Annalsof Botany105:573–584, 2010 doi:10.1093/aob/mcq011,availableonlineat www.aob.oxfordjournals.org Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? J.G.Hodgson1,†,*,M.Sharafi2,A.Jalili3,S.D´ıaz4,G.Montserrat-Mart´ı5,C.Palmer6,B.Cerabolini7,S.Pierce7, B. Hamzehee3, Y. Asri3, Z. Jamzad3, P. Wilson8, J. A. Raven9, S. R. Band8, S. Basconcelo10, A. Bogard6, G. Carter6, M. Charles6, P. Castro-D´ıez5, J. H. C. Cornelissen11, G. Funes4, G. Jones6, M. Khoshnevis3, N. Pe´rez-Harguindeguy4, M. C. Pe´rez-Rontome´5, F. A. Shirvany3, F. Vendramini4, S. Yazdani3, R. Abbas-Azimi3, S. Boustani3, M. Dehghan3, J. Guerrero-Campo4, A. Hynd6, E. Kowsary3, F. Kazemi-Saeed3, B. Siavash3, P. Villar-Salvador5, R. Craigie6, A. Naqinezhad2, A. Romo-D´ıez12, L. de Torres Espuny5 and E. Simmons6 1Peak Science and Environment, Station House, Leadmill, Hathersage, Hope Valley S32 1BA, UK, 2Department of Biology, FacultyofSciences, UniversityofMazandaran,Babolsar,Iran,3ResearchInstituteofForestsandRangelands,POBox13185- 116,Tehran,Iran,4InstitutoMultidisciplinariodeBiolog´ıaVegetal(CONICET – UNC)andF.C.E.F.yN.,UniversidadNacional D dSeIhnCesof´tfiirtedulotdob,aPS,hiCreefanfisaeilillcdaoSdd1ee4CEEocTro,rleUoogK´4ıa,975(UC,VnSiIe´tCla`e)zdAiSpaA´trndsaofil.eils2di0e22,9G9Ee,-s55t00io00n80e0CBZo´iarodrcaoegbnoaoz,saiA,,rDSgpiepanaitnirn,tiam6,De5enDpteoaprdttmiEBecnoiotloloogfg´ıaiAarFcSuhtnraucetiotoulnoragalyle,yUeBniFoiuvdenivrzseioirtnsyiadolaefd,, ownloaded from oUFafAnatAicgvSnureCiolrmtpRsyiaeItocl,a`fuaSdaEncerdoagitarlPttisihsl,SahtUanuBnCtndodiSrivtocad`LepinerieflsinRelci’cdeISedasncseeds,iaueBUNrbncarnachirceiacvisI,eeo,nlVrnsoVsaitniaUitltayuJd,Uto.eeHPfn,aC.SiIrvDnho´ceverurdefMsnfiroiaegtobynlonad,twt,,,Djur3SCei¨ıhecC–e,B,fD25oAfi10eevu1ll9.ned0,ddl0aS5eea1l0eVsn00aDM0r12,De0TusC82Nne5ot´,,5a,rIUDndt1ayoKA0laby8,,na,19Us,8DUHAKsi/vnrV,nigi1stAe00ioonE8mfnt0cisCn3otoea8olfor,,mPdg1Bpa´ıl1aaaamDnrrA,ecatpegTtSilarhvco´ıreeicntemoaPnNl,celaeaenS,tnshtpF,teaoaUErifnclcnaSuoinylvltdsoeatsgrdesymai,dtnsyDedEoeC1fpc2ioaDeInlrnuotscmngtiidyateu,esntet at Caob.oxfordjournals.org Received:9*JFuoner2c0o0r8resRpeotunrndeednfcoer.reEv-ismioani:l4j.Jhuloyd2g0s0o8n@Aschceepftfiede:ld2.1aDc.euckember2009 entro de Inform †ecBoalocgkigcraolucnidrcaunmdstAanimces.GTehneonmaetusreizoefi‘sthaisfuenccotlioogni,caanldcitrhceumprsotadnuccet,’oisf,cheolwlveovelur,mheo.tlAysdseubcahteidt.iHsecroen,twinegeinnvteosn- ación y Docum tSitgoamteaftoaraarnegcirouscpiearlmfsorwphheothtoesrysntothmeasitsalasnidzethmeairysbiezethaifsfe‘mctisssfiunngctliionnka’:ltehfefipcireimncayr.ydeterminantofgenomesize. entación C †UofMKtheaetnhdroe,dlusatsSiiontongmshPaiCptaAlb,aesntwodmeleeenaefgmcehenarogrmaecnett-esreiiczsoteilcovsgawliuceaerlseaomnbdetaatisanuxerodendforfmoomric1tp4ha4et2tPesrlpnaensctiidDeesNnftAriofimeCd-A.vSarlguuebenssteiqdnuaate,anIbrtalaysn,e,aSannpdaaisnmseaesnasdmsuterhene-t ientífica on A †mheKernbetayscReooefussustlotsmspeSacttaioelmssai,ztaelvwesrianzsealciasgreraionepdhecyootueltos.)giacnadllycoimntpriobrutatensttaottreicboultoeg.iIctavllayriaensdwpithhysliiofelo-hgiisctaolrlyy(iwmopoodrtyanspteacxieess,of pril 27, 2011 leaf specialization.Moreover,itis positively correlated with genome sizeacrossawide range ofmajor taxa. †ConclusionsStomatalsizepredictsgenomesizewithinangiosperms.Correlationisnot,however,proofofcaus- alityandhereourinterpretationishamperedbyunexpecteddeficienciesinthescientificliterature.Firstly,there are discrepancies between ourown observations and established ideas about the ecological significance of sto- matal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, ourhypothesis, that the optimization ofsto- matalsize forfunctionalefficiency isa majorecologicaldeterminant ofgenome size,remains unproven. Keywords: Stomatal size, genome size, seed size, life history, photosynthesis, allometry, ecology, evolution, SLA,leafstructure, CAM,C . 4 INTRODUCTION of values remains uncertain (Knight et al., 2005). High DNA amount is not associated with evolutionary advancement or Within flowering plants, nuclear DNA content, or genome organizational complexity; much takes the form of highly size, varies almost 2000-fold (Bennett and Leitch, 2005; repeated sequences of non-genic DNA (Davidson and Greilhuber et al., 2006). The significance of this wide range Britten, 1973). Processes have been identified both for redu- †Presentaddress:DepartmentofArchaeology,UniversityofSheffield, cing genome size (Kirik et al., 2000; Orel et al., 2003; SheffieldS14ET,UK. Bennettzen et al., 2005) and for its increase (Kidwell, 2002; #The Author2010.Publishedby OxfordUniversity Presson behalfofthe AnnalsofBotanyCompany.Allrights reserved. ForPermissions, please email: [email protected] 574 Hodgson et al. — Stomatal vs. genome size in angiosperms Bennettzen et al., 2005). These mechanisms have doubtless mechanism controlling the exchange of gases, particularly contributed to the major increases and decreases in genome the influx of carbon dioxide and the efflux of water vapour, size reported within evolutionary lineages (Leitch et al., between the interior of the leaf and the atmosphere 1998; Soltis et al., 2003; Caetano-Anolle´s, 2005; Johnston (Woodward, 1998; Raven, 2002; Hetherington and et al., 2005; Leitch et al., 2005) and the large differences in Woodward, 2003). The efficiency with which carbon nuclear DNA amount recorded between closely related dioxide, a key raw material for photosynthesis, is taken up species (Bennett and Leitch, 2005). andwaterlossrestrictedappearstobeinpartafunctionofsto- TheexactroleofthisextraDNAisamatterofdebate.Some matal size (Allen and Pearcy, 2000; Aasamaa et al., 2001; have argued that the additional DNA generally has little Hetherington and Woodward, 2003). Gaseous exchange is impact on function and relates to the ‘selfish’ nature of most regulated through changes in the size of the stomatal pore. ‘junk’ DNA (Doolittle and Sapienza, 1980; Orgel and Crick, Because of their more rapid opening and closure, small 1980). Others have contended that the extra DNA has func- stomata afford greater water-use efficiency in dry habitats, tional importance (Bennett, 1971; Cavalier-Smith, 1985, whereas in cool, moist and shaded habitats large stomata 2005) and many evolutionary and ecological correlates with may be advantageous. genome size have been identified (e.g. Bennett, 1976; Jones Ageneralrequirementinautotrophicplantstocombinehigh and Brown, 1976; Grime and Mowforth, 1982; Thompson, photosynthetic capacity and water-use efficiency represents a 1990; Vinogradov, 2003; Knight et al., 2005; Beaulieu strong ecological driver for optimizing stomatal size. et al., 2007). However,stomatalsizeisnotsimplyanecologicallyimportant D Cells with a large genome exhibit disproportionately slow characteristic. The maximum size of the stomatal aperture is ow mCsSsthtihimipvazigaetiveathotcalytlilginaeicorgenusofredcw-dnclwSeioemvrhalmamlrioitsetesdaiDheo,sii,vnNnwil2gosAyh0rfi(ooe0Dwiarn5cneam)tearah,llosnslia,unpdpnngrbdedictteniasoevcgtknliahalss,uipi(esospGix1ennrep9reaioa6lmrsianf5mutsae;imdiodpoinvamBfanfcsaneehetntdsnrroitepnanlgMgueobcetepweteoono,stwuewntrs1iefaeno9mlepfrl7onthytp1hhree,eg,nrsheaopas11ntleevu99oocner87gmiese22ysieas-;;,. pcBbwpainereoeiviltlgcmliehysrauxp.tauaguplrsroeTaiedelnilchyd-otcdioyesmeoddfliueelnltttebholescnleeriilgnzsmnoihtrgegshiotenthgowlheiryfas(deS,anargeptebimetlennhyarcootaekttmrstduemhtorreeulbcnaicosnsn,ltieneeuzecrasnervtoigagsenaaelttdshenls.tund,franatoo1paiirfa9pnfolsc6eelierooatd5msernm;dscibMaetoiymysntmras,iiaostgciitssctaeetsairolnr.aenlsmotyCltoeamanedittnoitr,eoatc1gacnrsia9uemsniu9haazlasrs4iyedpyee;., at Caob.oxfordjournals.orgnloaded from Gacnerldilmsceel(leBtveoanllnu.,emt1te,98ar51e)9.7pI2on;sitaidvEdedliywtioacnrod,rsrgeelanatonemddefoEsrinzndeorniaz-nzvdia,cnuuo1cl9al7ete5adr; JLboeeatiwctchehiem,ni2a0kg0e5na)no.dmTeGhreaanbgdoewnssektroaaml-iJtaoytaaclohfismitzihaeik,s, hp2oo0ws0iet0iv;veeBr,ecnornerremetltaaitnainoeddn entro de Inform S20u0g6iy)a.mMaa,ny20e0c5o;logCiacvaalliceorr-rSemlaittehs,w2i0th05g;enJoomvtechseizve eatppaela.r, uanstoesmteedwhuanttilditfwfeorernetcefnotcucso,ntoeumrspoarnadnetohuatsostfudBieeasu,leieacuhewt iatlh. ación y D to originate more directly from the controlling impacts of (2008). ocum n2u0c0l5e)a.r DNA amount on cell volume (see Cavalier-Smith, byStthoemaautathloarnsdmleaaifnlcyhainracEtnegrilsatnicds,fIorarn1,4S4p2asinpeacniedsAmregaesnutrineda entación C mwiatOshsn.beoDtshuefcsephcituernedlaeittciyool(nonsguhimicpablewlyriothfimsgepeeondrostampnretodsiunizcveeedr)sreealnatdceoslrornetogla-ttsieeorenmds aLlanetdeitscphwu,bi2tlh0is0hg5ee)dnhodamavteea,stoihzneerneifunocrleae,nagrbieoDesnNpeAursmeadsm.tooFuirinnsttvsea(sBtipgernaetnleiemtctionararnredy- ientífica on A pinseurcsaliesatperlnaDcneNt iAnchtaahmreaocstuoenirlti.(sFtGiecennntohermataenadslisTzoehoaamnpdppessaoernes,d2cm0o0na5ss)tsr,asaierneeeddpsoisbziye- asetxnotamelnyatstiastloosfwizgheeicohigsravpparhlouivceaisdl,efdotarxisontnoomamaditcaaltaanssiedzte.ecScooulrobrgseeilcaqatuelentwrteliynth,dstthhinee pril 27, 2011 tively correlated (Jones and Brown, 1976; Thompson, 1990; size of the angiosperm genome are identified and, by means Maranon and Grubb, 1993; Knight and Ackerly, 2002; of a literature review, the claims of stomatal size to be the Knight et al., 2005; Beaulieu et al., 2007). The relationship ‘missing link’, the primary determinant of genome size in is, however, inexact, perhaps in part because of the develop- the angiosperms, is assessed for a first time. mental complexity and the nutritional and structural diversity of seeds (Martin, 1947; Johansen, 1950; Hodgson and Mackey, 1986; Raven, 1999). Species with small genomes MATERIALS AND METHODS may produce large seeds by, for example, producing a small Studyareas embryo but an abundance of endosperm (e.g. Fraxinus excel- sior). Moreover, the seeds of species withlarge genomes may Theinvestigationcentresontheflorasoffourclimaticallycon- be minute (e.g. Orchidaceae, with obligate mycotrophy and trastedandgeographically disparateareas:theCo´rdobaregion ripe seeds containing only a small undifferentiated embryo of central western Argentina (55 species measured), the and no endosperm). Thus, in practice, genome size accounts Sheffield region of central England (745 species), the for only a small amount (variously estimated at 3% and Arazbaran Protected Area in northern upland Iran (463 6%) of the recorded variation in seed mass (Beaulieu et al., species) and the Zaragoza region of north-east Spain (278 2007). species). The climatic characteristics of each region are Another relationship with genome size involves stomata. briefly outlined in Table 1 and the areas described more Stomata consist of small pores at the leaf surface, each fully in D´ıaz et al. (2004). The species studied represent an bounded by two guard cells. They provide the primary ecologically balanced subset of their respective floras, except Hodgson et al. — Stomatal vs. genome size in angiosperms 575 TABLE 1. Aclimaticcomparisonofthefourmainstudyareas(dataabstractedfromD´ıazetal.,2004) Argentina Spain Iran England Meanannualrainfall(mm)range, 85–912,confinedto 300–350,mainlyin 316–686,throughouttheyear 565–1800,throughouttheyear distribution warmseason springandautumn withwintermaximum withwintermaximum Meanannualtemperaturerange(8C) 8–20 6–24 5–14 9–11 No.ofmonthsinwhichevaporation 1–12 6 2–4 0–2 exceedsprecipitation(range) No.offrost-freemonths(range) 0–8 3–5 6 3–6 for England, where a disproportionately large number of following leaf traits were assessed: maximum leaf size species with large genomes have been included. Data for a (mm2); leaf dry-matter content (100(cid:2)dry mass of leaf/satu- further 161 species collected from south-east Europe and the rated mass of leaf); leaf thickness (mm); specific leaf area NearEastduringotherecologicalprojectswerealsoincorpor- [leaf area (mm2)/leaf mass (mg)]. The procedures used are ated into this study. described in detail in Charles et al. (1997). They conform to the general recommendations of Garnier et al. (2001) and Cornelissen et al. (2003). Attributes measured D ow u(S1tno9sm9h3aad)taewldassihzaeubsiaetndatdst.odTitsahtrkeiebumatcieoetntha.otedMiamotfeprriBeaselseiwrolnianssgfcraoonlmldecttCheehdaulfoprnpoeemrr igIznaacitrnieoainsssinafgorerecfrfiuecrsirteernniccttyitnhogefmwweaatteienrrutlhsoees.saTdahanepdtdifveoevrermlaodapixmaitmeionintzioonffgsapcnaegrcibioaosln-- nloaded from ast1Ahpn9reed9gc3eAilne–oetsw1qin9ueca9riot6alasl)nseudcrIftomIiaorrcaaneng.sa,eFmoAofmorneroaemarlcetyorhsasidtsmoifUtpoiotrdKhonergarearnleanmmdrveicSep(rrDlposiacisyonacnntioaespmhylwei,mcaauvessDeainsasuugtfasroaeeLrnmdi.eeneaynkcIetshns-, ifpWgzaeresoortdmuo-gpdlsriewonaw(gafWrsidanhon,gaoavtd2toewr0mo0bapy3erid)eca.,nanlsdA1es9cppa9cnae8orc;areidtexeRsitdn)raa:gvalCebynn3,ido,(cttchhh2reee0am0sms2fiuoca;lajlaollHcorewpietaatyinhtn)he,gwraCican4fiygdu(;tnsommcpnteaeicoitainananblalyd--l at Caob.oxfordjournals.org psleuiaersfctaecthegrreaaetnicdcu,lolwes,ehdwersaetsopmeomastpsailbomlyeee,adst.huSerteodlemfnragottamhswee(amrcehicclroeouamfntieemtdrpeosre)nsoseifaocnaht. ocdoliioosxmleidre(aCunApdtMamk;eornaenodchtuiutmrsnifiadxl,asit.iteoo.nmtbaetymaltphooerpaCelanulivnnigcn,ocuwypchlilenen;gsutohcfeccuaalerirbnotisns, entro de Inform wGeenreomaebsstirzaec,tecdytoflroogmy aBnednntaextotnaonmdy.LVeiatlcuhes(2fo0r05g)enaonmdeosthizeer eretcsu.)l.tsH,evreer,nmalogreeocpohnyttreosvewresriaellaylsaontdreiantetdheasliaghfutrothfeoru‘raveoaridly- ación y D morerecentpublications.Chromosomenumberswerecollated ance’ grouping. Vernals geophytes are, variously, woodland ocum fawtiwohnrnfoaeecdsrmlecfuas,hBdmuarioaobnfiimrsgllayeenonyqeFasgucenoeee(ddm1sneos9ttarilhf9otlyay8vst,a)aoosln(ues1fadrefn9ct/tshod6esoers9eu,)BdgtgieeanieonnnncnfundlorusecemdteuRltiraesntat-iaaigvnsoiniegnnzdnFeaaetLond(v1daeeat9alrirhytot7icaeesv5h.et)ybs.(Wa1(ots2Mh9feo0r6prao09nsunu5t)ubyg,)m.lhaiGscbfPpfaaoeeletrrocilcnoaitfiadecneoldkyssrl hifcto‘anyrgonefetprrndodeobeslowMsyelroeqtmtofhaduhw’fareaganbtnfraioocycnncywreeodtchdtm(eoho,plfplf1hlitalet9aneehnxbn8tetpewi2stla)aalhttna.tthhisersWceag.ihsiotereuTncsmaghsieiunmeesmlgnnilrdiguoeldeareameilr–slvxalteyiyatlsrtiuehneifadotemaeuvntcumoceevniylosndeytccsir)lalcndelarueaarynrarolbsdsgrueflecofygdraoarhusspnrtrtapeiiobdrnimsitnegnrpveagaeereatdogcas(idceGpaktciaelatroyirriitzeoimmioevonddeaeer- entación Científica on April 27, 2011 was the Argentinian flora, with 90% of species lacking allyviewedasan‘avoidance’groupbecausethelowwater-use genome-size measurements. The Angiosperm Phylogeny efficiency inevitably associated with their exceptionally large Group (APG) has redefined the species composition of a stomata precludes an extension of the period of growth into number of major angiosperm taxa. The classification of hotter, drier summer conditions (see Hetherington and Angiosperm Phylogeny Group (APG III, 2009) has been fol- Woodward, 2003). lowed and families have been ordered in the sequence set out by Haston et al. (2007, 2009). Ecologicalattributes.HetheringtonandWoodward(2003)have Leaf traits. Values relate to healthy, sexually mature plants suggestedthatselectionforoptimalstomatalsizerelatestosur- growing in unshaded habitats and are usually an average of vivalinshadedandindroughtedhabitats,largestomatabeing at least six replicate measurements. Prior to measurement, favoured in the former and small in the latter. With a view to leaves were enclosed within a moistened paper towel and confirmingtheserelationships,habitattypewasincludedinthe kept refrigerated overnight in a sealed polythene bag to analyses. This was assessed from published sources, particu- ensure that they are fully imbibed. Subsequently, the area of larly Braun Blanquet and de Bolo´s (1953) and Grime et al. the leaf lamina (using a leaf area machine or scanner), leaf (2007), and from unpublished vegetation surveys and field fresh weight, leaf dry weight and intervenal leaf thickness observations. Some species from Iran were too ecologically (to the nearest 0.01mm, using a dial thickness gauge) were wide-ranging for a confident assessment of habitat type and measured. Because of their ecological importance (Givnish, there were too few data to include Argentina in the analyses. 1988; Reich et al., 1992; Bolha`r-Nordenkampf and Draxler, The following life-history classes were also separated: 1993; Garnier and Laurent, 1994; D´ıaz et al., 2004), the annual, monocarpic perennial (‘biennial’), herbaceous 576 Hodgson et al. — Stomatal vs. genome size in angiosperms polycarpicperennial(excludingvernalgeophytes),vernalgeo- %) 40 A phytes and woody species (trees, shrubs and subshrubs). s ( 30 e ci e 20 p Analyses s of 10 The statistical properties of guard-cell length, genome size, o. N 0 leaf size, leaf thickness, leaf dry-matter content and amphist- omy were checked. It was found necessary to log -transform the first four variables prior to statistical analysis1a0nd present %) 40 B leafdry-mattercontentasitssquare-root.Nosatisfactorytrans- s ( 30 e formation for amphistomy was identified and species were, eci 20 p therefore, grouped into the following five subequal classes: s 1, 0%; 2, ,25%; 3, 25–40%; 4, 40–45%; 5, 45–50% (% o. of 10 stomata on the surface with lower density). Except where N 0 otherwise stated, statistical tests were performed using SPSS for WindowsTM (Version 14.0). %) 40 C Threesetsofanalyseswerecarriedout.Inthefirst,stomatal s ( 30 length values from different geographical regions, families, e life-history groupings and habitats were compared using one- eci 20 Dow tdstldoaooaisaarntstriagaedodtsleniPweszftroeeemo6idrcdn-attwcrlbtiaebragpyiiayyexatfsnploseobaCAtfrsnyaaotNdvn-lm1hadO1ssorap8itVpcroao6deAbnm(csleTsieadpnausteelta,kiwvczlAeiiianieyactntsth)ihawioomaltnyhenrdaassi.cittictfrssrhtIfieexne(andrPrnsdaeaCtdnsnthwaAdcetiee-a)nttsrrhetebeheslaetibcossmraedee.rfgnatd,Iwtatnsrrotnteiehrxntieduehznscteeahutdlnuebessdrevmuieccneb,osiotlttsroantterheonedtdeas-f-, species (%)No. of sp 123400000 D at Caob.oxfordjournals.orgnloaded from cathosesresreeslsaectdoiorrnfeolrabteiaotwnwseeiwndeersetroamtnagxaetoanloofmlenmicgatgjhororauntpadixnagg.senEwoxmicthleudfseeiwdzevfrwaolaimds No. of 100 1·0– 1·1– 1·2– 1·3– 1·4– 1·5– 1·6– 1·7– 1·8– 1·9– entro de Inform osafmsptolemsa(tnal,le1n0g)thasnd(,th2o-seanwdith,a1n.5u-nfoulsdu,alrleyspneacrtriovwelyr,anfgoer 1·1 1·2 1·3 Lo1g·140 sto1·m5ata1l ·l6engt1h· 7(µm1)·8 1·9 2·0 ación y D fGaemoiglriaesphaincdaliannfrda-tfaaxmoniloimaRlicEgrvSoaUurpiLaitnTigoSns).in stomatal size 5F(aEnAn9nIodG;)gt.l(AisaBn1tnra)g.dtteihScsSn:eptittacio1rniame.na4lmalaa7yb:ta:+alisoln1iggi.l04ne1n.n30g1i(fig3+sfitct,hoag0mnnud.tri1al¼esy1ttsar,7dilabn4ignfu5u¼fdt.eiaorrt2eAadn8nb-Nw4tcle;eOaisltt(lVh,CPliAgen)r,noIegFruaat03cphn,.h1i,0bn5cm5o5g:9fmsi1n¼t.)wh4+Te17itu3fh+kos.1.eutd,hy0r.e.m11P(.1psa4,a,oi2mnsn+t0e-s¼.ht0uso00d4uc.11y7f).fi35atx,;eHrnse(aetaDs¼rrs.ee). ocumentación Científica on A MwAiretghaennttshitneoamsaamtnaadlslitezhseetdlaiavfrfegereraesgdtewsisgittnohimfiEacntaagnlltalylnedinng(ttFhhiega.fso1suo)r.csiTtauhtededyraawrneigathes aapnpdeafraemdiltioesbe(TsaibmleilaSrl1y einxpSreuspsepdleminendtiafrfyerednattas,tuadvyaialarebales pril 27, 2011 of guard-cell lengths, however, differed little between online). Species with the largest stomata were almost regions and was similar to the 10–80mm range cited by exclusively monocotyledonous vernal geophytes [Fritillaria Hetherington and Woodward (2003) for the world flora. meleagris (Liliaceae), 100.8mm; Lilium martagon Values ranged from 15.3mm (Trichloris crinita, Poaceae) to (Liliaceae), 83.4mm; Gagea lutea (Liliaceae),76.3mm; 71.3mm (Baccharis articulata, Asteraceae) in Argentina, Orchis mascula (Orchidaceae), 75.4mm; Orchis anthropo- from 12.5mm (Medicago orbicularis, Fabaceae) to 61.0mm phora (Orchidaceae), 70.9mm; Ophrys apifera (Adonis annua, Ranunculaceae) in Spain, from 14.9mm (Orchidaceae), 68.3mm, Ophrys punctulata (Orchidaceae), (Punica granatum, Lythraceae, formerly Punicaceae) to 67.4mm; Ophrys insectifera (Orchidaceae), 66.1mm; Scilla 67.4mm (Ophrys punctulata, Orchidaceae) in northern Iran mischtschenkoana (Asparagaceae), 65.3mm; Dactylorhiza and from 12.1mm (Salix repens, Salicaceae) to 100.8mm praetermissa (Orchidaceae), 64.2mm]. The only exceptions (Fritillaria meleagris, Liliaceae) in England. were Baccharis articulata (Asteraceae), a stem succulent, 71.3mm, and Caltha palustris (Ranunculaceae), an early- flowering, wetland herb, 65.6mm. By contrast, and consistent Variation in stomatal size in relation to life history and habitat with the findings of Beaulieu et al. (2008), species with the In each life-history class there was at least a 3-fold differ- smallest stomata were predominately woody species [Salix ence between the largest and smallest average stomatal sizes repens (Salicaceae), 12.1mm; Pistacia terebinthus (Fig. 2). Nevertheless, despite this high level of variation (Anacardiaceae), 12.8mm; Arthrocnemum macrostachyum within groupings, stomatal size appeared to be very much a (Amaranthaceae, formerly Chenopodiaceae), 13.2mm; Salix function of life history (Fig. 2). Moreover, general trends caprea (Salicaceae), 14.3mm; Punica granatum Hodgson et al. — Stomatal vs. genome size in angiosperms 577 %) 5600 A cwoonotdralsatneddwliifteh-htriesetosrwyitthypsemsadllifsfteorminagtaianndstosmmaaltlalvesrinzaelg(ee.og-. es ( 40 phytes with large stomata). When comparisons were focused eci 30 more narrowly, a negative relationship between stomatal size p o. of s 1200 aronodteadridanitnyucaolsuladndbedeceopn-sriosotetnetdlytrdeeestecatnedd.taFlolrshbroutbhs,shsaplelcoiwes- N from more droughted environments had smaller stomata than 0 comparable ones from mesic habitats (Table 2Bi). It was not %) 60 B possible, however, to find any evidence supporting another s ( 50 suggestion of Hetherington and Woodward (2003), namely e 40 thatthepossessionoflargestomataisanimportantcomponent ci e 30 of specialization for shade-tolerance. Summer-green species p of s 20 from the woodland floor (i.e. shade-tolerant species) have o. 10 smaller stomata than woodland vernal geophytes, ‘shade- N 0 avoiders’, which exploit only the open phase of thewoodland before canopy closure (Table 2Bii). %) 60 C 50 s ( e 40 Stomatal size and leaf structure D ci ow No. of spepecies (%) 123345600000000 D 7a(t1i(hvFFr39aeeirTgt%l%ieyht.pi,elrsa3olepanAwfsterhedthicrnhaeaie3teeenr8sesdmtaPt%owuseCtB,dalieAotyl)ha.ffvog(aTtasrSrhxmrhiaeieseatla,shinmlxelsci1dapers0xeeets0inoicppnm.itm8eeeifiunctsahmimsetee,amdws,d1fif)otra,2wwhort.ah1mitPtthihhmmcCeehtmaAhttovsah)rmsicaaexehclxau,oaelwleeduslasefnirfs1tgvthetw–eacfsls3tloeutiat,rrvoereegmrssaeltepyoas26pptmo18asreneoa%%cpeixttnas--,,. at Caob.oxfordjournals.orgnloaded from No. of s 12000 8sop3cec%cuipeysanwddiiftfh7er1Ce%nAt.MpToashinetdiotnh‘csroeoeonlsstpeheaecsioathnlir’setevegPrrnCoauAlpgsa,exoeCpsh4y(Ftsepisge.cail3esCso, entro de Inform %) 5600 E andPCDA).aOxnisly1,Ce3xpsplaeicniiensgwaeprperowxi.d2e8ly%scoaftttehreedv.ariance,wasa ación y D es ( 40 ‘xeromorphic-mesomorphic axis’ of leaf structure and has ocum No. of speci 1230000 1·0– 1·1– 1·2– 1·3– 1·4– 1·5– 1·6– 1·7– 1·8– 1·9– stii(otnAosmpsoteloocAmwyercneagoarteaclnoleetgaisnineicd)zaa,,el wieLnq[aeeurrH.eigrvee.aatshlepenerAdcicinseivpegasittrdo,oioncstmahpateaaenirdndmlr(yWayZ-yosfghorooadqdpmwueheadybrlardlaaraxicc(dih2esoa0eh-0rbe)a3llb)aa.itantianAnctdogst entación Científica on A 1·1 1·2 1·3 Lo1g·140 sto1·m5ata1l ·l6engt1h· 7(µm1)·8 1·9 2·0 Llsemiathvalrelas,esathoimgtheartand.irfyoAlimtaattht(eeArnhcaiocgnahtreedrniat,ecxeltaorewe)m],sepewwciietfirhce lssepmaefacliale,rseatfhraoincmdk pril 27, 2011 FIG. 2. Stomatallengthdistributionwithindifferentlife-historyclasses:(A) mesic and from shaded, habitats, [e.g. Anthriscus cerefolium woody polycarpic perennialsa [log (stomatal guard-cell length, mm)+s.d. 1.41+0.10, n¼205]; (B) monoc1a0rpic perennialsab (1.45+0.09, n¼89); (Apiaceae) and Valeriana officinalis (Caprifoliaceae)], with (C)annualsab(1.45+0.11,n¼451);(D)herbaceouspolycarpic perennialsb large, thin leaves, a low dry matter content, high specific (1.47+0.11, n¼658); (E) vernal geophytes (1.68+0.16, n¼46). leaf area and larger stomata. Fast-growing species of pro- ANOVAF4,1444¼58.6,P,0.001. ductivehabitats(seeGrimeandHunt,1975)occupiedaninter- mediate position along PCA axis 1 [Chenopodium album (Lythraceae), 14.9mm; Ficus carica (Moraceae), 15.3mm; (Amaranthaceae), value 51% of maximum; Urtica dioica Myrica gale (Myricaceae), 15.4mm; Robinia pseudoacacia (Urticaceae), 56%; Holcus lanatus (Poaceae), 65%]. (Fabaceae), 15.4mm]. Only four herbaceous species occurred PCAaxis2,the‘succulenceaxis’[highestscores:Grahamia in ‘the bottom twelve’: the perennial C grass, Trichloris bracteata(Portulacaceae)andSedumrupestre(Crassulaceae)], 4 crinita (15.3mm), one herbaceous perennial (Trifolium fragi- accounted for a further approx. 26% of the variance. Species ferum, 15.2mm) and two annual legumes (Medicago orbicu- with high values had thick, amphistomatous leaves with a laris, 12.5mm; Medicago radiata, 14.5mm). More typically, low dry matter content and moderately large stomata. As is representatives of these other life-history categories (annual, characteristic of succulents (Vendramini et al.,2002), specific monocarpic perennial, herbaceous polycarpic perennial) were leaf area was relatively high. The stem succulents, Baccharis of intermediate stomatal size (Fig. 2). articulata and Cereus validus (Cactaceae), not included in Stomatal size also varied according to habitat, but with the analysis, also have large stomata. lesser statistical significance (Table 2A). In part, this relates PCA axis 3, which explained a further approx. 19% of the to the frequent co-existence within the same habitat of variance, was a ‘size axis’ relating to the dimensions of both 578 Hodgson et al. — Stomatal vs. genome size in angiosperms TABLE 2. A regional comparison of stomatal length for major habitats: (A) compares all habitats and (B) ecological species groupingssubjecttodifferinglevelsofdroughtandshade Habitat n Meanlog guard-celllength+s.d.(mm) 10 (A)Allhabitats England Skeletal 79 1.43+0.11a Wasteland 152 1.45+0.12ab Arable 109 1.47+0.10ab Maritime 23 1.47+0.10ab Woodland 148 1.48+0.14ab Wetland 167 1.49+0.12b Pasture 98 1.49+0.14b F ¼3.5P,0.01 6,769 (R2¼0.23;F ¼7.0,P,0.001; 31,744 lifehistoryF ¼28.7,P,0.001) 4,744 Iran Secondarywoodland(altitudinalzone2) 100 1.43+0.10a Drypasture(altitudinalzone4) 69 1.45+0.10ab Primarywoodland(altitudinalzone1) 125 1.47+0.11b Pasture(altitudinalzone3) 55 1.51+0.09 Dow Fl(iRf3e,234¼h5is¼0to.1r5y9.9;FFP41,3,82,3020¼0.0¼50.146.,2P,P,,0.00.0010)1; nloaded from SpD‘PWAWaSiarrnaeosaylttobiulpndalreaneleas’dntau(ndordenwagnyadsptsewulaamsntdesolainlsd) 631843738451 111111......444443312577++++++000000......111111302103aaaaabbbbb at Caob.oxfordjournals.org (B)Droughtandshade Fl[iRf5e,227¼h2is¼0to.1r3y4.8;FFP42,2,15,2650¼6.0¼31.26..0P.P,,0.00.10]1; entro de Inform (Ai)nnDuraolusg:hatridvs.‘mesic’habitats ación y D EnASgklraaenbledltealhabitats 9496 t11..¼44603++.5,00P..11,02 0.001 ocumentación C ETSpanAADlaglilrrrnawagynbeodplnoeatdisnytuasrep(aerciide)s(canopyheight.3m):aridvs.temperateclimates 172056 t111...¼3434683+++.8,000P...111,101b0.001 ientífica on April 27, 2011 Spain 26 1.36+0.12b Iran 30 1.42+0.08ab England(temperate) 47 1.45+0.11a F ¼6.3,P,0.001 3,109 (ii)Shade England:woodlandground-floorvegetation Summer-greenperennialherbs 64 1.46+0.11 ‘Shade-avoiding’vernalgeophytes 16 1.69+0.16 t¼6.9,P,0.001 SpeciesgroupingswiththesamelettersarenotstatisticallysignificantlydifferentatP,0.05inTukey(post-hoc)tests. In(A)statisticalanalysesinparenthesisrelatetotwo-wayANOVAswhereadditionallylife-historyattributesareincluded;allstatisticallysignificant treatmenteffectsofhabitatorlifehistoryareappended. theleafanditscomponentparts.AttheupperendofPCAaxis Taxonomic variation in stomatal size 3 were species with large, relatively thick, amphistomatous Stomatal size further relates to both cytological status and leaves and large stomata [e.g. Petasites hybridus phylogeny. Intrageneric polyploids tended to have larger (Asteraceae)] and at the lower end, with small, thin, hyposto- stomata than their close diploid relatives (Fig. 4A). matous leaves, were Aphanes arvensis (Rosaceae), Nevertheless, even when this increase in size through poly- Callitriche stagnalis (Plantaginaceae), and other similarly ploidy is factored out by including only familial or ‘clade’ small and/or short-lived species. Hodgson et al. — Stomatal vs. genome size in angiosperms 579 4 4 A B 2 + + + 2 + + + y m PCA axis 2–02 Leaf thicknessAmphistomyStomatal sizeSLADMC PCA axis 3–20 Leaf areaStomatal sizeLeaf thicknessSLAAmphisto + + + + SLA + –4 SLA + –4 Leaf area + Leaf area + Large stomata Stomatal size + Stomatal size + Small stomata + Leaf thickness + Leaf thickness D + DMC + DMC ow 24–4 C –2 0PCA axis 12 +4+ + 24–4D –2 0PCA axis 12 + 4+ + at Caob.oxfordjournals.orgnloaded from PCA axis 2–20 Leaf thicknessAmphistomyStomatal sizeSLA+DMC+ PCA axis 3–20 Leaf areaStomatal sizeLeaf thicknessSLA+Amphistomy+ entro de Información y Documentación C –4 CCCVe34ArMnal geophyte + LSeatoLf methaaSicft LakaAlnr seeiaszse +++ –4 + LSetaoLfm ethaaSiftc LaakAlr nseeiazses +++ ientífica on April 27, 2011 + DMC + DMC –4 –2 0 2 4 –4 –2 0 2 4 PCA axis 1 PCA axis 1 FIG.3. PCAordinationof1186angiospermspeciesfromArgentina,England,IranandSpain,onthebasisofsixleaftraits.Labelsdisplaytraitswiththehighest eigenvectorscoresonPCAaxes1,2and3,withthelabelwiththehighestscorepresentednearesttheaxis.In(A)and(B),thedistributionofspecieswithlarge stomata(.40mm)andthosewithsmallstomata(,20mm)isshown,asindicatedin(A),andin(C)and(D)thedistributionofC,C,CAMandvernalgeophyte 3 4 speciesisshownasindicatedin(C). diploids, families showed significant differences in stomatal considerably higher than, and statistically different from, size (Fig. 4B). Within the present dataset, some, particularly those from the less geographically and phylogenetically Brassicaceae, Fabaceae and Rosaceae, had small stomata restricted subset examined in Beaulieu et al. (2008) [27.42 whereasothers(e.g.OrchidaceaeandRanunculaceae)hadcon- 62.7 (39.5) mm; n¼9; t¼4.6, P,001]. In contrast, for sistently large stomata. A familial summary of stomatal size species common to both studies there was broad correspon- for the 1442 species measured is presented as Table S2 in dence in measured values for stomatal length between the Supplementary data, available online. These familial averages two studies (r¼0.61, n¼24, P,0.01; paired t¼0.7, n.s.). must, however, be treated with caution. For example in Notwithstanding the results for Orchidaceae, and consistent Orchidaceae, the values, originating only from England and withtheresultsinFig.4B,stomatalsizedoesappearconserva- Iran [range (mean) 44.1275.4 (57.9) mm; n¼20], are tively expressed within major taxa (Fig. S1 in Supplementary 580 Hodgson et al. — Stomatal vs. genome size in angiosperms A 2·5 A 1·8 1:1 Poaceae d 2·0 oi Other monocots g) m), polypl 1·6 Eudicots ar DNA (p 11··05 µ e ength ( 1·4 2C nucl 0·5 al l 10 0·0 Eudicots mat Log Basal dicots o –0·5 Poaceae st01·2 Other monocots g1 –1·0 Lo 1·0 1·2 1·4 1·6 1·8 2·0 Log stomatal length (µm) 10 1·0 2·5 B 1·0 1·2 1·4 1·6 1·8 Log10 stomatal length (µm), diploid g) 2·0 Dow Stomatal length (µm) 876543000000 B Log 2C nuclear DNA (p10––100011······0505051·0 1·2 1·4 1·6 1·8RFaabnaucnec2au·e0laceae at Centro de Informaob.oxfordjournals.orgnloaded from 20 1·5 C Log10 stomatal length (µm) ación y D EFaIGch. d41a.t0u(mA)poDOinirpctlioPsaiobdaasnRitaanenntrdFacagdtbeonRehcor asivcBedcraispmlFPboaoaeilldlme–CribpalysrotAlocymdmpealaobtPcaidldaetphLaacaidnmr(rbAmedsleoattnCeobdacpoptcAosdp,leyiepxlcoliudds-. ear DNA (pg) 01··50 ocumentación Científica on A i0‘snip.n0get0ceP1ireon;saar.cti(e¼oBane)0a;.Sl7P’t4ooa,amvcPeaert,aaagel;e0la.es0nnt0odg1mteh.auHtfdaoeilrcresodi,tzispae,nlaovdsiadilinunsedptiheicsecaituereessdem)dd.aiPffifnoaeirirnrsmegdboteatrteb¼wlwee5seid.n1aen,flydanmd¼fiiiglsi7uter0rsie,b.suPT,tahe,nde 2C nucl10 0·0 Fabeae pril 27, 2011 g boxplotsincludethemedian(centralline),thefirstandthirdquarters(box) o –0·5 Trifolieae L and outliers. The 14 families illustrated (Amaranthaceae, Apiaceae, Other Asteraceae, Brassicaceae, Caprifoliaceae, Caryophyllaceae, Fabaceae, Lamiaceae, Orchidaceae, Plantaginaceae, Poaceae, Polygonaceae, –1·0 RanunculaceaeandRosaceae)areidentifiedbytheirfirstthreelettersandphy- 1·0 1·2 1·4 1·6 logenetically ordered as recommended by Haston et al. (2007). ANOVA Log stomatal length (µm) F ¼29.43, P,0.001. Here ‘diploidy’ relates to the familial base 10 13,305 chromosome number as given in Raven (1975) except for Orchidaceae, where,usingBatemanetal.(2003),ploidywasassessedinrelationtoclade FIG. 5. Examplesoftherelationshipbetweenstomatalandgenomesize.(A) basenumber.Familieswiththesamelettersarenotstatisticallysignificantly All species: r2¼0.36, P,0.001, n¼446. Eudicots (r2¼0.26, P,0.001, differentatP,0.05inTukey(post-hoc)tests.Themeanvalueforstomatal n¼326); basal dicots (n¼3); monocots, excluding Poaceae (r2¼0.39, sizeforalldiploidspeciesmeasuredisidentifiedbyabrokenline. P,0.001,n¼30);andPoaceae(r2¼0.53,P,0.001,n¼87),asindicated. (B) Contrasted families: Ranunculaceae (r2¼0.64, P,0.001, n¼23), and Fabaceae (r2¼0.64, P,0.001, n¼46), as indicated. Other families: Data, available online). Similar values were recorded for Asteraceae (r2¼0.08, P,0.05, n¼51; minus Chrysanthemum segetum, r2¼0.08); Caryophyllaceae (r2¼0.23, P,0.1, n¼15); Polygonaceae familial subsets differing in life-history. Superimposed on (r2¼0.32, P,0.05, n¼13). (C) Contrasted tribes (Fabaceae): Fabeae this a further ecological effect was noted for woody species (r2¼0.29, P,0.01, n¼26); Trifolieae (r2¼0.67, P,0.001, n¼13); (Fig. S1A). These tended to have smaller stomata than and other (n¼7), as indicated. Tribes in other families: Asteraceae, related herbaceous species (excluding vernal geophytes). For Anthemideae (r2¼0.13, n.s., n¼17; minus Chrysanthemum segetum, r2¼ 0.30,P,0.05,n¼16);Lactuceae(r2¼0.50,P,0.001,n¼18);Poaceae, themuchsmallervernalgeophytesdataset,nostatisticallysig- Agrostideae (r2¼0.49, P,0.01, n¼13); Aveneae (r2¼0.72, P,0.001, nificantdifferencewasobserved(Fig.S1B).Vernalgeophytes n¼11);Poeae(r2¼0.05,n.s.,n¼19). Hodgson et al. — Stomatal vs. genome size in angiosperms 581 were primarily restricted to families in which all or, at least contributetovariabilitywithinthedataset.Nevertheless,avail- most, species had large stomata. able data indicate that cytoplasm occupies a sizeable pro- portion of guard cell volume [e.g. 31–41% for Arabidopsis thaliana (Brassicaceae); Tanaka et al., 2007; see also, Stomatal and genome size Fricker and White, 1990; Willmer and Fricker, 1995; Merkel Stomatal length and genome size are positively correlated et al., 2007] and provides no evidence that the fraction of (Fig. 5). This relationship appears to be a general feature guardcellvolumeatagivenproportionofthemaximumaper- within the eudicots, Poaceae and the remaining monocots. ture is significantly greater in genotypically large as opposed OnlyintribePoeae(Poaceae),withahighincidenceofintras- to genotypically small guard cells. pecific polyploidy, was the relationship not detected. Genome size and chromosome number. Two problems restrict the usefulness of published data. The first is accuracy, both DISCUSSION inmeasurementandtaxonomy.Thesecondrelatestocytology. Problems and conclusions A significant minority of species have cytotypes differing in ploidy and genome size (for examples, see Bennett and Beforeanyinterpretationoftheresults,thebasicdifficultiesin Leitch, 2005). Where necessary, taxa have been identified to acquiring and analysing data for a broad study of this type their subspecies and known relationships between ploidy and should be considered. These include the following. geographical distribution assessed. However, some groups D Intraspecific variation in stomatal size. Plants grow in hetero- [e.g. tribe Poeae (Poaceae), with a high incidence of intraspe- ow gsAl1Pwaeine9etsianydal8flar,e8csot;hrsyteeutaa,mrsBstvuiu2epseoclt0etntli,uih0crvnapraa0`ieethrrl;uvo-erNsinAanettnmaro,orebdortaenydlntnygmpenfttnuisehociknmsuapcaopnpmtnlfhidaadoepsectnrhtfrtiiDeieccnsdiaeegthrnayeuuMdss(ipmousLoinlDicaetnadscncrli,oalhttyiy,hxbomeluwfl2aeptnu0riaoc,dc0orrzt1intuw1t,a)lha9y.nam1t9ttiTe9un3ecrh8pg;toii4amcsltv;AiogpapplGhiollraleatenainsvcbieptninnioisltcaitiiiesintonnothytndy-f,.. clsmcfSaooiaafirarmlmlltcyyctperhplispibeoinsrgdeltogyon.bPpmibTlfiolieohaacemiitsaadsa.enalyAmtti(accaPlant.onyohdrdaWor,eceuxteeloggpaaehtlaesinauo)fliooesnnimpsnr,bseefeeeFcoarttircwvgeheta.xehxlteo5aueanfCtenm,stts.h,pdtoaeleaemnsrf,epeoatuiuthtapcerellyofllaotaioonudclrdryoka]gsgboiaeescfrntsaeuatoldlpmsyeiatefearfdttmoisi,csriiatztussine---, at Caob.oxfordjournals.orgnloaded from Taapnhpderoinixnt.rtar4as0ppoe%pciufiolacftitcohonemmpraaenragisneoninosfbthesettowsmeaeamntaplcleossuinz(edtraietwasanisnodttiycspahitocewadlnlya) enecaoortllyothgedicisvaaellmrygeibnapglhaydnlicocegodetsnseuwtbiceserebtaoliafnncsclpueed.ceFideo.srMwexaoasrmecophvloeesr,e,not,nhlteyhreetrheraeriees entro de Inform bPraoratidculcaorlryresepnocnoduernagceing(Fwige.reSv2aluines SfourppTlermifoelniutamryredpaetnas)., alilmmiotesdt nsoubdsaettaoffotrhtehewosprledcifleos-rraicchantreoapsiiclsy.lTehade tuosemoisflesuadchinga ación y D the onlyspecies common to all studyareas. Its mean stomatal average values of stomatal size for major taxa [see above, the ocum 1le6n.g4thanidn1S7p.a3inm,mA,rrgeesnpteinctai,veElnyg.land and Iran was 15.3, 16.2, cBoemauplaieriusoent aolf. (o2u0r08re)]s.uRltsepfroersenOtracthiviednaceessaeisafnudrthtehrosreedfurcoemd entación C scdwCthalrhatauaisrccasthicuofitrnlceaearlastwviloeewhnaseafotswhcfheellearraeacrfaksicsitnnottrregmour.lscalteWtauadnriedtow.hrIaenlrdrlefeiogsorsafsmerutdchantteekitdooeinnmwsotporanouunrccldtdtaeunrrptttaharlioebnbicoaiehcmbxahltrpyeeaomnchrtttieaacrvtnasoelt, iP2,itnsh0lea20unc5n%tso)kpmDnieosocpfNwiaaaeArnnsmisgCooffiooenn-rvasus,ptamurelberuereesmendptstwseacDlie(nteGaianvctrtaehehbligseyeato,vosreepm9ymr0eaaeest%ttaenalKn,tl.t.e7a,Nw7ns2etd%0uv(0deB,7gryet5)ehn4nafenorn%leoemdtmstseag,aneAnidnstdioriz5gnmeL3ec.enel%uitsTtidcnihzeohaeesf,, ientífica on April 27, 2011 been useful contributors to the ‘xeromorphic-mesomorphic Iran, Spain and England. axis’ (PCA axis 1), and the amount of non-photosynthetic water-storage tissue would have enhanced the ‘succulence Insufficient sampling of vernal geophytes. Vernal geophytes are axis’ (PCA axis 2). poorlyrepresentedwithinthefourflorasstudiedandconstitute Vacuolization of the guard cell. Genome size and nuclear and onlyaminorcomponentofthepresentdatabase.Moreover,in cell volume are positively correlated for non-vacuolated cells only nine families were there data for both vernal and non- (Bennett, 1972; Edwards and Endrizzi, 1975; Cavalier- vernal species. This is unfortunate. If we are to understand Smith, 2005; Sugiyama, 2005; Jovtchev et al., 2006). the ecological significance of large stomata, vernal geophytes However, the additional presence of a vacuole is essential for areakeyecologicalgrouping.Nevertheless,atpresentthedata stomatal functioning: the opening and closure of the stomatal are lacking to separate the phylogenetic and ecological deter- pore involves potentially large changes in vacuolar and cellu- minants of their stomatal size satisfactorily. lar volume (Willmer and Fricker, 1995). A deterministic Nevertheless, despite these problems, the following con- impact of vacuolar size on stomatal dimensions (i.e. the clusions can be drawn. absence of a close allometric relationship between guard cell size and the size of its cytoplasmic component) would (a) As with genome size (see Leitch et al., 1998), there are seriously undermine our rationale for examining the relation- clear lineage-specific differences in stomatal size. These ship between stomatal and genome size. Doubtless, there are interfamilial differences appear to dwarf those found differences in vacuolization both between species and within polyploid series (Fig. 4; Table S1 in between broader taxonomic groupings, and these will Supplementary Data, available online). 582 Hodgson et al. — Stomatal vs. genome size in angiosperms (b) Variationwasdetectedinstomatalsizealongthreeimpor- adjustments resulting in predominantly nocturnal stomatal tant ecological axes of leaf specialization: xeromorphic openinghavereducedtheimportanceofstomatalsizeasareg- (stomata small) vs. mesomorphic (large), non-succulent ulator of water-use efficiency and even in arid habitats CAM (small) vs. succulent (large) and ‘small’ (small) vs. species may have relatively large stomata. ‘largelamina’(large). Stomatalsizeisanimportantcom- C speciesgenerallyhavesmallerstomatareflectingdaytime 4 ponent of leaf specialization and patterns with respect to opening in arid habitats (Fig. 3), but the importance of size, C , CAM and life history (woody species,herbaceous both here and in C species, may be similarly complicated 4 3 species,vernal geophytes). by their mode of function: e.g. the ‘dumb-bell’ shape of (c) Becauseofitsrelativelyconsistentandstrongcorrelations stomata in Poaceae is a reflection of a mechanism by which with 2C DNA amount and its ecological importance, the subsidiary cells also change turgor, effectively relaxing as possibility that stomatal size is a key determinant of guardcellsinflate,offeringlessresistancetoguardcellmove- genome size in angiosperms deserves consideration. ment and allowing stomatal responses an order of magnitude faster than species with ‘kidney’ type stomata (Franks and Farquhar, 2007). Nonetheless, there remains a fundamental requirement Stomatalsize, akeydeterminantofgenomesizeinangiosperms? within the angiosperms for efficient stomatal conduction, and Beaulieu et al. (2008) argue that stomatal size is a conse- size undoubtedly plays a large part in this (‘throughout quence of genome size. However, since they do not identify biology size matters’; Cavalier-Smith, 2005). Genome size D whatactuallydeterminesgenomesize,wefindtheirarguments could potentially be an ultimate consequence of stomatal ow uaesswppixlnuzieeatcrSehecmoomltnfyrsitaunpvhClgmeeielnaescvcdntsorirateeunoeflvtimgvmieecce.rl.eaaoI-oltnSlplTarssmmostpsteiieuezeatunnhrendendts,al(dtiy2hwlbet0alorbbeets0iitf5ooasaaa)lchcndvohcodwaogoewpuyhmuttrohinaivgtetchnsersateefdealoartmetraeeoeapcdorntsophreo‘lreewWnoohmsgaachatcyoeefashrorctor-erhegtufovalestaenthtethrsbieeseedgnetiorfogcoffigbwrauercosmahpneiueteroipinovlrom;ieecnna.dyeae’r- soptLarihniinnaabzadrdreottegeisecenmrsodeuridmmoglogaruegperusllelaaayyncstr(esodoabotpunhetccisdheceieaeaslpttlueehrsaonsoducefrztsceeytuqigmhngmuuwereiaesurisraey‘tldhrtaneDomttrcihfoNeoenplrAltslearhio’rsoeogotfsege(fmimTreontnhoshaemirilamesaseogtssuaemetueinkqmlcenaasuattyrbaeiyanolbn(oyntLnochtdeliaeciciswcssaTiplcsamodaonregcadp,,pieciatenn11hytnhgo99i)ndwm98eeaf38areonr))yyesrt., at Caob.oxfordjournals.orgnloaded from (ateAnndadsiatnmotahhaaisveetstsuamdl.ya,l2lae0lrs0os1t;(oTmHaaebttlaheet2rhiBanngi)tsosinmpeiaclnaiedrssWpfreoocmoiedswdrfayrrodmh,a2bm0it0oa3rtes) (minPugrostiknobpeaoswuunpicipvhoerrtesetadlab‘lyk.,asru2yf0ofi0pc3lia)es.nmtCincyutcoralpetliaaors’mRwNichAepresrybonytethicneystisosyp,nlratehssmeusliitcs- entro de Inform mismessictoernevdiurocnemtreanntssp.irMatoiorneoalvelor,sstehse,sduecvhelaospCm4epnhtootfosmynetchheasnis- vLoalrugmerenduectleeramriennevselnoupcelseaarrevothluomugeht(Ctoavraelqiuerir-eSmthieth,ph2y0s0ic5a)l. ación y D andCAM,hasbeenarecurrentthemewithintheadaptiveradi- support of larger amounts of non-genic skeletal DNA, ulti- ocum aHtieothnerionfgtoanngainodspWermoosdw(aWrdo,o2d0w0a3r)d.,Ef1fi9c9i8en;t Rstaovmeant,al2fu0n0c2-; m20a0te5l)y. Cimonpvoesrisnegly,gerexatetenrsivgeenpormoteeinsizsyenth(Cesaivsalwieor-uSldmitbhe, entación C twciiohennicchiysamuaatnottterimorspphaoinrcdtaansnotgitpoorsoeprederqomuesissisdtteeopmoeafntdat.lhTesihzpueh.s,oIstwossatytoenmrt-huaetsaseilsesfiozfine- rfmeodaryusnmdfaaalvnleotruagrnednsmoumanleelesc.roTnghoeumnsioscmizfeeosrc.osnMmstiarnalilimngtusumtaordsgteocnmeolalmst,aelsfeuslinezccettiinoignn ientífica on A sdthuoefefisicnniteeongttrilanytdioiicmnatpoeofcrataaudnsitvaeltirotsye.rMeragnougrleaeoteovfegrp,ehsnyposemicoieleosgsisizcuear?vlifvCuanolcrrtreieoqlnautsiirooensf aspinoogtneisonstiopafellryma sgwmuhaearnydbtceheelelxcpaoetlclwtieshidoicntohorseftloagmteaasttoamtohopeleesrcmautleaelsleefswfitcidtiihemntetlhnye-, pril 27, 2011 whichphotosynthesisisonlyone.Stomatal sizeisnotaneco- guard cell walls dominates diffusion through the aperture logicallyandphysiologically‘standalone’character.Itwillbe (such ‘Knudsen diffusion’ becomes important for apertures subject to trade-offs with other ecologically important plant ,0.5–1mm; Leuning, 1983). Similarly, maximum genome attributes and may often have, at best, a subordinate impact size should be constrained by the speed of opening and upon genome size. closure of very large stomata. Take, for example, vernal geophytes, a grouping in which, Do such limits operate in practice? Unfortunately, it is not we suspect, endopolyploidy is uncommon (see Barrow and possible to be sure. For example, there are discrepancies Meister, 2003). Here, a large genome facilitates a form of between our own observations and established ideas on the ‘coolseasongrowth’inwhichcelldivisionandcellexpansion physiological and ecological significance of large stomata. It are uncoupled (see Grime and Mowforth, 1982). These vernal hadbeensuggestedthatverylargestomatafacilitatephotosyn- geophytes have large, ‘conductively inefficient’ stomata but thesis in deep shade (Hetherington and Woodward, 2003). In the cell size issues relevant to vernal growth appear to rep- this study, very large stomata were primarily associated with resent the main ecological determinant of genome size. vernal geophytes, which exploit either unshaded habitats or Depending on their level of endopolyploidy, succulent the ‘light phase’ of deciduous woodland before closure of CAM species may have similar ‘design conflicts’. Genome the canopy rather than with shade-tolerant, summer-green sizepotentiallyrepresentsasimpletrade-offbetweenselection woodland herbs (Table 2Bii). A revised assessment of where for large cells with large vacuoles (to store water and the and why large stomata occur is urgently required and, criti- organic acids accumulated nocturnally) and that for small cally, it needs to take into account the findings of Grime and stomata (to restrict transpiration). However, metabolic Mowforth (1982) – see above.
Description: