ebook img

Strain partitioning and stress rotation at the North Anatolian fault zone from aftershock focal PDF

13 Pages·2006·0.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Strain partitioning and stress rotation at the North Anatolian fault zone from aftershock focal

Geophys.J.Int. (2006)166,373–385 doi:10.1111/j.1365-246X.2006.03027.x Strain partitioning and stress rotation at the North Anatolian fault zone from aftershock focal mechanisms of the 1999 Izmit M = 7.4 w earthquake Marco Bohnhoff, Helmut Grosser and Georg Dresen GeoForschungsZentrumPotsdam(GFZ),Telegrafenberg,14473Potsdam,Germany.E-mail:[email protected] Accepted2006March27.Received2006March27;inoriginalform2005January28 D o w n SUMMARY lo WeinvestigateaftershockfocalmechanismsoftheM =7.4Izmitearthquakeof1999August ad w e d 17,onthewesternNorthAnatolianfaultzone(NAFZ).Spatialclusteringandtheorientation fro of446faultplanesolutionsareanalysed.TheIzmitmainshockoccurredasaright-lateralslip m h on an EW-trending near-vertical fault plane. Aftershock clusters define four individual fault ttp smeagimnsehnotsc.kF(oMcawl=me7c.1h,a1n9is9m9sNsouvreromubnedrin1g2)thinedeicpaitceenptrreedsoomfinthaentIlzymstirtikane-dslsiupbbsuetqaulesnotnDoru¨mzcael s://aca faulting.AftershocksintheareabetweentheIzmitandDu¨zcesegmentsaremainlyrelatedto de m EW-orientednormalfaultingdelineatingasmallpull-apartstructure.Beneaththeeasternmost ic SeaofMarmara,alignmentsofaftershockssuggestbranchingoftheNAFZintothreeormore .ou p activesegmentsthatdiffersignificantlyintermsoftheirfocalmechanismcharacteristics.The .c o distributionofaftershockfocalmechanismscorrespondstofaultsegmentationoftheNAFZin m /g theIzmit-Du¨zceregionproducedbycoseismicslip.Areaswithlargeamountsofcoseismicslip ji/a showaftershocksthatarepredominantlystrike-slip,butlow-slipbarriersshowmostlynormal rtic fsatruSelsttsrineesgssfaotfetlelnorsswohrioncignkvtshe.resiIoznmsitomf athineshafotcekrs.hIonctkhefoIczamlimt-Seacphaanncisamasresah,otwhermotaaxtiiomnusmofhothreizolonctaall mologyle-abstra c compressive stress axis is horizontally rotated counter-clockwise by 8◦ with respect to the eist/16 S6 cDou¨szecisemairceaan),dsltornesgs-etesrmarerergoitoanteadlsctrleoscskfiweilsde..TWoweacrodnscthluedeeasttheartntehnedIozfmthiteeruarptthuqruea(kKearcaaduesreed- GJI/1/37 3 significant stress partitioning along the rupture. The direction of stress rotation is related to /6 3 theorientationoftheindividualfaultsegmentsalongtheNAFZ. 3 5 3 6 Keywords: aftershocks,faultplanesolutions,NorthAnatolianFault,seismotectonics,stress b y tensorinversion. g u e s t o n 0 5 geodeticdataallindicateseparationofthemainshockintosubevents A 1 INTRODUCTION p TheIzmitM =7.4(1999August17)earthquakeoccurredonthe eotccaul.rr2in0g01o;nBdiasrtkinacettfaaull.t2se0g0m2;enDtesl(oeu.gis.Reteialiln.g2e0r0e2t;aGl.u¨2l0e0n0e;tTiabli. ril 20 w 1 northern strand of the North Anatolian fault zone (NAFZ) in the 2002;Bosetal.2004).ThewesternterminationoftheIzmitrup- 9 GulfofIzmitregion.Theruptureextendedabout140kmbetween ture is located offshorebeneath the Sea of Marmara(e.g. Wright the Sea of Marmara and the Du¨zce region along a right-lateral, et al. 2001), possibly extending to the area south of the Prince predominantlyEW-trending,near-verticalfaultplane(Fig.1).Esti- Islands about 20 km southeast of Istanbul (Bouchon et al. 2002; matesofaveragecoseismicfaultslipvarybetween2.5m(e.g.Tibi O¨zalaybeyetal.2002).Rupturepropagationtowardstheeastended et al. 2001) and 2.9 m (Bouchon et al. 2002) from inversion of near Du¨zce where a large earthquake occurred 87 days after the teleseismicdataandrecordsofnear-faultaccelerometers,respec- Izmitevent(1999November12, M =7.1).Nodalplanesoffo- w tively. Maximum slip at the surface reached about 5–6 m (Barka calmechanismsfortheIzmitmainevent,themajorsubevent(S2, etal.2002;Bouchonetal.2002;Bosetal.2004,others).Thedirec- Tibi et al. 2001) and for the Du¨zce earthquake strike dominantly tionofslipcorrespondswelltotheoverallhorizontalGPS-derived EW(Fig.1b).ThecombinedrupturelengthfortheIzmitandDu¨zce 2–2.5 cm yr−1 westward motion of the Anatolian block with re- earthquakesisestimatedtobeabout200km.TheMarmararegion specttoEurasia(e.g.Noomenetal.1996;McCluskyetal.2000, westoftheIzmitruptureisconsideredtobeaseismicgap.Recent Fig.1a).Analysesofsurfacerupture,teleseismic,strongmotionand estimates of Coulomb stress changes and earthquake probability (cid:3)C 2006TheAuthors 373 Journalcompilation(cid:3)C 2006RAS 374 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 6 /1 /3 7 3 /6 3 3 5 3 6 b y Figure1. (a)LocationmapoftheAegean-Anatolianregion(courtesyofK.Fischer).RedarrowsrepresenttheGPS-derivedhorizontalvelocityfield(after g u McCluskyetal.2000).TheboldblacklineisthesimplifiedtraceoftheNorthAnatolianfaultzone(NAFZ).TheIzmitsegmentoftheNAFZisindicatedby e theblackrectangularandenlargedinFig.1(b).(b)CoulombstressmapaftertheIzmitMw=7.4(1999August17)earthquake(afterParsonsetal.2000,their st o Fig.1).RedandbluecoloursindicateregionsofincreasedanddecreasedCoulombstress,respectively.WhitedotsindicatelocationsofIzmitaftershocks.Fault n mechanismsareshownfortheIzmitmainshock,IzmitsubeventS2(Mw=6.9,Tibietal.2001)andDu¨zcemainshock(Mw=7.1,1999November12)from 05 A WesttoEast.Theblackrectangleindicatestheareainvestigatedinthisstudy. p ril 2 0 1 calculations(Parsonsetal.2000;Wrightetal.2001;Parsons2004) 2 ANALYSIS OF AFTERSHOCK 9 suggestthattheIzmitearthquakeincreasedtheseismichazardfor FOCAL MECHANISMS theMarmaraandDu¨zceregions(Fig.1b).TheDu¨zceearthquake The data set consists of 446 aftershock focal mechanisms out of asalsothe1992Erzincaneventindicateaneastwardpropagation which254weredeterminedfromrecordingsofa41-stationseismic ofmainshocks.However,thisisincontrasttoanoverallwestward networkcoveringtheentireIzmitrupturearea.Apartofthenetwork migrationofstrongearthquakesalongtheNAFZobservedsincethe (29stations)wasinstalledfourdaysaftertheIzmitmainshockand 1939Erzincanevent(e.g.To¨kso¨zetal.1979;Steinetal.1997). wasoperatedbytheGermanTaskForceforearthquakeshostedat Here,wefocusonaftershocksoftheIzmitearthquakecovering theGeoForschungsZentrumPotsdam(Grosseretal.1998;Baum- thetimespan1999August17–November12.Weanalysethespa- bachetal.2003).Thesestationsenlargeda12-stationnetworkthat tiotemporalevolutionofaftershockfocalmechanismsandperform hadbeeninstalledinthatregionin1996(SABONET,Milkereitetal. stresstensorinversiontodeterminethelocalstressfield.Theresults 2000).Faultmechanismsforthese254eventsweredeterminedbya are compared to the coseismic rupture and afterslip of the Izmit gridsearchoverallpossiblefaultplanesolutionsassumingadouble- earthquakeandtotheregionaltectonicsetting. couplemodel(FPFITprogram,Reasenberg&Oppenheimer1985). (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS StrainpartitioningandstressrotationattheNorthAnatolianfaultzone 375 D o w n lo a d e d fro m h ttp Fsciagluersew2i.th(am)aEgpniictuendter.eTdhiestrIizbmuittioanndofDthu¨ezc4e4m6afainuslhtopclaknsearseoliuntdioicnasteadnablyystehdeiirnftahuilstsmtuedcyhainnismmasp.Nviuewmboefrsthiendloicwaeterh(seumbi)spsehgemree.nTtshealsoinzgeothfethIzembietarcuhpbtaulrles s://a c zonethatwereidentifiedbasedonspatialclusteringoffaultmechanismsasdiscussedinthetext.(b)DistributionofPandT axesforthe446faultplane ad e solutions in polar projection of the lower hemisphere. The size of circles scales with magnitude and the shading indicates the hypocentral time (lighter m colour≈lateroccurrence).InadditionweplottedthedensitydistributionforthePandTaxesoftheentiredatasetwhereshadingisscaledtomaximumforP ic .o andTseparately. u p .c o m /g Almostcompletespatialcoverageallowedustorejectalleventsfor rupture trace of the Izmit event. A prominent cluster containing ji/a whichthegrid-searchresultssuggestedmultiplefaultplanesolu- 169 events is located at about 30.6◦E in the Akyazi area. Trains rtic tions.Theaccuracyofindividualfaultmechanismsis5◦forstrike, ofaftershocksindicateactivationofsecondaryfaultstructuresin- le dipandrake. clined by ∼10◦ to the E–W trending NAFZ. In general, P axes -ab s Inaddition,192faultplanesolutionswerecollectedfrompub- areeithersubverticalorsubhorizontaltrendingatN90◦E–N180◦E; tra c lished studies. The data are from seismic networks with different T axes are predominantly subhorizontal with a large scatter t/1 geometriescoveringpartsoftheIzmitrupturearea(Karabulutetal. (N160◦E–N290◦E).ThedistributionofPandT axesindicatesthat 66 2002; O¨zalaybey et al. 2002; Polat et al. 2002). We also include strike-slipandnormalfaultingdominatetheIzmitruptureafterthe /1/3 sourcemechanismsdeterminedbyregionalmomenttensorinver- mainshock. 73 sionofthe30largestIzmitaftershocks(O¨rgu¨lu¨ andAktar,2001). Segment1(28.95◦E–29.30◦E)contains110faultplanesolutions /63 3 Multipleoccurrencesofeventsareexcludedfromthedataset.We covering the western termination of the Izmit rupture located be- 5 3 estimatetheaverageorientationerrorofthefaultplanesolutionsin neaththeeasternmostSeaofMarmara(Fig.3).Aftershockclusters 6 b ourdatasettobe∼10◦.Theeventscoveranareabetween28.95◦– indicate activation of three different branches of the NAFZ. For y g 31.4◦Eand40.5◦–41.0◦Nandextendtoamaximumdepthof18km eachbranch,thefaultmechanismsareverysimilarandoneofthe ue s (asingleeventwaslocatedatadepthof23km,Fig.2a). twonodalplanesoftencoincideswithamappedfault.Thenorth- t o Spatialclusteringoftheaftershocklocations,faultmechanisms ernpart(subsegment11)containsmainlystrike-slipeventslocated n 0 andslipdirectionsareinvestigatedstatistically.Temporaldistribu- ona ∼N305◦E-strikingverticalplane.Aseriesofeventsindicat- 5 A tionandeventmagnitudearealsoconsidered.Orientationdistribu- ingnormalfaultingisalignedalongaparallelsmallfaultsegment p tionofaftershockfaultmechanismsisgivenbytherespectivePand (Fig.3).Thesouthernbranch(subsegment12)containsNNE–SSW- ril 2 0 Taxesinlower-hemispherepolarprojectionplots(Fig.2b).PandT extensionalnormalfaulteventsandsomeNW–SW-compressional 1 9 axesrepresentthecentreofthedilatationalandcompressionalquad- thrust fault events revealing a complex local fault structure. This rantsofthefocalmechanisms,indicatingthedirectionofmaximum area largely coincides with the Yalova cluster that showed swarm compressionalanddilatationaldeformation,respectively. activity covering a time period of several years prior to the Izmit event(e.g.Gurbuzetal.2000;Barisetal.2002). Segment2(29.3◦E–30.4◦E)coverstheIzmit-Sapancaareaand contains107aftershocksandtheIzmitmainshockepicentre(Fig.4). 3 SEGMENTATION OF THE IZMIT In the western part (subsegment 21), aftershock epicentres are RUPTURE ZONE alignedwiththesurfacerupturetracetrendingE–W.PandT axes AftershockepicentresareclusteredinanE-Wdirectionalongthe indicateawidedistributionoffocalmechanisms.However,inthe NAFZ between 40.55◦N and 40.90◦N. The distribution of P and easternpart(subsegment22)theaftershocklocationstrend∼N80◦E T axes suggests a spatial separation of the 446 fault mechanisms and,therefore,strikeatanangleof∼10◦ totherupturetraceand intofourmajorsegmentsalongtherupturezone(Fig.2a).Between slipdirectionoftheIzmitmainshock.Focalmechanismsindicate 29.5◦E and 30.4◦E, aftershock epicentres follow the strike of the predominantly right-lateral strike-slip and some normal faulting. (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS 376 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 6 /1 /3 7 3 Figure3. DensitydistributionofPandTaxesandmapviewoffaultplanesolutionsforalleventscontainedinsegment1(seeFig.2).Theepicentraldistribution /6 3 exhibitstrainswithhighlysimilarfocalmechanismsmatchingoneofthetwopossiblefaultplanes.Thissuggestsfurthersubdivisionintoanorthern(11)and 35 3 asouthern(12)subsegment(seetextfordetails). 6 b y g u e Paxistrendsandthenodalplanesofindividualstrike-slipevents indicatea25◦clockwiserotationwithrespecttothelocaltrendofthe st o are rotated counter-clockwise by ∼10◦ with respect to the Izmit Karaderesegment(N65◦E).Paxesoftheeventsareinaccordance n 0 mainshockfocalmechanism. withactivationofanENE–WSWstrikingfaultsegment.Ingeneral, 5 A Segment3(30.4◦E–30.85◦E)islocatednearthetownofAkyaziat abroaddistributionoffocalmechanismparametersreflectsuniform p atriplejunctionformedbytheIzmit-SapancaandKaradere-Du¨zce right-lateralstrike-slipwithfrequentlyE–W-orientedsetsofnodal ril 2 0 faults and the ESE-striking Mudurnu fault, where a major earth- planes(Fig.6). 1 9 quakeoccurredin1967(Fig.1b).Thissegmentcontains169fault planesolutions,thatis,40percentoftheentiredataset.Thefocal mechanismsofadenseclusterofeventsindicateE–Wextensional 4 STRESS TENSOR INVERSION normalfaulting(Fig.5).Thehighaftershockactivityisinstriking contrasttothesmallcoseismicdisplacementof<1minthisarea The aftershock fault mechanisms investigated in this study were suggestedbysurfaceslipandtheinversionofstrongmotiondata used for an inversion of the stress tensor. Stress tensor inversion (Barka et al. 2002; Bouchon et al. 2002; Langridge et al. 2002). techniques using focal mechanisms have been discussed in detail TheESE-strikingsouthernbranchoftheNAFZexhibitedfewaf- by various authors (e.g. Gephart & Forsyth 1984; Gephart 1990; tershocksandnosurfaceslip,possiblyduetostressrelaxationafter Michael1987a,1991;Hardebeck&Hauksson2001;Bohnhoffetal. the1967event. 2004).WeuseatechniqueproposedbyMichael(1984,1987a).The Segment4(30.85◦E–31.3◦E)contains60aftershockfaultplane analysisallowsustoestimatetheorientationofthethreeprincipal solutions, including the epicentres of the Izmit subevent S2 (Tibi stresses (σ = maximum compressive stress, σ = intermediate 1 2 etal.2001)andtheDu¨zcemainshock(Fig.1b).Aftershocklocations andσ =minimum)andthestressratioR=(σ −σ )/(σ −σ ), 3 2 3 1 3 (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS StrainpartitioningandstressrotationattheNorthAnatolianfaultzone 377 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 Figure4. DensitydistributionofPandT axesandmapviewoffaultplanesolutionsforalleventscontainedinsegment2thatincludestheepicentreof 6/1 theIzmitmainshock.ScanningthedatafromWesttoEastallowsidentifyingasignificantvariationinclusteringofsimilarmechanismswithinthissegment. /3 7 Theeasternsubsegment(22)consistsdominantlyofstrike-slipmechanismsingoodaccordancewiththemainshockinfirstorderapproximationandcontains 3 anumberofNNE–SSWextensionalnormalfaultingevents;thewesternsubsegment(21)doesnotexhibitapreferredfaultmechanism.Insubsegment22, /63 3 hypocentresfollowatrendthatisinclinedtotheE–WstrikingfaultwestoftheIzmitepicentre;Paxisdistributioninthissubsegmentshowsseveralpreferred 5 orientationssomeofwhicharerotatedby∼10◦withrespecttotheIzmitmainshock. 36 b y g u e a0n≤d tRra≤nst1en(wsiiotnhaRl r<eg0im.5ea,nredspRe>ctiv0e.5lyi)n.dTichaetimngetahtordanisspbreassseidonoanl sthtraitksinugggseusbthporreidzoomntianladnitrleycstitorinkeo-fsσlip(dKefiroartmzia2ti0o0n2w;Hitheiadb∼aNch12e5ta◦El. st on 1 0 theassumptionsthat 2004;Reineckeretal.2004,seeTable1)andpointstowardssignif- 5 A icantvariationsofstressfieldorientationalongtheNAFZafterthe p (1) intheareaofinvestigationstressesremainuniformintime Izmitevent.Furthermore,thedatasetasawholeisdominatedby ril 2 andspace, 0 thelargenumberofeventslocatedinsegment3showingpredomi- 1 (2) earthquakes represent shear dislocations on existing faults, 9 nantlynormalfaulting.Toinvestigatefurtherlocalvariationsinthe and stressregimealongtheIzmitrupturewesubdividedthecatalogue (3) slipoccursinthedirectionofthemaximumresolvedshear accordingtothesegmentationidentifiedfromthedistributionofP stressonthefaultplane. andT axes(segments1–4).Stressinversionofthefoursegments Heterogeneity of the stress field is reflected by the misfit level reveals a clear variation of the local stress field orientation along andthewidthoftheconfidenceintervaloftheinversion(Table1 theIzmitrupture(Fig.7).FortheAkyaziarea(segment3),there- andFig.7).Foreachstressinversion,2000bootstrapiterationswere sultsindicateaseparationoftheprincipalstresses(blackdots)with performed. narrow1σ (68percent,darkgrey)and2σ (95percent,lightgrey) Thestressinversionofallfocalmechanismsresultsinanormal- confidenceintervals.Fortheremainingsegments,however,confi- faulting regime with clear separation of the principal stresses dence intervals for the largest and intermediate principal stresses (Fig. 7). The maximum compressive stress σ is almost vertical formagirdle(Fig.7). 1 and σ is horizontal, trending N237◦E. This result is in contrast Stress ratio (R = 0.83) and confidence intervals for segments 3 to estimates of the regional long-term stress field in NW Turkey 1 and 2 reflect the dominating deformation regimes (strike-slip (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS 378 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro Figure5. DensitydistributionofPandTaxesandmapviewoffaultplanesolutionsforalleventscontainedinsegment3.AdominantEW-extensionalnormal m h faultingregimeisobservedalongthissegmentthatcontainsabout40percentoftheentiresetoffaultplanesolutionsanalysedinthisstudy.Differenttothe ttp threeothersegmentsnoalignmentisobservedfromthedistributionofaftershockhypocentres;insteadtheaftershockactivitycovertheentireAkyaziplainthat s isidentifiedasapull-apartstructure. ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 6 /1 /3 7 3 /6 3 3 5 3 6 b y g u e Figure6. DensitydistributionofPandTaxesandmapviewoffaultplanesolutionsforalleventscontainedinsegment4thatincludestheKaraderesegmentand st o theDu¨zcemainshockepicentralarea.Adominantstrike-slipmechanismisobservedforthiseasternmostpartoftheIzmitrupturearea.Eventswithannotated n magnitudemarkthelargestandearliestaftershocksinthissegmentandarediscussedinthetext.MosthypocentresarealignedonanalmostEW-trending 05 directionthatisinclinedtothelocalfaulttrendofN65◦E(Karaderesegment,seeFig.8)by∼25◦. A p ril 2 aslnidghntloyrminatlhfeaiurlmtinagg)n.itTuhdeeparnidncbioptahlssttrreessssedsirσec1taionndsσtr2enddiffreoruognhllyy segTmheenetapsoteirnntimngosttosweagrmdsenthte4Dcou¨vzecresatrheeaNw6h5e◦rEe-atreMndin=g7K.1areaadrethre- 019 w NW–SEwithinbothsegments(N314◦EandN117◦E,respectively). quakeoccurred87daysaftertheIzmitmainshock.Stressorientation Theminimumcompressionalstressσ isclearlydifferentiatedfrom andconfidenceintervalsforthisareaindicateastrike-slipregime 3 σ and σ , trending subhorizontally NE–SW. The Izmit-Sapanca withastressratioofR=0.63(Fig.7).Themaximumprinciplestress 1 2 area(segment2)includestheIzmitmainshockepicentre.Here,the (σ )issubhorizontalandtrendsN159◦E,indicatingaclockwisero- 1 post-seismictrendofσ indicatesacounter-clockwiserotationof tationwithrespecttotheregionalstressfieldof>30◦. 1 8◦ withrespecttotheregionalstressfieldandthecoseismicstress fieldderivedfrominvertingthefocalmechanismsofthesixIzmit subevents(Gu¨lenetal.2002,Table1).IntheAkyaziarea(segment 5 DISCUSSION 3), directions of principle stresses σ − σ are well constrained 1 3 andcorrespondtoanE–Wextensionalnormalfaultingregime.The 5.1 SegmentationoftheIzmitrupturezone relativestressmagnitude R=0.62indicatesthatthemagnitudeof TheIzmitearthquakeruptureda140km-longE–Wtrendingseg- σ isclosetothemeanofσ andσ . 2 1 3 ment of the western NAFZ. Offshore in the easternmost Sea of (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS StrainpartitioningandstressrotationattheNorthAnatolianfaultzone 379 Table1. OverviewonstressfieldorientationsalongtheIzmitpartoftheNAFZobservedfromthedifferentsourcesanddeterminedinthisstudy.Datasets coverdifferentareasandtimeintervals.Azimuth(tr=trend)andangleofincidence(pl=plunge)fortheprincipalstressesaregiveninNoverEandagainst horizontal,respectively. Areacovered Timecovered Focalmech. σ1(tr/pl) Std σ2(tr/pl) Std σ3(tr/pl) std Misfit R Source [no.] [◦] [◦] [◦] [◦] [◦] [◦] NWTurkey 1943–1999 11 126/3 13 269/86 – 35/3 13 3.3◦(c) 0.5 Kiratzi(2002) NWTurkey 1943–1999 13(b) 124/-(a) (25) −/90 – 34/− – – – Reineckeretal.(2004) Heidbachetal.(2004) ESeaofMarmara 1996Jan–Sep 37 305/1 14 206/86 20 35/4 17 0.31 0.5 Erginetal.(1997) Izmitrupture CoseismicIzmit 6 124/3 15 231/79 15 34/11 15 0.31 0.5 Gu¨lenetal.(2002) Izmitrupture Post-seismicIzmit 30 316/13 10 81/68 10 222/18 10 0.16 0.74 O¨rgu¨lu¨&Aktar(2001) Izmitrupture Post-seismicIzmit 446 66/87 6 327/0 6 237/3 6 0.22 0.64 Thisstudy (segment0) ESeaofMarmara Post-seismicIzmit 110 314/23 6 144/57 6 45/4 6 0.20 0.83 Thisstudy (segment1) D IzmitSapanca Post-seismicIzmit 107 117/15 6 347/67 6 212/17 6 0.22 0.83 Thisstudy o w (segment2) n lo Akyaziplain Post-seismicIzmit 169 190/74 6 3/15 6 94/1 6 0.09 0.62 Thisstudy a d (segment3) e d KaradereDu¨zce Post-seismicIzmit 60 339/6 8 49/74 8 251/15 8 0.19 0.63 Thisstudy fro (segment4) m standarddeviation(std)referstothetrendforσ1−3. http ((ab))SanHd.shallowboreholes. s://a c (c)misfitasgivenbytheFMSIroutine(Gephart&Forsyth1984). ad e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 6 /1 /3 7 3 /6 3 3 5 3 6 b y g u e s t o n 0 5 A p Figure7. Resultsofstresstensorinversionfortheentiredatabasecontaining446faultplanesolutionsandthefoursegments(seeFigs3–6formapview ril 2 offaultmechanismscontainedtherein).Boldblackdotsrepresentthebestfittingorientationsforthethreeprincipalstresses(σ1=maximumcompressional 01 stress,σ2=intermediate;σ3=minimum).Smallandlargedotsrepresentthe1σ (68percent)and2σ (95percent)confidenceintervals,respectively. 9 Marmara,theNAFZsplaysintodifferentbranchesproducingacom- formedasalargepull-apartstructure(e.g.Armijoetal.1999)ina plexnetworkcomprisingtheIzmit-Sapanca,Du¨zce,Iznik,Geyve transtensionalenvironment.Onasmallerscale,faultsegmentsare and Mudurnu faults (Fig. 8). The width of this network is about separatedbyreleasingbendsandsmall-scalepull-apartstructures 30 km and thus on the order of the thickness of the seismogenic suchasIzmitBayandLakeSapanca. upper crust. Regional tectonics in western Turkey are dominated AnalysisofaftershockfocalmechanismsalongtheIzmitrupture by right-lateral strike-slip along the ∼EW-trending NAFZ and a revealspredominantlystrike-slipandnormalfaultingeventsincom- NE–SW extensional regime associated with a >3 cm yr−1 SSW- binationwithfewthrustevents,indicatingthatstrainpartitioning wardmigrationoftheSouthAegeandomainwithrespecttostable andvariationsinthelocalstressfieldisadominantfeaturewithin Eurasia(e.g.McCluskyetal.2000;Fleritetal.2004).AttheNAFZ, thisregion.ThrustfaultingisrestrictedtoasmallareanearYalova GPS data indicates westward motion of northwestern Anatolia at wherepronouncedseismicitywasobservedpriortotheIzmitmain- about2–2.5cmyr−1.Inthistectonicregime,theSeaofMarmara shock(Gurbuzetal.2000;Barisetal.2002).IntheIzmit-Sapanca (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS 380 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s Figure8. Upperpart:TopographicmapoftheIzmitsegmentoftheNorthAnatolianfaultzone(afterFieldingetal.1999).Reddottedlinesindicatethe tra c simplifiedsurfaceruptureoftheIzmitevent(afterBarkaetal.2002).TheboldreddotindicatestheepicentreoftheIzmitmainshock.Middlepart:Mainfaults t/1 oftheNAFZalongtheIzmitrupturearea.BluelinesalongthethreeonshoresegmentsrepresentlateraldistributionofsurfaceslipafterBarkaetal.(2002) 6 6 scaledtotheslipmaximumof∼6m.Lowerpart: Distributionofthe446focalmechanismsanalysedinthisstudy(seealsoFig.2)andsegmentationidentified /1 basedonspecialclusteringoffocalmechanisms. /37 3 /6 3 andKaradere-Du¨zceareas(oursegments2and4),aftershockfo- seeFig.8).Fromwesttoeast,thesegmentsaretheYalova-Hersek 35 cal mechanisms reflect mainly strike-slip and normal faulting. In (strikingN80◦E),Karamu¨rsel-Go¨lcu¨k(N70◦–80◦E),Izmit-Sapanca 36 general,theepicentresofindividualeventsformtrailsdelineating (∼N90◦E), Sapanca-Akyazi (N75◦–85◦E) and Karadere (N65◦E). by g faultsegmentsthatcorrespondtoonesetofaftershocknodalplanes Step-oversbetweensegmentsexhibitverticaloffsetsofupto2.4m, u e (Fig.2andFig.8).E–Wextensionalnormalfaultingtypifyingthe indicating a significant component of normal faulting that is in st o Akyaziplainofsegment3(Fig.5)isconsistentwithlocaltopog- agreement with aftershock fault mechanisms at several locations n raphy at 30.6◦E, which exhibits >500 m subsidence with respect alongtherupturetrace. 05 A to the surrounding area (Fig. 8). We interpret this plain to repre- Coseismicrupturestartedatthemainshockepicentrejustwest p sent a small pull-apart basin similar to Lake Sapanca, Izmit Bay ofGo¨lcu¨kandpropagatedwestwardsalongtheKaramu¨rsel-Go¨lcu¨k ril 2 0 andthesomewhatlargerSeaofMarmara.Inthefollowingwere- segmentwithlittlemomentrelease(Bosetal.2004).Eastwardprop- 1 9 lateaftershocksegmentationalongtherupturezonetothespatial agationwastriggeredontheIzmit-Sapancasegmentwithashortde- distributionandtemporalevolutionofcoseismicslipoftheIzmit layresultinginasymmetricruptureofthemainsource(Delouisetal. earthquake. 2002;Lietal.2002).Rupturepropagationwascomplex,involving severalsubeventspossiblytriggeredondifferentfaultsegments.To- talsourceduration,thenumberofsubeventsandthedistributionof 5.1.1 CoseismicslipalongtheIzmitrupturetrace momentreleaseafterthefirst∼20sremaincontroversial(Tibietal. AlongtheIzmitrupture,seismicmomentreleaseandcoseismicslip 2001;Delouisetal.2002;Gu¨lenetal.2002;Lietal.2002;Bos varyfrom>12*1019Nmand>5minhigh-slipzonesto<1*1019 etal.2004).Usingsource-timefunctionsofupto90s,3–6subevents Nmand<1matlow-slipbarriers,respectively(e.g.Bouchonetal. havebeenidentified(Tibietal.2001;Gu¨lenetal.2002). 2002;Papageorgiou2003).Mappedsurfacerupturesindicatefive Inversionsofteleseismic,groundmotionandspacegeodeticdata separatefaultsegmentsreachingfromwesttoeastseparatedbyre- also indicate distributed slip on separate fault segments with two leasing (pull-apart) step-overs of about 1–4 km width (Tibi et al. slipmaximaof5–6mnearGo¨lcu¨kandLakeSapanca(e.g.Reilinger 2001;Barkaetal.2002;Langridgeetal.2002;Polatetal.2002, etal.2000;Bouchonetal.2002;Gu¨lenetal.2002;Lietal.2002). (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS StrainpartitioningandstressrotationattheNorthAnatolianfaultzone 381 Table2. Energyrelease,ruptureareaandaverageslipfortheIzmitand increasinglyrevealtheorientationoftheregionalstressfieldorien- Du¨zce mainshocks (coseismic) and the Izmit post-seismic time (after tation.Thiseffecthasalsobeenobservedforfluid-injectioninduced Bouchonetal.2002;Bu¨rgmannetal.2002;Ergintavetal.2002;O¨rgu¨lu¨.& microseismicity(Bohnhoffetal.2004),butatalowermagnitude Aktar2001;Reilingeretal.2000;Tibietal.2001;Umutluetal.2004).See level(−1<M <1). w textfordetails. Mw Mo Rupturearea Averageslip [1020Nm] [km2] [m] 5.2 EvolutionofthestressfieldattheNAFZ Izmitmainshock 7.4 1.4–2.0 140×20 2.5–2.9 Du¨zcemainshock 7.1 0.5 60×20 0.8–1.0 Toanalysespatialandtemporalvariationsofthestressfieldalong theNAFZandespeciallyalongtheIzmitrupturewecollectedall Cumulativegeodetic 7.0 0.3 140×20 0.43 availableinformationonthelong-termregionalstressfieldinNW moment(Izmit-Du¨zceintereventtime) Turkey covering the past ∼5 decades. In addition, we performed Izmit-Aftershocks 6.6 0.012 140×20 0.017 stresstensorinversionoffocalmechanismsofeventsprior(‘pre- (30largest) Izmit-Aftershocks 6.8 0.025 140×20 0.036 seismic’)andduring(‘coseismic’)theIzmitmainshock.Theentire setofinformationonstressfieldorientationintheareaofinvestiga- D (4400largest) o tionissummarizedinTable1.Informationonthelong-termregional w n stressfieldinNWTurkeywastakenfromtheWorldStressMapdata lo a Slipmaximawerefoundbetweenthesurfaceandabout12kmdepth. base(Heidbachetal.2004;Reineckeretal.2004)whichcontains ded Dteeleloseuiissmeitcaaln.d(2s0tr0o2n)gpmreosteinotneddaatajo(isneteianlvseorsSioalnicohfonIneStAaRl.,2G0P03S), 1in3gsatremsseaonrimenatxatiimonummehaosruizreomnteanltsstrfeosrsth(SeHa)retareonfdiinntgerNes1t2i4n◦dEic.aItn- from addition,Kiratzi(2002)performedstresstensorinversionofthe11 h d6pe–lal1iin2nek(a3mt0in.d4ge–fp3ot0hu.r7bf◦eaEluo)lwtissGecgoo¨mlncseu¨inkstt-seI.nzMmtlyiatxiadinmednutLmifiaeksdleipaSsiaspaunapnactroae.a8TomhferaAetdakubycoaeuzdti lraervgeeasltedeaartshtqriukaek-esslipthfaatuhlatidngocrceugrimreedwinitthhesurebghioornizsoinntcael1N9W43–SanEd- ttps://ac slip(<1m). trending orientation of the maximum principal stress and a near- ad e vertical intermediate principal stress. Further information on the m pre-seismic stress field was obtained from inverting focal mech- ic.o 5.1.2 Aftershockactivityandpost-seismicslipalongtheIzmit aMnaisrmmsaroabdtuairninegd1w9i9th6Jaanloucaaryl–nSeetwptoermkbienrt(hEergeinasetetranlm.1o9s9t7S)e.a of up.co rupturetrace m The‘coseismic’stressfieldduringtheIzmiteventwasdetermined /g Post-seismicslipestimatedfromGPSoverthe75daysfollowing byinvertingthefocalmechanismsofthesixIzmitsubeventsconsti- ji/a the Izmit earthquake was about 0.43 m. The corresponding total tutingtheentireIzmitrupture(Gu¨lenetal.2002).Furthermore,the rtic geodeticmomentisequivalenttoM =7.0(Reilingeretal.2000; 30largestaftershocks(O¨rgu¨lu¨ &Aktar2001)wereusedtoderive le w -a Bu¨rgmann et al. 2002; Ergintav et al. 2002) and, therefore, one the regional ‘post-seismic’ stress field. Interestingly, this data set b s orderofmagnitudehigherthanthemomentliberatedbythe4000 containsonlythreeEW-extensionalnormalfaultingeventswithin tra c largest aftershocks (see Table 2). This indicates that post-seismic the Akyazi Plain and yields a well-defined stress regime almost t/1 deformationwaslargelyaseismic.Modellingofafterslipsuggests identicaltothe‘pre-seismic’regionalstressfield(Table1). 66 that maximum creep is expected at depths of >20 km (Reilinger InFig.9thestressfieldorientationsofthedatasetsasdescribed /1/3 etal.2000). aboveareshowninchronologicalorder.Theanglebetweenthetrend 73 The maxima of coseismic and post-seismic slip and the after- ofσ1 andtheregionaltrendoftheNAFZ(N90◦E)isindicatedby /63 3 shockactivityareanti-correlated.Forexample,theminimaofafter- theblacklinesandthegrey-shadedareasrepresenttheirstandard 5 3 shockactivityintheHersekDelta(29.6◦E)andintheLakeSapanca deviation.ThestressfieldorientationsofKiratzi(2002)andfrom 6 b (30.2◦E–30.3◦E)insegment2(Fig.4)andnearKaradere(30.8◦E) theWorldStressMapareidenticaltowithin≤2◦.Weconsiderthis y g in segment 4 (Fig. 6) coincide with the corresponding coseismic orientationtorepresentthelong-termregionalstressfieldinNW ue s slipmaxima.HighcoseismicslipintheIzmit-Sapanca(segment2) Turkey.Notably,theregionalstressfieldorientationisalmostiden- t o andKaradere-Du¨zce(segment4)areasiscorrelatedwithapredomi- tical with the local stress field orientation during the Izmit earth- n 0 nantlystrike-slipfaultingregimeoftheaftershocks.Incontrast,high quakewithbothconfidenceregionsintherangeof12◦.Thelocal 5 A ratesofaftershockactivityandabundantnormalfaultingeventsin stress field within the eastern Sea of Marmara in 1996 differs by p theAkyaziareaandatthewesternendoftherupturetracecoincide ∼10◦withtheregionalstressfieldwhilethe68percentconfidence ril 2 0 withlowslipatbarriersandstep-oversbetweenfaultsegments. regionsoverlap. 1 9 SignificantafterslipoccurredatdepthalongtheeasternKaradere ThestressfieldaftertheIzmitmainshockisspatiallyheteroge- segmentclosetotheepicentreoftheDu¨zcemainshock(M =7.1, neousalongtherupture.Orientationsoftheprincipalstressesvary w 1999November12).Interestingly,weobservearelativelyhighrate significantlybetweensegments1–4reflectingfaultcomplexity.For ofaftershockactivityinthisregion.Focalmechanismsofthethree segments1,2and4themaximumcompressivestressdirectionσ is 1 largestaftershocksonthissegment(M≥4,Fig.6)areverysimilar subhorizontalandtrendsN117◦EtoN159◦E.We,therefore,approx- toIzmitsubeventS2andtheDu¨zceevent(bothindicatedinFig.1), imateitsazimuthbytheazimuthofthelargestnear-horizontalstress whichoccurred30sandaboutthreemonthsaftertheIzmitearth- (SH)andthusequateσ withSHinsegments1,2and4(insegment 1 quake,respectively.Thethreeaftershockeventsalloccurredwithin 3,σ isalmostvertical,seeFig.7,Table1).Note,thattheaccuracy 1 6hoursaftertheIzmitmainshock.Incontrast,faultplanesolutions fortheorientationsofσ1−3isintherangeof6–8◦foronestandard of small aftershocks show a larger variability, which was not ob- deviation(68percent)and,therefore,unprecedentlysmallforthis servedonanyofthethreesegmentstothewest.Thisobservation region.Weinterpretthestrongpartitioningofthepost-seismicstress suggeststhatsmalleventsalsoreflectsmall-scalestructuralcom- fieldtoreflectthelocalfaultstructurealongtherupture.Astriking plexityoftheNAFZ.Withincreasingmagnitude,focalmechanisms result of the stress inversion of the aftershock focal mechanisms (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS 382 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a Figure9. EvolutionofstressfieldorientationinNWTurkeyalongtheIzmitrupture.Thediagramdisplaystheanglebetweenthetrendofthemaximum b s compressionalstress(σ1)andtheregionaltrendoftheNAFZ(N90◦E)plottedversustimeforthedifferentdatasetsconsideredinthisstudy(seeTable1for tra c details).Thehorizontalextensionoftherectanglesmarksthetimeintervalcoveredbytheirdatacontent.Blacklinemarksthebestresolvedorientationwhereas t/1 greyintervalsrepresenttheconfidenceregion(68percent). 6 6 /1 /3 intheIzmit-Sapanca(segment2)andKaradere-Du¨zce(segment4) to∼5◦ atbest,whichismainlyduetotheuncertaintyinorienta- 73 areasisthatthelocalstressesarerotatedcomparedtotheregional tionoffocalmechanismsusedforthestressinversion.Often,these /63 3 stressfieldandlocalfaulttrend.Achangeofthestateofstressinthe errors in stress field orientation are of the same order of or only 5 3 vicinityofcoseismicslipmaximamayhavereactivatedsecondary slightly less than the magnitude of the expected rotations. In the 6 b faultsandmodifiedthelocalfaultstructure.Inparticular,shearfail- Izmit-Sapanca area (segment 2) we observe a counter-clockwise y g ureandtheassociateddropinshearstressmayresultinarotation rotation of the post-seismic stress field with respect to the long- ue oftheprincipalstressesactingonthefault.Thishasbeenobserved termregionalandcoseismicstressfieldofabout8◦.Inthispartof st o for some earthquakes at strike-slip and reverse faults in Califor- theNAFZamoreorlessuniformEW-trendingfaultwasactivated n 0 nia such as the 1983 Coalinga (Michael 1987b), 1986 Oceanside during the Izmit mainshock. Interestingly, the hypocentral distri- 5 A (Hauksson&Jones1988),1989LomaPrieta(Michaeletal.1990; bution of aftershocks in this area shows the same ∼10◦ counter- p Zoback&Beroza1993),1992Landers(Hauksson1994;Hardebeck clockwise rotation with respect to the local coseismic fault trend ril 2 0 &Hauksson1999,2001),and1994Northridge(Zhaoetal.1997) (Fig.10)indicatingthatthemainshockstressdropinducedalocal 1 9 earthquakes.Stressratiosvariednotablyindicatinglocaltransten- rotation of the stress field that resulted in activation of optimally sionalfaulting(R=0.43–0.65,Hauksson1994)andtranspression oriented secondary faults. Stress rotation is also observed at the (R=0.2–0.55,Michaeletal.1990).Principalstresseswerehorizon- easternterminationoftheIzmitrupture(Karadere-Du¨zcearea,seg- tallyrotatedsignificantlybetweenabout10◦–20◦inaclockwiseand ment 4). Here, the local fault trend of the NAFZ is N65◦E along counter-clockwisedirection.Insomecases(Northridge,Coalinga, theKaraderesegmentwheremostoftheIzmitaftershocksinseg- Landers) stress rotations reversed with time and varied along the ment4occurred.Thepost-seismicorientationsofthethreeprincipal rupturetrace.Notwithstandingthatstressrotationsduringtheseis- stressesinthisareaarewellresolved(seeFig.7).Withrespecttothe miccycleandespeciallyinconnectionwithlargeearthquakesare regionalstressfieldweidentifya34◦clockwiserotationofthelocal inaccordancewiththepresentunderstandingoffaultingkinemat- stressfieldalongtheKaraderesegmentduetothemainshock.As ics,observedstressrotationsshouldbeinterpretedwithcareaswas intheIzmit-Sapancaarea,therotationofthelocalstressesiscon- shownforthecaseofLandersbyTownend&Zoback(2001). sistentwiththelocaltrendformedbythedistributionofhypocen- Localrotationsofthestressfieldatafaultareextremelydiffi- tresthatindicatearotationof∼25◦(Fig.10).However,attheKa- culttodetect.Theaccuracyofstressfielddeterminationislimited raderesegmentthestressrotationoccurredinaclockwisedirection (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS

Description:
(29 stations) was installed four days after the Izmit mainshock and .. 34/11. 15. 0.31. 0.5. Gülen et al. (2002). Izmit rupture. Post-seismic Izmit 30.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.