ebook img

Store-and-Forward Networking Solutions with Autonomous Aerial Vehicles PDF

179 Pages·2017·11.94 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Store-and-Forward Networking Solutions with Autonomous Aerial Vehicles

Eindhoven University of Technology MASTER Store-and-forward networking solutions with autonomous aerial vehicles Balasubramanian, S. Award date: 2014 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain 5T746, Graduation project Eindhoven University of Technology Thales Nederland B.V Store-and-Forward Networking Solutions with Autonomous Aerial Vehicles Robotics and Networking Shyam Balasubramanian (Embedded Systems, 0785610) Committee: Prof. Dr. H. Corporaal (TU/e) Dr. Ir. P.H.F.M. Verhoeven (TU/e) Ir. M. Wijtvliet (TU/e) Dr. Ir. M de Graaf (Thales) Dr. Ir. G.J. Hoekstra (Thales) January 2, 2014 Abstract Inthisthesis,thetechnologyofMobile Ad-Hoc Networks (MANETs)alongwithDisruption Tol- erant Networking (DTN),astore-and-forwardapproach,ismadetointeractwiththenavigation softwareofamultirotoraircrafttoperformcertaintasksduringnavigation,autonomously. The MANET is a popular research topic that deals with the routing of information between systemsinmotion. TheDTNisafairlynewfieldofresearchthatenablesnetworkinginextreme environmentsthatmaylackcontinuousnetworkconnectivity. Mostofthepriorworkinthearea ofMANETsandDTNhavebeenperformedusingsimulations. Thisresearchaimstoextendthe mobile networking with DTN technology in order to improve the robustness of communication. A practical implementation presents the complex dynamics of wireless environments and poses new challenges. The multirotor is chosen as the mobile node and is made to fly to several waypoints (base sta- tions)usingGPS.Ithoversinthegivenregionbyestablishinganon-the-flynetworkconnection. Exchange of required data such as files, video or any critical data exchange is initiated upon a successful connection. This concept leads us to diverse potential applications where network infrastructure is unavailable; such as in the field of military operations, surveillance of civilian areas and forwarding video images during search and rescue operations. Themainfocusofthisresearchisonthedeploymentofanautonomousmobilenodetoexchange data with other static nodes, using DTN technology. Further, extensions to DTN are proposed and a new algorithm is developed to make autonomous networking more intelligent. Additional researchanddevelopmenthasbeencarriedouttoimprovethestabilityofthehoveringplatform and to extend the flight times. Keywords DTN - Disruption Tolerant Networking MANET - Mobile Ad-Hoc Networks UAV - Autonomous Multirotor, Multicopter, Micro-Aerial Vehicles or Drones 1 Acknowledgements ThisthesisiswrittenaspartofmymasterdegreeinEmbeddedSystemsatEindhovenUniversity of Technology. The work in this thesis is conducted at Thales Nederland B.V., at Huizen. I have always had a deep interest for how stuff works and this especially applies to embedded systems and aerial robotics. The main motivation of this work is towards application specific multirotors. Implementing, experimenting and extending the state-of-the-art multirotor tech- nology has been a perfect assignment for me. Working in the area of wireless networks has been an equally rewarding experience. I would like to extend my gratitude to prof. dr. Henk Corporaal, my graduation supervisor at Eindhoven University of Technology. His timely guidance and encouragement to explore the amazing world of multirotors has helped me immensely. I thank ir. Mark Wijtvliet whose ideas in thesis have helped me reflect on my work. I would like to show my appreciation to dr. ir. Richard Verhoeven for accepting to be part of this committee. AtThalesNederlandB.V,Ihavebeengiventhefreedomtoexploreandtopursuitanynewidea that I have come up with. For giving me such freedom in my work, and for their guidance, I would like to thank dr. ir. Maurits de Graaf and dr. ir. Gerard Hoekstra, my daily supervisors at Thales. My appreciation to Robert Hodkinson, for all the fruitful technical discussions we have had during my tenure. I thank my colleagues Javier, Stefan and Gertjan for critical review of my work and their timely feedback. My colleagues Sunil John, Suhas Pai and Ashwin Bhat, at the University of Eindhoven, who have encouraged me to pursue my dream. In the end, I offer my special thanks to Vimitha for her love and care and to make me into a better person. My family in India, for without whose love and encouragement I would have forgot to innovate. Shyam Balasubramanian Hilversum, January 1, 2014 2 About Thales Thales is a French company with top market presence, in both military and civilian domains. Thalesisoneofthemostwellknowncompaniesinthesectorsofdefense,groundtransportation, civil security and aerospace. Figure 1: Thales Group logo. Thales Nederland B.V is a Dutch brand of Thales group, has about 2,000 employees working at various branches, located in Hengelo (HQ), Enschede, Eindhoven, Delft and Huizen. Thales, located at Huizen, is the leading defence communications company in The Netherlands. It is a supplier of high quality integrated communications equipments for both the military and commercial organisations, with requirements for high technology multimedia networks. 3 Contents List of Abbreviations 7 1 Introduction 13 2 Related Work 17 3 Mobile Platform Selection 21 3.1 Classification of aerial vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Multicopter platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Networking platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 Wireless Networking 34 4.1 Internet protocol stack (TCP/IP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 Wireless networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Mobile ad-hoc network (MANET) . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 MANET routing protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.5 Selection of OLSR routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Disruption Tolerant Networking 43 5.1 DTN history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 Features of DTN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3 Bundle layer protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.4 IBR-DTN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.5 IBR-DTN mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.6 Limitations of DTN design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.7 Extending the DTN design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6 Network Setup on Raspberry Pi 56 6.1 Node configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.2 MANET setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 Mesh network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4 OLSR plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.5 OLSR and IBR-DTN configuration settings . . . . . . . . . . . . . . . . . . . . . 66 6.6 Communication between layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7 Multicopter Hardware 69 7.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.3 Flight controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.4 Electronics and actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 7.5 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.6 Communication equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.7 Frame specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.8 Networking hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.9 List of components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8 Multicopter Software 84 8.1 Mathematical model of the quadcopter . . . . . . . . . . . . . . . . . . . . . . . . 84 8.2 Sensor Fusion Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.3 Quadcopter configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8.4 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8.5 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.6 Flight configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9 Performance Analysis and Improvements 93 9.1 Measures to improve stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 9.2 Hover tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 9.3 Power consumption tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 9.3.1 Power consumed by networking hardware . . . . . . . . . . . . . . . . . . 98 9.3.2 Power consumed by aerial vehicle . . . . . . . . . . . . . . . . . . . . . . . 99 10 Aerial Network Protocol 101 10.1 Extended network stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10.2 Background of the protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10.3 Aerial-network protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 10.3.1 XML Configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10.3.2 Query the OLSR and DTN . . . . . . . . . . . . . . . . . . . . . . . . . . 104 10.3.3 Client server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 10.3.4 Network flight interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 11 Waypoint Networking 109 11.1 ETX Measurements with antenna orientation . . . . . . . . . . . . . . . . . . . . 109 11.1.1 Tests with antenna orientation . . . . . . . . . . . . . . . . . . . . . . . . 112 11.2 Mission Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 11.3 Waypoint networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 11.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 12 Analysis of Interferences 117 12.1 Wireless devices on multicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 12.2 Understanding power scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 12.3 Frequency bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 12.3.1 2.4 GHz spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 12.3.2 1.5 GHz spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 13 Extended Flight Times 127 13.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 13.2 Factors affecting flight time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 13.3 Selection of components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 13.4 Power analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 13.5 Energy source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 13.6 Flight time results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5 14 Conclusions 138 14.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 14.2 Insights and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 14.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 A Hardware and Software Details 142 B Networking Principles 146 C Complete Network Configuration 149 Bibliography 173 6 List of Abbreviations AHRS Attitude and Heading Reference System API Application Programming Interface BPA bundle protocol agent dB Decibel dBm decibel-milliwatt DCM Direction Cosine Matrix DHT Distributed Hash Table DSSS Direct Sequence Spread Spectrum DTN Disruption Tolerant Networking EEPROM Electrically Erasable Programmable Read-Only Memory ESA European Space Agency ESSID Extended Service Set Identification ETX Expected Transmission Time Metric ETX Expected Transmission count metric FAA Federal Aviation Administration FHSS Frequency Hopping Spread Spectrum HTTP Hypertext Transfer Protocol ICMP Internet Control Message Protocol IETF Internet Engineering Task Force IMU Inertial Measurement Unit ISM Industrial, Scientific and Medical band LOS Line-of-Sight MAC Media Access Control MANET Mobile Ad-Hoc Networks MAV Micro Aerial vehicles 7 NASA National Aeronautics and Space Administration OLSR Optimized Link State Routing OSI Open System Interconnection P2P peer-to-peer PC Personal Computer PID Proportional-Integral-Derivative PWM Pulse Width Modulation QoS Quality of Service RF Radio Frequency RTC Real-time clock SANET Static Ad-Hoc Networks SenSafety Sensor Networks for Public Safety SNR Signal-to-noise ratio SQL Structured Query Language TTL Time-to-live UART Universal Asynchronous Receiver and Transmitter UAV Unmanned Aerial Vehicle WP Waypoint TTL Time-to -live 8

Description:
In this thesis, the technology of Mobile Ad-Hoc Networks (MANETs) along with .. 11.2 Mission Planning . Optimized Link State Routing. OSI Pulse Width Modulation. QoS. Quality of Service. RF. Radio Frequency 6.2 A study of wireless devices sensed in the laboratory, using aircrack-ng, an open-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.