Geophys.J.Int. (2006)166,373–385 doi:10.1111/j.1365-246X.2006.03027.x Strain partitioning and stress rotation at the North Anatolian fault zone from aftershock focal mechanisms of the 1999 Izmit M = 7.4 w earthquake Marco Bohnhoff, Helmut Grosser and Georg Dresen GeoForschungsZentrumPotsdam(GFZ),Telegrafenberg,14473Potsdam,Germany.E-mail:[email protected] Accepted2006March27.Received2006March27;inoriginalform2005January28 D o w n SUMMARY lo WeinvestigateaftershockfocalmechanismsoftheM =7.4Izmitearthquakeof1999August ad w e d 17,onthewesternNorthAnatolianfaultzone(NAFZ).Spatialclusteringandtheorientation fro of446faultplanesolutionsareanalysed.TheIzmitmainshockoccurredasaright-lateralslip m h on an EW-trending near-vertical fault plane. Aftershock clusters define four individual fault ttp smeagimnsehnotsc.kF(oMcawl=me7c.1h,a1n9is9m9sNsouvreromubnedrin1g2)thinedeicpaitceenptrreedsoomfinthaentIlzymstirtikane-dslsiupbbsuetqaulesnotnDoru¨mzcael s://aca faulting.AftershocksintheareabetweentheIzmitandDu¨zcesegmentsaremainlyrelatedto de m EW-orientednormalfaultingdelineatingasmallpull-apartstructure.Beneaththeeasternmost ic SeaofMarmara,alignmentsofaftershockssuggestbranchingoftheNAFZintothreeormore .ou p activesegmentsthatdiffersignificantlyintermsoftheirfocalmechanismcharacteristics.The .c o distributionofaftershockfocalmechanismscorrespondstofaultsegmentationoftheNAFZin m /g theIzmit-Du¨zceregionproducedbycoseismicslip.Areaswithlargeamountsofcoseismicslip ji/a showaftershocksthatarepredominantlystrike-slip,butlow-slipbarriersshowmostlynormal rtic fsatruSelsttsrineesgssfaotfetlelnorsswohrioncignkvtshe.resiIoznmsitomf athineshafotcekrs.hIonctkhefoIczamlimt-Seacphaanncisamasresah,otwhermotaaxtiiomnusmofhothreizolonctaall mologyle-abstra c compressive stress axis is horizontally rotated counter-clockwise by 8◦ with respect to the eist/16 S6 cDou¨szecisemairceaan),dsltornesgs-etesrmarerergoitoanteadlsctrleoscskfiweilsde..TWoweacrodnscthluedeeasttheartntehnedIozfmthiteeruarptthuqruea(kKearcaaduesreed- GJI/1/37 3 significant stress partitioning along the rupture. The direction of stress rotation is related to /6 3 theorientationoftheindividualfaultsegmentsalongtheNAFZ. 3 5 3 6 Keywords: aftershocks,faultplanesolutions,NorthAnatolianFault,seismotectonics,stress b y tensorinversion. g u e s t o n 0 5 geodeticdataallindicateseparationofthemainshockintosubevents A 1 INTRODUCTION p TheIzmitM =7.4(1999August17)earthquakeoccurredonthe eotccaul.rr2in0g01o;nBdiasrtkinacettfaaull.t2se0g0m2;enDtesl(oeu.gis.Reteialiln.g2e0r0e2t;aGl.u¨2l0e0n0e;tTiabli. ril 20 w 1 northern strand of the North Anatolian fault zone (NAFZ) in the 2002;Bosetal.2004).ThewesternterminationoftheIzmitrup- 9 GulfofIzmitregion.Theruptureextendedabout140kmbetween ture is located offshorebeneath the Sea of Marmara(e.g. Wright the Sea of Marmara and the Du¨zce region along a right-lateral, et al. 2001), possibly extending to the area south of the Prince predominantlyEW-trending,near-verticalfaultplane(Fig.1).Esti- Islands about 20 km southeast of Istanbul (Bouchon et al. 2002; matesofaveragecoseismicfaultslipvarybetween2.5m(e.g.Tibi O¨zalaybeyetal.2002).Rupturepropagationtowardstheeastended et al. 2001) and 2.9 m (Bouchon et al. 2002) from inversion of near Du¨zce where a large earthquake occurred 87 days after the teleseismicdataandrecordsofnear-faultaccelerometers,respec- Izmitevent(1999November12, M =7.1).Nodalplanesoffo- w tively. Maximum slip at the surface reached about 5–6 m (Barka calmechanismsfortheIzmitmainevent,themajorsubevent(S2, etal.2002;Bouchonetal.2002;Bosetal.2004,others).Thedirec- Tibi et al. 2001) and for the Du¨zce earthquake strike dominantly tionofslipcorrespondswelltotheoverallhorizontalGPS-derived EW(Fig.1b).ThecombinedrupturelengthfortheIzmitandDu¨zce 2–2.5 cm yr−1 westward motion of the Anatolian block with re- earthquakesisestimatedtobeabout200km.TheMarmararegion specttoEurasia(e.g.Noomenetal.1996;McCluskyetal.2000, westoftheIzmitruptureisconsideredtobeaseismicgap.Recent Fig.1a).Analysesofsurfacerupture,teleseismic,strongmotionand estimates of Coulomb stress changes and earthquake probability (cid:3)C 2006TheAuthors 373 Journalcompilation(cid:3)C 2006RAS 374 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 6 /1 /3 7 3 /6 3 3 5 3 6 b y Figure1. (a)LocationmapoftheAegean-Anatolianregion(courtesyofK.Fischer).RedarrowsrepresenttheGPS-derivedhorizontalvelocityfield(after g u McCluskyetal.2000).TheboldblacklineisthesimplifiedtraceoftheNorthAnatolianfaultzone(NAFZ).TheIzmitsegmentoftheNAFZisindicatedby e theblackrectangularandenlargedinFig.1(b).(b)CoulombstressmapaftertheIzmitMw=7.4(1999August17)earthquake(afterParsonsetal.2000,their st o Fig.1).RedandbluecoloursindicateregionsofincreasedanddecreasedCoulombstress,respectively.WhitedotsindicatelocationsofIzmitaftershocks.Fault n mechanismsareshownfortheIzmitmainshock,IzmitsubeventS2(Mw=6.9,Tibietal.2001)andDu¨zcemainshock(Mw=7.1,1999November12)from 05 A WesttoEast.Theblackrectangleindicatestheareainvestigatedinthisstudy. p ril 2 0 1 calculations(Parsonsetal.2000;Wrightetal.2001;Parsons2004) 2 ANALYSIS OF AFTERSHOCK 9 suggestthattheIzmitearthquakeincreasedtheseismichazardfor FOCAL MECHANISMS theMarmaraandDu¨zceregions(Fig.1b).TheDu¨zceearthquake The data set consists of 446 aftershock focal mechanisms out of asalsothe1992Erzincaneventindicateaneastwardpropagation which254weredeterminedfromrecordingsofa41-stationseismic ofmainshocks.However,thisisincontrasttoanoverallwestward networkcoveringtheentireIzmitrupturearea.Apartofthenetwork migrationofstrongearthquakesalongtheNAFZobservedsincethe (29stations)wasinstalledfourdaysaftertheIzmitmainshockand 1939Erzincanevent(e.g.To¨kso¨zetal.1979;Steinetal.1997). wasoperatedbytheGermanTaskForceforearthquakeshostedat Here,wefocusonaftershocksoftheIzmitearthquakecovering theGeoForschungsZentrumPotsdam(Grosseretal.1998;Baum- thetimespan1999August17–November12.Weanalysethespa- bachetal.2003).Thesestationsenlargeda12-stationnetworkthat tiotemporalevolutionofaftershockfocalmechanismsandperform hadbeeninstalledinthatregionin1996(SABONET,Milkereitetal. stresstensorinversiontodeterminethelocalstressfield.Theresults 2000).Faultmechanismsforthese254eventsweredeterminedbya are compared to the coseismic rupture and afterslip of the Izmit gridsearchoverallpossiblefaultplanesolutionsassumingadouble- earthquakeandtotheregionaltectonicsetting. couplemodel(FPFITprogram,Reasenberg&Oppenheimer1985). (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS StrainpartitioningandstressrotationattheNorthAnatolianfaultzone 375 D o w n lo a d e d fro m h ttp Fsciagluersew2i.th(am)aEgpniictuendter.eTdhiestrIizbmuittioanndofDthu¨ezc4e4m6afainuslhtopclaknsearseoliuntdioicnasteadnablyystehdeiirnftahuilstsmtuedcyhainnismmasp.Nviuewmboefrsthiendloicwaeterh(seumbi)spsehgemree.nTtshealsoinzgeothfethIzembietarcuhpbtaulrles s://a c zonethatwereidentifiedbasedonspatialclusteringoffaultmechanismsasdiscussedinthetext.(b)DistributionofPandT axesforthe446faultplane ad e solutions in polar projection of the lower hemisphere. The size of circles scales with magnitude and the shading indicates the hypocentral time (lighter m colour≈lateroccurrence).InadditionweplottedthedensitydistributionforthePandTaxesoftheentiredatasetwhereshadingisscaledtomaximumforP ic .o andTseparately. u p .c o m /g Almostcompletespatialcoverageallowedustorejectalleventsfor rupture trace of the Izmit event. A prominent cluster containing ji/a whichthegrid-searchresultssuggestedmultiplefaultplanesolu- 169 events is located at about 30.6◦E in the Akyazi area. Trains rtic tions.Theaccuracyofindividualfaultmechanismsis5◦forstrike, ofaftershocksindicateactivationofsecondaryfaultstructuresin- le dipandrake. clined by ∼10◦ to the E–W trending NAFZ. In general, P axes -ab s Inaddition,192faultplanesolutionswerecollectedfrompub- areeithersubverticalorsubhorizontaltrendingatN90◦E–N180◦E; tra c lished studies. The data are from seismic networks with different T axes are predominantly subhorizontal with a large scatter t/1 geometriescoveringpartsoftheIzmitrupturearea(Karabulutetal. (N160◦E–N290◦E).ThedistributionofPandT axesindicatesthat 66 2002; O¨zalaybey et al. 2002; Polat et al. 2002). We also include strike-slipandnormalfaultingdominatetheIzmitruptureafterthe /1/3 sourcemechanismsdeterminedbyregionalmomenttensorinver- mainshock. 73 sionofthe30largestIzmitaftershocks(O¨rgu¨lu¨ andAktar,2001). Segment1(28.95◦E–29.30◦E)contains110faultplanesolutions /63 3 Multipleoccurrencesofeventsareexcludedfromthedataset.We covering the western termination of the Izmit rupture located be- 5 3 estimatetheaverageorientationerrorofthefaultplanesolutionsin neaththeeasternmostSeaofMarmara(Fig.3).Aftershockclusters 6 b ourdatasettobe∼10◦.Theeventscoveranareabetween28.95◦– indicate activation of three different branches of the NAFZ. For y g 31.4◦Eand40.5◦–41.0◦Nandextendtoamaximumdepthof18km eachbranch,thefaultmechanismsareverysimilarandoneofthe ue s (asingleeventwaslocatedatadepthof23km,Fig.2a). twonodalplanesoftencoincideswithamappedfault.Thenorth- t o Spatialclusteringoftheaftershocklocations,faultmechanisms ernpart(subsegment11)containsmainlystrike-slipeventslocated n 0 andslipdirectionsareinvestigatedstatistically.Temporaldistribu- ona ∼N305◦E-strikingverticalplane.Aseriesofeventsindicat- 5 A tionandeventmagnitudearealsoconsidered.Orientationdistribu- ingnormalfaultingisalignedalongaparallelsmallfaultsegment p tionofaftershockfaultmechanismsisgivenbytherespectivePand (Fig.3).Thesouthernbranch(subsegment12)containsNNE–SSW- ril 2 0 Taxesinlower-hemispherepolarprojectionplots(Fig.2b).PandT extensionalnormalfaulteventsandsomeNW–SW-compressional 1 9 axesrepresentthecentreofthedilatationalandcompressionalquad- thrust fault events revealing a complex local fault structure. This rantsofthefocalmechanisms,indicatingthedirectionofmaximum area largely coincides with the Yalova cluster that showed swarm compressionalanddilatationaldeformation,respectively. activity covering a time period of several years prior to the Izmit event(e.g.Gurbuzetal.2000;Barisetal.2002). Segment2(29.3◦E–30.4◦E)coverstheIzmit-Sapancaareaand contains107aftershocksandtheIzmitmainshockepicentre(Fig.4). 3 SEGMENTATION OF THE IZMIT In the western part (subsegment 21), aftershock epicentres are RUPTURE ZONE alignedwiththesurfacerupturetracetrendingE–W.PandT axes AftershockepicentresareclusteredinanE-Wdirectionalongthe indicateawidedistributionoffocalmechanisms.However,inthe NAFZ between 40.55◦N and 40.90◦N. The distribution of P and easternpart(subsegment22)theaftershocklocationstrend∼N80◦E T axes suggests a spatial separation of the 446 fault mechanisms and,therefore,strikeatanangleof∼10◦ totherupturetraceand intofourmajorsegmentsalongtherupturezone(Fig.2a).Between slipdirectionoftheIzmitmainshock.Focalmechanismsindicate 29.5◦E and 30.4◦E, aftershock epicentres follow the strike of the predominantly right-lateral strike-slip and some normal faulting. (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS 376 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 6 /1 /3 7 3 Figure3. DensitydistributionofPandTaxesandmapviewoffaultplanesolutionsforalleventscontainedinsegment1(seeFig.2).Theepicentraldistribution /6 3 exhibitstrainswithhighlysimilarfocalmechanismsmatchingoneofthetwopossiblefaultplanes.Thissuggestsfurthersubdivisionintoanorthern(11)and 35 3 asouthern(12)subsegment(seetextfordetails). 6 b y g u e Paxistrendsandthenodalplanesofindividualstrike-slipevents indicatea25◦clockwiserotationwithrespecttothelocaltrendofthe st o are rotated counter-clockwise by ∼10◦ with respect to the Izmit Karaderesegment(N65◦E).Paxesoftheeventsareinaccordance n 0 mainshockfocalmechanism. withactivationofanENE–WSWstrikingfaultsegment.Ingeneral, 5 A Segment3(30.4◦E–30.85◦E)islocatednearthetownofAkyaziat abroaddistributionoffocalmechanismparametersreflectsuniform p atriplejunctionformedbytheIzmit-SapancaandKaradere-Du¨zce right-lateralstrike-slipwithfrequentlyE–W-orientedsetsofnodal ril 2 0 faults and the ESE-striking Mudurnu fault, where a major earth- planes(Fig.6). 1 9 quakeoccurredin1967(Fig.1b).Thissegmentcontains169fault planesolutions,thatis,40percentoftheentiredataset.Thefocal mechanismsofadenseclusterofeventsindicateE–Wextensional 4 STRESS TENSOR INVERSION normalfaulting(Fig.5).Thehighaftershockactivityisinstriking contrasttothesmallcoseismicdisplacementof<1minthisarea The aftershock fault mechanisms investigated in this study were suggestedbysurfaceslipandtheinversionofstrongmotiondata used for an inversion of the stress tensor. Stress tensor inversion (Barka et al. 2002; Bouchon et al. 2002; Langridge et al. 2002). techniques using focal mechanisms have been discussed in detail TheESE-strikingsouthernbranchoftheNAFZexhibitedfewaf- by various authors (e.g. Gephart & Forsyth 1984; Gephart 1990; tershocksandnosurfaceslip,possiblyduetostressrelaxationafter Michael1987a,1991;Hardebeck&Hauksson2001;Bohnhoffetal. the1967event. 2004).WeuseatechniqueproposedbyMichael(1984,1987a).The Segment4(30.85◦E–31.3◦E)contains60aftershockfaultplane analysisallowsustoestimatetheorientationofthethreeprincipal solutions, including the epicentres of the Izmit subevent S2 (Tibi stresses (σ = maximum compressive stress, σ = intermediate 1 2 etal.2001)andtheDu¨zcemainshock(Fig.1b).Aftershocklocations andσ =minimum)andthestressratioR=(σ −σ )/(σ −σ ), 3 2 3 1 3 (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS StrainpartitioningandstressrotationattheNorthAnatolianfaultzone 377 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 Figure4. DensitydistributionofPandT axesandmapviewoffaultplanesolutionsforalleventscontainedinsegment2thatincludestheepicentreof 6/1 theIzmitmainshock.ScanningthedatafromWesttoEastallowsidentifyingasignificantvariationinclusteringofsimilarmechanismswithinthissegment. /3 7 Theeasternsubsegment(22)consistsdominantlyofstrike-slipmechanismsingoodaccordancewiththemainshockinfirstorderapproximationandcontains 3 anumberofNNE–SSWextensionalnormalfaultingevents;thewesternsubsegment(21)doesnotexhibitapreferredfaultmechanism.Insubsegment22, /63 3 hypocentresfollowatrendthatisinclinedtotheE–WstrikingfaultwestoftheIzmitepicentre;Paxisdistributioninthissubsegmentshowsseveralpreferred 5 orientationssomeofwhicharerotatedby∼10◦withrespecttotheIzmitmainshock. 36 b y g u e a0n≤d tRra≤nst1en(wsiiotnhaRl r<eg0im.5ea,nredspRe>ctiv0e.5lyi)n.dTichaetimngetahtordanisspbreassseidonoanl sthtraitksinugggseusbthporreidzoomntianladnitrleycstitorinkeo-fsσlip(dKefiroartmzia2ti0o0n2w;Hitheiadb∼aNch12e5ta◦El. st on 1 0 theassumptionsthat 2004;Reineckeretal.2004,seeTable1)andpointstowardssignif- 5 A icantvariationsofstressfieldorientationalongtheNAFZafterthe p (1) intheareaofinvestigationstressesremainuniformintime Izmitevent.Furthermore,thedatasetasawholeisdominatedby ril 2 andspace, 0 thelargenumberofeventslocatedinsegment3showingpredomi- 1 (2) earthquakes represent shear dislocations on existing faults, 9 nantlynormalfaulting.Toinvestigatefurtherlocalvariationsinthe and stressregimealongtheIzmitrupturewesubdividedthecatalogue (3) slipoccursinthedirectionofthemaximumresolvedshear accordingtothesegmentationidentifiedfromthedistributionofP stressonthefaultplane. andT axes(segments1–4).Stressinversionofthefoursegments Heterogeneity of the stress field is reflected by the misfit level reveals a clear variation of the local stress field orientation along andthewidthoftheconfidenceintervaloftheinversion(Table1 theIzmitrupture(Fig.7).FortheAkyaziarea(segment3),there- andFig.7).Foreachstressinversion,2000bootstrapiterationswere sultsindicateaseparationoftheprincipalstresses(blackdots)with performed. narrow1σ (68percent,darkgrey)and2σ (95percent,lightgrey) Thestressinversionofallfocalmechanismsresultsinanormal- confidenceintervals.Fortheremainingsegments,however,confi- faulting regime with clear separation of the principal stresses dence intervals for the largest and intermediate principal stresses (Fig. 7). The maximum compressive stress σ is almost vertical formagirdle(Fig.7). 1 and σ is horizontal, trending N237◦E. This result is in contrast Stress ratio (R = 0.83) and confidence intervals for segments 3 to estimates of the regional long-term stress field in NW Turkey 1 and 2 reflect the dominating deformation regimes (strike-slip (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS 378 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro Figure5. DensitydistributionofPandTaxesandmapviewoffaultplanesolutionsforalleventscontainedinsegment3.AdominantEW-extensionalnormal m h faultingregimeisobservedalongthissegmentthatcontainsabout40percentoftheentiresetoffaultplanesolutionsanalysedinthisstudy.Differenttothe ttp threeothersegmentsnoalignmentisobservedfromthedistributionofaftershockhypocentres;insteadtheaftershockactivitycovertheentireAkyaziplainthat s isidentifiedasapull-apartstructure. ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 6 /1 /3 7 3 /6 3 3 5 3 6 b y g u e Figure6. DensitydistributionofPandTaxesandmapviewoffaultplanesolutionsforalleventscontainedinsegment4thatincludestheKaraderesegmentand st o theDu¨zcemainshockepicentralarea.Adominantstrike-slipmechanismisobservedforthiseasternmostpartoftheIzmitrupturearea.Eventswithannotated n magnitudemarkthelargestandearliestaftershocksinthissegmentandarediscussedinthetext.MosthypocentresarealignedonanalmostEW-trending 05 directionthatisinclinedtothelocalfaulttrendofN65◦E(Karaderesegment,seeFig.8)by∼25◦. A p ril 2 aslnidghntloyrminatlhfeaiurlmtinagg)n.itTuhdeeparnidncbioptahlssttrreessssedsirσec1taionndsσtr2enddiffreoruognhllyy segTmheenetapsoteirnntimngosttosweagrmdsenthte4Dcou¨vzecresatrheeaNw6h5e◦rEe-atreMndin=g7K.1areaadrethre- 019 w NW–SEwithinbothsegments(N314◦EandN117◦E,respectively). quakeoccurred87daysaftertheIzmitmainshock.Stressorientation Theminimumcompressionalstressσ isclearlydifferentiatedfrom andconfidenceintervalsforthisareaindicateastrike-slipregime 3 σ and σ , trending subhorizontally NE–SW. The Izmit-Sapanca withastressratioofR=0.63(Fig.7).Themaximumprinciplestress 1 2 area(segment2)includestheIzmitmainshockepicentre.Here,the (σ )issubhorizontalandtrendsN159◦E,indicatingaclockwisero- 1 post-seismictrendofσ indicatesacounter-clockwiserotationof tationwithrespecttotheregionalstressfieldof>30◦. 1 8◦ withrespecttotheregionalstressfieldandthecoseismicstress fieldderivedfrominvertingthefocalmechanismsofthesixIzmit subevents(Gu¨lenetal.2002,Table1).IntheAkyaziarea(segment 5 DISCUSSION 3), directions of principle stresses σ − σ are well constrained 1 3 andcorrespondtoanE–Wextensionalnormalfaultingregime.The 5.1 SegmentationoftheIzmitrupturezone relativestressmagnitude R=0.62indicatesthatthemagnitudeof TheIzmitearthquakeruptureda140km-longE–Wtrendingseg- σ isclosetothemeanofσ andσ . 2 1 3 ment of the western NAFZ. Offshore in the easternmost Sea of (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS StrainpartitioningandstressrotationattheNorthAnatolianfaultzone 379 Table1. OverviewonstressfieldorientationsalongtheIzmitpartoftheNAFZobservedfromthedifferentsourcesanddeterminedinthisstudy.Datasets coverdifferentareasandtimeintervals.Azimuth(tr=trend)andangleofincidence(pl=plunge)fortheprincipalstressesaregiveninNoverEandagainst horizontal,respectively. Areacovered Timecovered Focalmech. σ1(tr/pl) Std σ2(tr/pl) Std σ3(tr/pl) std Misfit R Source [no.] [◦] [◦] [◦] [◦] [◦] [◦] NWTurkey 1943–1999 11 126/3 13 269/86 – 35/3 13 3.3◦(c) 0.5 Kiratzi(2002) NWTurkey 1943–1999 13(b) 124/-(a) (25) −/90 – 34/− – – – Reineckeretal.(2004) Heidbachetal.(2004) ESeaofMarmara 1996Jan–Sep 37 305/1 14 206/86 20 35/4 17 0.31 0.5 Erginetal.(1997) Izmitrupture CoseismicIzmit 6 124/3 15 231/79 15 34/11 15 0.31 0.5 Gu¨lenetal.(2002) Izmitrupture Post-seismicIzmit 30 316/13 10 81/68 10 222/18 10 0.16 0.74 O¨rgu¨lu¨&Aktar(2001) Izmitrupture Post-seismicIzmit 446 66/87 6 327/0 6 237/3 6 0.22 0.64 Thisstudy (segment0) ESeaofMarmara Post-seismicIzmit 110 314/23 6 144/57 6 45/4 6 0.20 0.83 Thisstudy (segment1) D IzmitSapanca Post-seismicIzmit 107 117/15 6 347/67 6 212/17 6 0.22 0.83 Thisstudy o w (segment2) n lo Akyaziplain Post-seismicIzmit 169 190/74 6 3/15 6 94/1 6 0.09 0.62 Thisstudy a d (segment3) e d KaradereDu¨zce Post-seismicIzmit 60 339/6 8 49/74 8 251/15 8 0.19 0.63 Thisstudy fro (segment4) m standarddeviation(std)referstothetrendforσ1−3. http ((ab))SanHd.shallowboreholes. s://a c (c)misfitasgivenbytheFMSIroutine(Gephart&Forsyth1984). ad e m ic .o u p .c o m /g ji/a rtic le -a b s tra c t/1 6 6 /1 /3 7 3 /6 3 3 5 3 6 b y g u e s t o n 0 5 A p Figure7. Resultsofstresstensorinversionfortheentiredatabasecontaining446faultplanesolutionsandthefoursegments(seeFigs3–6formapview ril 2 offaultmechanismscontainedtherein).Boldblackdotsrepresentthebestfittingorientationsforthethreeprincipalstresses(σ1=maximumcompressional 01 stress,σ2=intermediate;σ3=minimum).Smallandlargedotsrepresentthe1σ (68percent)and2σ (95percent)confidenceintervals,respectively. 9 Marmara,theNAFZsplaysintodifferentbranchesproducingacom- formedasalargepull-apartstructure(e.g.Armijoetal.1999)ina plexnetworkcomprisingtheIzmit-Sapanca,Du¨zce,Iznik,Geyve transtensionalenvironment.Onasmallerscale,faultsegmentsare and Mudurnu faults (Fig. 8). The width of this network is about separatedbyreleasingbendsandsmall-scalepull-apartstructures 30 km and thus on the order of the thickness of the seismogenic suchasIzmitBayandLakeSapanca. upper crust. Regional tectonics in western Turkey are dominated AnalysisofaftershockfocalmechanismsalongtheIzmitrupture by right-lateral strike-slip along the ∼EW-trending NAFZ and a revealspredominantlystrike-slipandnormalfaultingeventsincom- NE–SW extensional regime associated with a >3 cm yr−1 SSW- binationwithfewthrustevents,indicatingthatstrainpartitioning wardmigrationoftheSouthAegeandomainwithrespecttostable andvariationsinthelocalstressfieldisadominantfeaturewithin Eurasia(e.g.McCluskyetal.2000;Fleritetal.2004).AttheNAFZ, thisregion.ThrustfaultingisrestrictedtoasmallareanearYalova GPS data indicates westward motion of northwestern Anatolia at wherepronouncedseismicitywasobservedpriortotheIzmitmain- about2–2.5cmyr−1.Inthistectonicregime,theSeaofMarmara shock(Gurbuzetal.2000;Barisetal.2002).IntheIzmit-Sapanca (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS 380 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a b s Figure8. Upperpart:TopographicmapoftheIzmitsegmentoftheNorthAnatolianfaultzone(afterFieldingetal.1999).Reddottedlinesindicatethe tra c simplifiedsurfaceruptureoftheIzmitevent(afterBarkaetal.2002).TheboldreddotindicatestheepicentreoftheIzmitmainshock.Middlepart:Mainfaults t/1 oftheNAFZalongtheIzmitrupturearea.BluelinesalongthethreeonshoresegmentsrepresentlateraldistributionofsurfaceslipafterBarkaetal.(2002) 6 6 scaledtotheslipmaximumof∼6m.Lowerpart: Distributionofthe446focalmechanismsanalysedinthisstudy(seealsoFig.2)andsegmentationidentified /1 basedonspecialclusteringoffocalmechanisms. /37 3 /6 3 andKaradere-Du¨zceareas(oursegments2and4),aftershockfo- seeFig.8).Fromwesttoeast,thesegmentsaretheYalova-Hersek 35 cal mechanisms reflect mainly strike-slip and normal faulting. In (strikingN80◦E),Karamu¨rsel-Go¨lcu¨k(N70◦–80◦E),Izmit-Sapanca 36 general,theepicentresofindividualeventsformtrailsdelineating (∼N90◦E), Sapanca-Akyazi (N75◦–85◦E) and Karadere (N65◦E). by g faultsegmentsthatcorrespondtoonesetofaftershocknodalplanes Step-oversbetweensegmentsexhibitverticaloffsetsofupto2.4m, u e (Fig.2andFig.8).E–Wextensionalnormalfaultingtypifyingthe indicating a significant component of normal faulting that is in st o Akyaziplainofsegment3(Fig.5)isconsistentwithlocaltopog- agreement with aftershock fault mechanisms at several locations n raphy at 30.6◦E, which exhibits >500 m subsidence with respect alongtherupturetrace. 05 A to the surrounding area (Fig. 8). We interpret this plain to repre- Coseismicrupturestartedatthemainshockepicentrejustwest p sent a small pull-apart basin similar to Lake Sapanca, Izmit Bay ofGo¨lcu¨kandpropagatedwestwardsalongtheKaramu¨rsel-Go¨lcu¨k ril 2 0 andthesomewhatlargerSeaofMarmara.Inthefollowingwere- segmentwithlittlemomentrelease(Bosetal.2004).Eastwardprop- 1 9 lateaftershocksegmentationalongtherupturezonetothespatial agationwastriggeredontheIzmit-Sapancasegmentwithashortde- distributionandtemporalevolutionofcoseismicslipoftheIzmit layresultinginasymmetricruptureofthemainsource(Delouisetal. earthquake. 2002;Lietal.2002).Rupturepropagationwascomplex,involving severalsubeventspossiblytriggeredondifferentfaultsegments.To- talsourceduration,thenumberofsubeventsandthedistributionof 5.1.1 CoseismicslipalongtheIzmitrupturetrace momentreleaseafterthefirst∼20sremaincontroversial(Tibietal. AlongtheIzmitrupture,seismicmomentreleaseandcoseismicslip 2001;Delouisetal.2002;Gu¨lenetal.2002;Lietal.2002;Bos varyfrom>12*1019Nmand>5minhigh-slipzonesto<1*1019 etal.2004).Usingsource-timefunctionsofupto90s,3–6subevents Nmand<1matlow-slipbarriers,respectively(e.g.Bouchonetal. havebeenidentified(Tibietal.2001;Gu¨lenetal.2002). 2002;Papageorgiou2003).Mappedsurfacerupturesindicatefive Inversionsofteleseismic,groundmotionandspacegeodeticdata separatefaultsegmentsreachingfromwesttoeastseparatedbyre- also indicate distributed slip on separate fault segments with two leasing (pull-apart) step-overs of about 1–4 km width (Tibi et al. slipmaximaof5–6mnearGo¨lcu¨kandLakeSapanca(e.g.Reilinger 2001;Barkaetal.2002;Langridgeetal.2002;Polatetal.2002, etal.2000;Bouchonetal.2002;Gu¨lenetal.2002;Lietal.2002). (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS StrainpartitioningandstressrotationattheNorthAnatolianfaultzone 381 Table2. Energyrelease,ruptureareaandaverageslipfortheIzmitand increasinglyrevealtheorientationoftheregionalstressfieldorien- Du¨zce mainshocks (coseismic) and the Izmit post-seismic time (after tation.Thiseffecthasalsobeenobservedforfluid-injectioninduced Bouchonetal.2002;Bu¨rgmannetal.2002;Ergintavetal.2002;O¨rgu¨lu¨.& microseismicity(Bohnhoffetal.2004),butatalowermagnitude Aktar2001;Reilingeretal.2000;Tibietal.2001;Umutluetal.2004).See level(−1<M <1). w textfordetails. Mw Mo Rupturearea Averageslip [1020Nm] [km2] [m] 5.2 EvolutionofthestressfieldattheNAFZ Izmitmainshock 7.4 1.4–2.0 140×20 2.5–2.9 Du¨zcemainshock 7.1 0.5 60×20 0.8–1.0 Toanalysespatialandtemporalvariationsofthestressfieldalong theNAFZandespeciallyalongtheIzmitrupturewecollectedall Cumulativegeodetic 7.0 0.3 140×20 0.43 availableinformationonthelong-termregionalstressfieldinNW moment(Izmit-Du¨zceintereventtime) Turkey covering the past ∼5 decades. In addition, we performed Izmit-Aftershocks 6.6 0.012 140×20 0.017 stresstensorinversionoffocalmechanismsofeventsprior(‘pre- (30largest) Izmit-Aftershocks 6.8 0.025 140×20 0.036 seismic’)andduring(‘coseismic’)theIzmitmainshock.Theentire setofinformationonstressfieldorientationintheareaofinvestiga- D (4400largest) o tionissummarizedinTable1.Informationonthelong-termregional w n stressfieldinNWTurkeywastakenfromtheWorldStressMapdata lo a Slipmaximawerefoundbetweenthesurfaceandabout12kmdepth. base(Heidbachetal.2004;Reineckeretal.2004)whichcontains ded Dteeleloseuiissmeitcaaln.d(2s0tr0o2n)gpmreosteinotneddaatajo(isneteianlvseorsSioalnicohfonIneStAaRl.,2G0P03S), 1in3gsatremsseaonrimenatxatiimonummehaosruizreomnteanltsstrfeosrsth(SeHa)retareonfdiinntgerNes1t2i4n◦dEic.aItn- from addition,Kiratzi(2002)performedstresstensorinversionofthe11 h d6pe–lal1iin2nek(a3mt0in.d4ge–fp3ot0hu.r7bf◦eaEluo)lwtissGecgoo¨mlncseu¨inkstt-seI.nzMmtlyiatxiadinmednutLmifiaeksdleipaSsiaspaunapnactroae.a8TomhferaAetdakubycoaeuzdti lraervgeeasltedeaartshtqriukaek-esslipthfaatuhlatidngocrceugrimreedwinitthhesurebghioornizsoinntcael1N9W43–SanEd- ttps://ac slip(<1m). trending orientation of the maximum principal stress and a near- ad e vertical intermediate principal stress. Further information on the m pre-seismic stress field was obtained from inverting focal mech- ic.o 5.1.2 Aftershockactivityandpost-seismicslipalongtheIzmit aMnaisrmmsaroabdtuairninegd1w9i9th6Jaanloucaaryl–nSeetwptoermkbienrt(hEergeinasetetranlm.1o9s9t7S)e.a of up.co rupturetrace m The‘coseismic’stressfieldduringtheIzmiteventwasdetermined /g Post-seismicslipestimatedfromGPSoverthe75daysfollowing byinvertingthefocalmechanismsofthesixIzmitsubeventsconsti- ji/a the Izmit earthquake was about 0.43 m. The corresponding total tutingtheentireIzmitrupture(Gu¨lenetal.2002).Furthermore,the rtic geodeticmomentisequivalenttoM =7.0(Reilingeretal.2000; 30largestaftershocks(O¨rgu¨lu¨ &Aktar2001)wereusedtoderive le w -a Bu¨rgmann et al. 2002; Ergintav et al. 2002) and, therefore, one the regional ‘post-seismic’ stress field. Interestingly, this data set b s orderofmagnitudehigherthanthemomentliberatedbythe4000 containsonlythreeEW-extensionalnormalfaultingeventswithin tra c largest aftershocks (see Table 2). This indicates that post-seismic the Akyazi Plain and yields a well-defined stress regime almost t/1 deformationwaslargelyaseismic.Modellingofafterslipsuggests identicaltothe‘pre-seismic’regionalstressfield(Table1). 66 that maximum creep is expected at depths of >20 km (Reilinger InFig.9thestressfieldorientationsofthedatasetsasdescribed /1/3 etal.2000). aboveareshowninchronologicalorder.Theanglebetweenthetrend 73 The maxima of coseismic and post-seismic slip and the after- ofσ1 andtheregionaltrendoftheNAFZ(N90◦E)isindicatedby /63 3 shockactivityareanti-correlated.Forexample,theminimaofafter- theblacklinesandthegrey-shadedareasrepresenttheirstandard 5 3 shockactivityintheHersekDelta(29.6◦E)andintheLakeSapanca deviation.ThestressfieldorientationsofKiratzi(2002)andfrom 6 b (30.2◦E–30.3◦E)insegment2(Fig.4)andnearKaradere(30.8◦E) theWorldStressMapareidenticaltowithin≤2◦.Weconsiderthis y g in segment 4 (Fig. 6) coincide with the corresponding coseismic orientationtorepresentthelong-termregionalstressfieldinNW ue s slipmaxima.HighcoseismicslipintheIzmit-Sapanca(segment2) Turkey.Notably,theregionalstressfieldorientationisalmostiden- t o andKaradere-Du¨zce(segment4)areasiscorrelatedwithapredomi- tical with the local stress field orientation during the Izmit earth- n 0 nantlystrike-slipfaultingregimeoftheaftershocks.Incontrast,high quakewithbothconfidenceregionsintherangeof12◦.Thelocal 5 A ratesofaftershockactivityandabundantnormalfaultingeventsin stress field within the eastern Sea of Marmara in 1996 differs by p theAkyaziareaandatthewesternendoftherupturetracecoincide ∼10◦withtheregionalstressfieldwhilethe68percentconfidence ril 2 0 withlowslipatbarriersandstep-oversbetweenfaultsegments. regionsoverlap. 1 9 SignificantafterslipoccurredatdepthalongtheeasternKaradere ThestressfieldaftertheIzmitmainshockisspatiallyheteroge- segmentclosetotheepicentreoftheDu¨zcemainshock(M =7.1, neousalongtherupture.Orientationsoftheprincipalstressesvary w 1999November12).Interestingly,weobservearelativelyhighrate significantlybetweensegments1–4reflectingfaultcomplexity.For ofaftershockactivityinthisregion.Focalmechanismsofthethree segments1,2and4themaximumcompressivestressdirectionσ is 1 largestaftershocksonthissegment(M≥4,Fig.6)areverysimilar subhorizontalandtrendsN117◦EtoN159◦E.We,therefore,approx- toIzmitsubeventS2andtheDu¨zceevent(bothindicatedinFig.1), imateitsazimuthbytheazimuthofthelargestnear-horizontalstress whichoccurred30sandaboutthreemonthsaftertheIzmitearth- (SH)andthusequateσ withSHinsegments1,2and4(insegment 1 quake,respectively.Thethreeaftershockeventsalloccurredwithin 3,σ isalmostvertical,seeFig.7,Table1).Note,thattheaccuracy 1 6hoursaftertheIzmitmainshock.Incontrast,faultplanesolutions fortheorientationsofσ1−3isintherangeof6–8◦foronestandard of small aftershocks show a larger variability, which was not ob- deviation(68percent)and,therefore,unprecedentlysmallforthis servedonanyofthethreesegmentstothewest.Thisobservation region.Weinterpretthestrongpartitioningofthepost-seismicstress suggeststhatsmalleventsalsoreflectsmall-scalestructuralcom- fieldtoreflectthelocalfaultstructurealongtherupture.Astriking plexityoftheNAFZ.Withincreasingmagnitude,focalmechanisms result of the stress inversion of the aftershock focal mechanisms (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS 382 M.Bohnhoff,H.GrosserandG.Dresen D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g ji/a rtic le -a Figure9. EvolutionofstressfieldorientationinNWTurkeyalongtheIzmitrupture.Thediagramdisplaystheanglebetweenthetrendofthemaximum b s compressionalstress(σ1)andtheregionaltrendoftheNAFZ(N90◦E)plottedversustimeforthedifferentdatasetsconsideredinthisstudy(seeTable1for tra c details).Thehorizontalextensionoftherectanglesmarksthetimeintervalcoveredbytheirdatacontent.Blacklinemarksthebestresolvedorientationwhereas t/1 greyintervalsrepresenttheconfidenceregion(68percent). 6 6 /1 /3 intheIzmit-Sapanca(segment2)andKaradere-Du¨zce(segment4) to∼5◦ atbest,whichismainlyduetotheuncertaintyinorienta- 73 areasisthatthelocalstressesarerotatedcomparedtotheregional tionoffocalmechanismsusedforthestressinversion.Often,these /63 3 stressfieldandlocalfaulttrend.Achangeofthestateofstressinthe errors in stress field orientation are of the same order of or only 5 3 vicinityofcoseismicslipmaximamayhavereactivatedsecondary slightly less than the magnitude of the expected rotations. In the 6 b faultsandmodifiedthelocalfaultstructure.Inparticular,shearfail- Izmit-Sapanca area (segment 2) we observe a counter-clockwise y g ureandtheassociateddropinshearstressmayresultinarotation rotation of the post-seismic stress field with respect to the long- ue oftheprincipalstressesactingonthefault.Thishasbeenobserved termregionalandcoseismicstressfieldofabout8◦.Inthispartof st o for some earthquakes at strike-slip and reverse faults in Califor- theNAFZamoreorlessuniformEW-trendingfaultwasactivated n 0 nia such as the 1983 Coalinga (Michael 1987b), 1986 Oceanside during the Izmit mainshock. Interestingly, the hypocentral distri- 5 A (Hauksson&Jones1988),1989LomaPrieta(Michaeletal.1990; bution of aftershocks in this area shows the same ∼10◦ counter- p Zoback&Beroza1993),1992Landers(Hauksson1994;Hardebeck clockwise rotation with respect to the local coseismic fault trend ril 2 0 &Hauksson1999,2001),and1994Northridge(Zhaoetal.1997) (Fig.10)indicatingthatthemainshockstressdropinducedalocal 1 9 earthquakes.Stressratiosvariednotablyindicatinglocaltransten- rotation of the stress field that resulted in activation of optimally sionalfaulting(R=0.43–0.65,Hauksson1994)andtranspression oriented secondary faults. Stress rotation is also observed at the (R=0.2–0.55,Michaeletal.1990).Principalstresseswerehorizon- easternterminationoftheIzmitrupture(Karadere-Du¨zcearea,seg- tallyrotatedsignificantlybetweenabout10◦–20◦inaclockwiseand ment 4). Here, the local fault trend of the NAFZ is N65◦E along counter-clockwisedirection.Insomecases(Northridge,Coalinga, theKaraderesegmentwheremostoftheIzmitaftershocksinseg- Landers) stress rotations reversed with time and varied along the ment4occurred.Thepost-seismicorientationsofthethreeprincipal rupturetrace.Notwithstandingthatstressrotationsduringtheseis- stressesinthisareaarewellresolved(seeFig.7).Withrespecttothe miccycleandespeciallyinconnectionwithlargeearthquakesare regionalstressfieldweidentifya34◦clockwiserotationofthelocal inaccordancewiththepresentunderstandingoffaultingkinemat- stressfieldalongtheKaraderesegmentduetothemainshock.As ics,observedstressrotationsshouldbeinterpretedwithcareaswas intheIzmit-Sapancaarea,therotationofthelocalstressesiscon- shownforthecaseofLandersbyTownend&Zoback(2001). sistentwiththelocaltrendformedbythedistributionofhypocen- Localrotationsofthestressfieldatafaultareextremelydiffi- tresthatindicatearotationof∼25◦(Fig.10).However,attheKa- culttodetect.Theaccuracyofstressfielddeterminationislimited raderesegmentthestressrotationoccurredinaclockwisedirection (cid:3)C 2006TheAuthors,GJI,166,373–385 Journalcompilation(cid:3)C 2006RAS
Description: