ebook img

Strain-Induced Effects in Advanced MOSFETs PDF

259 Pages·2011·5.737 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Strain-Induced Effects in Advanced MOSFETs

W Computational Microelectronics Edited by Siegfried Selberherr Technical University Vienna Vienna, Austria For further volumes: www.springer.com/series/1263 Viktor Sverdlov Strain-Induced Effects in Advanced MOSFETs SpringerWienNewYork Viktor Sverdlov Technical University Vienna Institute for Microelectronics Gusshausstrasse 27-29 1040Vienna Austria [email protected] Thisworkissubjecttocopyright. Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned,specificallythose oftranslation,reprinting,re-useofillustrations,broadcasting,reproductionbyphotocopying machinesorsimilarmeans,andstorageindatabanks. ProductLiability:Thepublishercangivenoguaranteeforalltheinformationcontainedin thisbook.Theuseofregisterednames,trademarks,etc.inthispublicationdoesnotimply, even in theabsence ofaspecificstatement, that suchnames are exempt fromthe relevant protectivelawsandregulationsandthereforefreeforgeneraluse. © 2011Springer-Verlag/Wien PrintedinGermany SpringerWienNewYorkisapartofSpringerScience+BusinessMedia springer.at Cover:WMXDesignGmbH,Heidelberg,Germany Typesetting:SPi, Chennai, India Printedonacid-freeandchlorine-freebleachedpaper SPIN:80018573 With101 Figures LibraryofCongressControlNumber:2010938373 ISBN978-3-7091-0381-4 e-ISBN978-3-7091-0382-1 DOI10.1007/978-3-7091-0382-1 SpringerWienNewYork To Alexandra,Karin, Ludmila,&Nikolai • Preface Strain is the main tool to boost current and enhance performance of advanced silicon-basedmetal-oxide-semiconductorfield-effecttransistors(MOSFETs).Mod- elingandunderstandingofstraineffectsonbandstructureandmobilityhasbecome the important task of modern simulation tools used to design ultra-scaled MOS- FETs.Thisbookfocusesonmodernmodelingapproachesandmethodsdescribing strain in silicon. Contrary to the valence band, strain-induced conduction band modifications have received substantially less attention. Peculiarities of subband structuresin thin semiconductorfilms under stress are investigatedin detail using numerical pseudopotential calculations as well as a k(cid:2)p theory, which includes the two lowest conduction bands. Implementation of strain in transport modeling for modern microelectronicsdesign tools is overviewed. Application ranges from devicemodelingtoappliedmathematicsandsoftwaredevelopment. Thebookisbasedonmyresearchandpartlyonmycourseoflecturesgivenfor theMaster’sandPhDstudentsinelectricalengineering,microelectronics,physics, and applied mathematicsat the Institute for Microelectronics,Technische Univer- sita¨tWien.ThisbookwouldnothavebeenwrittenwithoutthesupportoftheInsti- tuteforMicroelectronicsanditsDirectorUniv.Prof.Dipl.-Ing.Dr.techn.E.Langer. I would like to thank Univ.Prof.Dipl.-Ing. Dr.techn. T. Grasser, Univ.Prof. Dipl.- Ing. Dr.techn. H. Kosina, and Univ.Prof.Dipl.-Ing.Dr.techn. Dr.h.c. S. Selberherr fortheiroverwhelmingencouragement,support,andhelpinwritingthebook. Iwouldliketoacknowledgethecontributionstothebookmadebymycolleagues and co-authors: O. Baumgartner, J. Cervenka, S. Dhar, T. Grasser, A. Gehring, G. Karlowatz, M. Karner, H. Kosina, K. Likharev, M. Nedjalkov, M. Pourfath, F. Schanovsky, S. Selberherr, Z. Stanojevic, M. Vasicek, E. Ungersboeck, and T. Windbacher. I also would like to thank H. Ceric, R. Entner, O. Ertl, W. Goes, P. Hehenberger, R. Heinzl, S. Holzer, A. Makarov, G. Milovanovich, N. Neo- phytou, R. Orio, V. Palankovski, K. Rupp, P. Schwaha, I. Starkov, F. Stimpfl, O.Triebl,S.Tyaginov,S.Vitanov,P.Wagner,S.Wagner,J.Weinbub,andW.Wess- ner for many fruitful and stimulating discussions and C. Haslinger, E. Haslinger, M.Katterbauer,and R. Winklerfor technicalsupportin preparingthe manuscript. Specialthanksgoto O.Baumgartner,M.Nedjalkov,andK. Sitzwohl,whokindly agreedtotaketheheavydutyofproof-readingandimprovingthemanuscript. vii viii Preface Thenewscientificresultsdescribedinthelastsectionsofthebookwouldhave been impossible to obtain without financial support from the Austrian Science Fund FWF through the projects P-17285-N02 and P-19997-N14, from the Euro- peanResearchCouncilthroughthegrant247056MOSILSPIN,fromtheEuropean Commission, project SINANO IST-50684, and from the European Science Foun- dation EUROCORES Program FoNE funded by the Austrian Science Fund FWF (projectI79-N16),CNR,EPSRCandtheECSixthFrameworkProgram. Vienna ViktorSverdlov July2010 Contents 1 Introduction................................................................... 1 2 Scaling,PowerConsumption,andMobilityEnhancementTechniques 5 2.1 PowerScaling .......................................................... 5 2.2 StrainEngineering...................................................... 6 2.3 GlobalStrainTechniquesandSubstrateEngineering ................ 8 2.4 LocalStressTechniques ............................................... 10 2.5 AdvancedStressTechniques........................................... 12 2.6 HybridOrientationTechnologyandAlternativeChannelMaterials. 14 References...................................................................... 16 3 StrainandStress.............................................................. 23 3.1 StrainDefinition........................................................ 23 3.2 Stress.................................................................... 25 3.3 Relation Between Strain and Stress Tensor inSiliconandGermanium............................................. 27 3.4 StrainandStressTensors:Examples.................................. 28 3.4.1 UniformAll-AroundCompression.......................... 28 3.4.2 BiaxialStrainResultingFromEpitaxialGrowth............ 29 3.4.3 UniaxialStress................................................ 32 References...................................................................... 34 4 BasicPropertiesoftheSiliconLattice...................................... 35 4.1 CrystalStructureofSiliconandGermanium ......................... 35 4.2 ReciprocalLatticeandFirstBrillouinZone .......................... 39 4.3 ParticleinaPeriodicPotential......................................... 41 References...................................................................... 44 5 BandStructureofRelaxedSilicon.......................................... 45 5.1 ConductionandValenceBands........................................ 45 5.2 First-PrincipleBandStructureCalculations .......................... 46 5.3 PseudopotentialBandStructureCalculations......................... 49 5.4 Semi-EmpiricalTightBindingMethod ............................... 56 ix x Contents 5.5 ComparisonBetweenDifferentNumericalMethods................. 58 References...................................................................... 61 6 PerturbativeMethodsforBandStructureCalculationsinSilicon...... 63 6.1 Thek(cid:2)pMethodforaNon-DegenerateBand......................... 63 6.2 EffectiveMassTheoryforNon-DegenerateBands................... 64 6.2.1 ElectronEffectiveMassinRelaxedSilicon................. 66 6.2.2 ApproximationsfortheConductionBand DispersionatHigherEnergies............................... 67 6.3 ValenceBand........................................................... 70 6.3.1 Spin–OrbitCouplingintheValenceBand .................. 72 6.3.2 DispersionoftheValenceBandinSilicon .................. 75 6.3.3 LuttingerParameters ......................................... 76 References...................................................................... 80 7 StrainEffectsontheSiliconCrystalStructure............................ 83 7.1 Strain-InducedSymmetryReductionofSiliconCrystalLattice..... 83 7.1.1 Oh Symmetry................................................. 83 7.1.2 D4h Symmetry................................................ 84 7.1.3 D3d Symmetry ............................................... 85 7.1.4 D2h Symmetry................................................ 85 7.1.5 C2hSymmetry................................................ 86 7.2 InternalStrainParameter............................................... 86 7.3 StrainandSymmetryoftheBrillouinZone........................... 88 References...................................................................... 90 8 StrainEffectsontheSiliconBandStructure.............................. 91 8.1 LinearDeformationPotentialTheory................................. 91 8.1.1 ConductionBand ............................................. 91 8.1.2 ValenceBand ................................................. 93 8.1.3 Stress-InducedBandSplittingoftheValenceBands ....... 94 8.2 InclusionofStrainintoPerturbativeBandStructureCalculations... 97 8.3 EmpiricalPseudopotentialMethodwithStrain.......................102 References......................................................................103 9 StrainEffectsontheConductionBandofSilicon ........................105 9.1 LimitationoftheEffectiveMassApproximation fortheConductionBandofSilicon ...................................105 9.2 TheTwo-Bandk(cid:2)pModel .............................................107 9.2.1 ValleyShiftDuetoShearStrain.............................108 9.2.2 Stress-DependentTransversalEffectiveMasses............111 9.2.3 DependenceonStrainoftheLongitudinal EffectiveMass................................................112 9.2.4 StressandNon-Parabolicity..................................115

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.