decision-making 44 4.1 Analytical Hierarchy Process 44 4.2 Sensitivity Analysis 45 Sensitivity analysis to understand trade-offs 45 5 Atlas Copco Construction Tools 47 5.1 Product development process 47 Project preparatory 47 Design phase 48 Prototype- and test-phase 48 Production preparatory phase 48 Market introduction 49 Project closure 49 Decision gates and deliverables 49 5.2 Decision-making 50 R&D 50 Purchasing 50 5.3 Prototyping 51 Proof of concept prototypes 51 Physical prototypes 51 Prototyping criteria 52 5.4 Projects 54 Rock Drill 100 54 Cobra Electro 56 Innovation strategies 57 Planning process 57 5.5 Analysis 58 6 Introducing AM in a product development process 60 6.1 Planning process 60 Prototyping objective 60 6.2 Areas of application 62 Injection molded components 62 Machined components 62 Cast components 64 6.3 Evaluate the relative benefits and limitations 65 Planning for AM 65 Compare post-processing operations 65 6.4 Decision model 66 Unit Price analysis 67 Project management tool 67 AHP – Evaluation of alternatives 70 6.5 The value of time 71 6.6 Analysis 73 7 Case studies 74 7.1 Injection molded component 74 Evaluate the relative benefits 75 Prototyping alternatives 75 Decision model 76 Recommendation 80 7.2 Machined components 82 Evaluate the relative benefit 82 Prototyping alternatives 83 Decision model 84 Recommendation 86 7.3 Cast component 87 Proof of concept 87 8 Implementation plan 88 8.1 Stage 1 - Lay the foundation 88 8.2 Stage 2 - Design the decision-making process 89 8.3 Stage 3 - Implementing decision-making process 89 9 Future research 90 9.1 Explore additional areas of application 90 9.2 Future master thesis opportunities 90 Final part production 90 AM suppliers 91 10 Conclusion 93 References 94 Appendix A Time plan 97 A.1 Project plan 97
Description: