ebook img

Stochastic stability of differential equations in abstract spaces PDF

277 Pages·2019·1.34 MB·English
by  LiuKai
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic stability of differential equations in abstract spaces

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES ManagingEditor:ProfessorM.Reid,MathematicsInstitute, UniversityofWarwick,CoventryCV47AL,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,orfromCambridgeUniversityPressat www.cambridge.org/mathematics 347 Surveysincontemporarymathematics, N.YOUNG&Y.CHOI(eds) 348 Transcendentaldynamicsandcomplexanalysis, P.J.RIPPON&G.M.STALLARD(eds) 349 ModeltheorywithapplicationstoalgebraandanalysisI, Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY &A.WILKIE(eds) 350 ModeltheorywithapplicationstoalgebraandanalysisII, Z.CHATZIDAKIS,D.MACPHERSON, A.PILLAY&A.WILKIE(eds) 351 FinitevonNeumannalgebrasandmasas, A.M.SINCLAIR&R.R.SMITH 352 Numbertheoryandpolynomials, J.MCKEE&C.SMYTH(eds) 353 Trendsinstochasticanalysis, J.BLATH,P.MO¨RTERS&M.SCHEUTZOW(eds) 354 Groupsandanalysis, K.TENT(ed) 355 Non-equilibriumstatisticalmechanicsandturbulence, J.CARDY,G.FALKOVICH&K.GAWEDZKI 356 EllipticcurvesandbigGaloisrepresentations, D.DELBOURGO 357 Algebraictheoryofdifferentialequations, M.A.H.MACCALLUM&A.V.MIKHAILOV(eds) 358 Geometricandcohomologicalmethodsingrouptheory, M.R.BRIDSON,P.H.KROPHOLLER& I.J.LEARY(eds) 359 Modulispacesandvectorbundles, L.BRAMBILA-PAZ,S.B.BRADLOW,O.GARC´IA-PRADA& S.RAMANAN(eds) 360 Zariskigeometries, B.ZILBER 361 Words:Notesonverbalwidthingroups, D.SEGAL 362 Differentialtensoralgebrasandtheirmodulecategories, R.BAUTISTA,L.SALMERO´N&R.ZUAZUA 363 Foundationsofcomputationalmathematics,HongKong2008, F.CUCKER,A.PINKUS&M.J.TODD(eds) 364 Partialdifferentialequationsandfluidmechanics, J.C.ROBINSON&J.L.RODRIGO(eds) 365 Surveysincombinatorics2009, S.HUCZYNSKA,J.D.MITCHELL&C.M.RONEY-DOUGAL(eds) 366 Highlyoscillatoryproblems, B.ENGQUIST,A.FOKAS,E.HAIRER&A.ISERLES(eds) 367 Randommatrices:Highdimensionalphenomena, G.BLOWER 368 GeometryofRiemannsurfaces, F.P.GARDINER,G.GONZA´LEZ-DIEZ&C.KOUROUNIOTIS(eds) 369 Epidemicsandrumoursincomplexnetworks, M.DRAIEF&L.MASSOULIE´ 370 Theoryofp-adicdistributions, S.ALBEVERIO,A.YU.KHRENNIKOV&V.M.SHELKOVICH 371 Conformalfractals, F.PRZYTYCKI&M.URBAN´SKI 372 Moonshine:Thefirstquartercenturyandbeyond, J.LEPOWSKY,J.MCKAY&M.P.TUITE(eds) 373 Smoothness,regularityandcompleteintersection, J.MAJADAS&A.G.RODICIO 374 Geometricanalysisofhyperbolicdifferentialequations:Anintroduction, S.ALINHAC 375 Triangulatedcategories, T.HOLM,P.JØRGENSEN&R.ROUQUIER(eds) 376 Permutationpatterns, S.LINTON,N.RUSˇKUC&V.VATTER(eds) 377 AnintroductiontoGaloiscohomologyanditsapplications, G.BERHUY 378 Probabilityandmathematicalgenetics, N.H.BINGHAM&C.M.GOLDIE(eds) 379 Finiteandalgorithmicmodeltheory, J.ESPARZA,C.MICHAUX&C.STEINHORN(eds) 380 Realandcomplexsingularities, M.MANOEL,M.C.ROMEROFUSTER&C.T.CWALL(eds) 381 Symmetriesandintegrabilityofdifferenceequations, D.LEVI,P.OLVER,Z.THOMOVA& P.WINTERNITZ(eds) 382 Forcingwithrandomvariablesandproofcomplexity, J.KRAJ´ICˇEK 383 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryI, R.CLUCKERS, J.NICAISE&J.SEBAG(eds) 384 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryII, R.CLUCKERS, J.NICAISE&J.SEBAG(eds) 385 EntropyofhiddenMarkovprocessesandconnectionstodynamicalsystems, B.MARCUS,K.PETERSEN &T.WEISSMAN(eds) 386 Independence-friendlylogic, A.L.MANN,G.SANDU&M.SEVENSTER 387 GroupsStAndrews2009inBathI, C.M.CAMPBELLetal(eds) 388 GroupsStAndrews2009inBathII, C.M.CAMPBELLetal(eds) 389 Randomfieldsonthesphere, D.MARINUCCI&G.PECCATI 390 Localizationinperiodicpotentials, D.E.PELINOVSKY 391 Fusionsystemsinalgebraandtopology, M.ASCHBACHER,R.KESSAR&B.OLIVER 392 Surveysincombinatorics2011, R.CHAPMAN(ed) 393 Non-abelianfundamentalgroupsandIwasawatheory, J.COATESetal(eds) 394 Variationalproblemsindifferentialgeometry, R.BIELAWSKI,K.HOUSTON&M.SPEIGHT(eds) 395 Howgroupsgrow, A.MANN 396 Arithmeticdifferentialoperatorsoverthep-adicintegers, C.C.RALPH&S.R.SIMANCA 397 Hyperbolicgeometryandapplicationsinquantumchaosandcosmology, J.BOLTE&F.STEINER(eds) 398 Mathematicalmodelsincontactmechanics, M.SOFONEA&A.MATEI 399 Circuitdoublecoverofgraphs, C.-Q.ZHANG 400 Densespherepackings:ablueprintforformalproofs, T.HALES 401 AdoubleHallalgebraapproachtoaffinequantumSchur–Weyltheory, B.DENG,J.DU&Q.FU 402 Mathematicalaspectsoffluidmechanics, J.C.ROBINSON,J.L.RODRIGO&W.SADOWSKI(eds) 403 Foundationsofcomputationalmathematics,Budapest2011, F.CUCKER,T.KRICK,A.PINKUS &A.SZANTO(eds) 404 Operatormethodsforboundaryvalueproblems, S.HASSI,H.S.V.DESNOO&F.H.SZAFRANIEC(eds) 405 Torsors,e´talehomotopyandapplicationstorationalpoints, A.N.SKOROBOGATOV(ed) 406 Appalachiansettheory, J.CUMMINGS&E.SCHIMMERLING(eds) 407 Themaximalsubgroupsofthelow-dimensionalfiniteclassicalgroups, J.N.BRAY,D.F.HOLT& C.M.RONEY-DOUGAL 408 Complexityscience:theWarwickmaster’scourse, R.BALL,V.KOLOKOLTSOV&R.S.MACKAY(eds) 409 Surveysincombinatorics2013, S.R.BLACKBURN,S.GERKE&M.WILDON(eds) 410 Representationtheoryandharmonicanalysisofwreathproductsoffinitegroups, T.CECCHERINI-SILBERSTEIN,F.SCARABOTTI&F.TOLLI 411 Modulispaces, L.BRAMBILA-PAZ,O.GARC´IA-PRADA,P.NEWSTEAD&R.P.THOMAS(eds) 412 Automorphismsandequivalencerelationsintopologicaldynamics, D.B.ELLIS&R.ELLIS 413 Optimaltransportation, Y.OLLIVIER,H.PAJOT&C.VILLANI(eds) 414 AutomorphicformsandGaloisrepresentationsI, F.DIAMOND,P.L.KASSAEI&M.KIM(eds) 415 AutomorphicformsandGaloisrepresentationsII, F.DIAMOND,P.L.KASSAEI&M.KIM(eds) 416 Reversibilityindynamicsandgrouptheory, A.G.O’FARRELL&I.SHORT 417 Recentadvancesinalgebraicgeometry, C.D.HACON,M.MUSTAT¸A˘&M.POPA(eds) 418 TheBloch–KatoconjecturefortheRiemannzetafunction, J.COATES,A.RAGHURAM,A.SAIKIA& R.SUJATHA(eds) 419 TheCauchyproblemfornon-Lipschitzsemi-linearparabolicpartialdifferentialequations, J.C.MEYER& D.J.NEEDHAM 420 Arithmeticandgeometry, L.DIEULEFAITetal(eds) 421 O-minimalityandDiophantinegeometry, G.O.JONES&A.J.WILKIE(eds) 422 GroupsStAndrews2013, C.M.CAMPBELLetal(eds) 423 Inequalitiesforgrapheigenvalues, Z.STANIC´ 424 Surveysincombinatorics2015, A.CZUMAJetal(eds) 425 Geometry,topologyanddynamicsinnegativecurvature, C.S.ARAVINDA,F.T.FARRELL& J.-F.LAFONT(eds) 426 Lecturesonthetheoryofwaterwaves, T.BRIDGES,M.GROVES&D.NICHOLLS(eds) 427 RecentadvancesinHodgetheory, M.KERR&G.PEARLSTEIN(eds) 428 GeometryinaFre´chetcontext, C.T.J.DODSON,G.GALANIS&E.VASSILIOU 429 Sheavesandfunctionsmodulop, L.TAELMAN 430 RecentprogressinthetheoryoftheEulerandNavier–Stokesequations, J.C.ROBINSON,J.L.RODRIGO, W.SADOWSKI&A.VIDAL-LO´PEZ(eds) 431 Harmonicandsubharmonicfunctiontheoryontherealhyperbolicball, M.STOLL 432 Topicsingraphautomorphismsandreconstruction(2ndEdition), J.LAURI&R.SCAPELLATO 433 RegularandirregularholonomicD-modules, M.KASHIWARA&P.SCHAPIRA 434 Analyticsemigroupsandsemilinearinitialboundaryvalueproblems(2ndEdition), K.TAIRA 435 GradedringsandgradedGrothendieckgroups, R.HAZRAT 436 Groups,graphsandrandomwalks, T.CECCHERINI-SILBERSTEIN,M.SALVATORI& E.SAVA-HUSS(eds) 437 Dynamicsandanalyticnumbertheory, D.BADZIAHIN,A.GORODNIK&N.PEYERIMHOFF(eds) 438 Randomwalksandheatkernelsongraphs, M.T.BARLOW 439 Evolutionequations, K.AMMARI&S.GERBI(eds) 440 Surveysincombinatorics2017, A.CLAESSONetal(eds) 441 Polynomialsandthemod2SteenrodalgebraI, G.WALKER&R.M.W.WOOD 442 Polynomialsandthemod2SteenrodalgebraII, G.WALKER&R.M.W.WOOD 443 Asymptoticanalysisingeneralrelativity, T.DAUDE´,D.HA¨FNER&J.-P.NICOLAS(eds) 444 Geometricandcohomologicalgrouptheory, P.H.KROPHOLLER,I.J.LEARY,C.MART´INEZ-PE´REZ& B.E.A.NUCINKIS(eds) 445 Introductiontohiddensemi-Markovmodels, J.VANDERHOEK&R.J.ELLIOTT 446 Advancesintwo-dimensionalhomotopyandcombinatorialgrouptheory, W.METZLER& S.ROSEBROCK(eds) 447 Newdirectionsinlocallycompactgroups, P.-E.CAPRACE&N.MONOD(eds) 448 Syntheticdifferentialtopology, M.C.BUNGE,F.GAGO&A.M.SANLUIS 449 Permutationgroupsandcartesiandecompositions, C.E.PRAEGER&C.SCHNEIDER 450 Partialdifferentialequationsarisingfromphysicsandgeometry, M.BENAYEDetal(eds) 451 Topologicalmethodsingrouptheory, N.BROADDUS,M.DAVIS,J.-F.LAFONT&I.ORTIZ(eds) 452 Partialdifferentialequationsinfluidmechanics, C.L.FEFFERMAN,J.C.ROBINSON&J.L.RODRIGO(eds) 453 Stochasticstabilityofdifferentialequationsinabstractspaces, K.LIU 454 Beyondhyperbolicity, M.HAGEN,R.WEBB&H.WILTON(eds) 455 GroupsStAndrews2017inBirmingham, C.M.CAMPBELLetal(eds) LondonMathematicalSocietyLectureNoteSeries:453 Stochastic Stability of Differential Equations in Abstract Spaces KAI LIU TianjinNormalUniversity and UniversityofLiverpool UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108705172 DOI:10.1017/9781108653039 ©CambridgeUniversityPress2019 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2019 PrintedandboundinGreatBritainbyClaysLtd,ElcografS.p.A. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Liu,Kai,1964–author. Title:Stochasticstabilityofdifferentialequationsinabstractspaces/ KaiLiu(UniversityofLiverpool). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,2019.| Series:LondonMathematicalSocietylecturenoteseries;453| Includesbibliographicalreferencesandindex. Identifiers:LCCN2018049978|ISBN9781108705172(pbk.) Subjects:LCSH:Stochasticdifferentialequations.|Differentialequations,Linear.| Differentialequations,Nonlinear.|Algebraicspaces.|Stability.|Geometry,Algebraic. Classification:LCCQA274.23.L58252019|DDC515/.35–dc23 LCrecordavailableathttps://lccn.loc.gov/2018049978 ISBN978-1-108-70517-2Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pagevii 1 Preliminaries 1 1.1 LinearOperators,Semigroups,andExamples 1 1.2 StochasticProcessesandMartingales 16 1.3 WienerProcessesandStochasticIntegration 22 1.4 StochasticDifferentialEquations 26 1.5 DefinitionsandMethodsofStochasticStability 35 1.6 NotesandComments 44 2 StabilityofLinearStochasticDifferentialEquations 46 2.1 DeterministicLinearSystems 46 2.2 LyapunovEquationsandStochasticStability 61 2.3 SystemswithBoundaryNoise 82 2.4 ExponentiallyStableStationarySolutions 88 2.5 SomeExamples 92 2.6 NotesandComments 95 3 StabilityofNonlinearStochasticDifferentialEquations 98 3.1 AnExtensionofLinearStabilityCriteria 98 3.2 ComparisonApproach 105 3.3 NonautonomousStochasticSystems 108 3.4 StabilityinProbabilityandSamplePath 122 3.5 LyapunovFunctionCharacterization 131 3.6 TwoApplications 143 3.7 InvariantMeasuresandUltimateBoundedness 150 3.8 DecayRate 159 3.9 StabilizationofSystemsbyNoise 168 3.10 NotesandComments 175 v vi Contents 4 StabilityofStochasticFunctionalDifferentialEquations 178 4.1 DeterministicSystems 178 4.2 LinearSystemswithAdditiveNoise 192 4.3 LinearSystemswithMultiplicativeNoise 196 4.4 StabilityofNonlinearSystems 206 4.5 NotesandComments 223 5 SomeApplicationsRelatedtoStochasticStability 226 5.1 ApplicationsinMathematicalBiology 226 5.2 ApplicationsinMathematicalPhysics 232 5.3 ApplicationsinStochasticControl 239 5.4 NotesandComments 243 Appendix 245 A ProofofTheorem4.1.5 245 B ProofofProposition4.1.7 247 C ProofofProposition4.1.10 248 D ProofofProposition4.1.14 250 References 252 Index 265 Preface The aim of this book is to give a basic and systematic account of stability theoryofstochasticdifferentialequationsinHilbertspacesanditsapplication topracticalstochasticsystemssuchasastochasticpartialdifferentialequation (SPDE). I have tried to organize the main content into an easily accessible mono- graph after a brief review of some preliminary material. I begin my account in Chapter 1 by recalling some notions and notations from the theory of stochasticdifferentialequationsinHilbertspaces.Somefundamentalconcepts suchasQ-Wienerprocess,stochasticintegration,strongormildsolutionwill bereviewedcarefully.Mosttheoremsorpropositionsarestatedwithoutproofs here. However, I will present those proofs of results that are not available in theexistingbooksandaretobefoundscatteredintheliterature. Chapter2ofthisbookisdevotedtoadetaileddevelopmentofstabilitythe- oryforlinearstochasticevolutionequations.Thecentralpartisaformulation of the characteristic conditions for mean square and almost sure exponential stabilityintermsoftheLyapunovtypeofequations. In Chapter 3, I mainly focus on the development of a stability property for a wide class of nonlinear stochastic differential equations. This chapter containsbasictheoryandillustrativeexamplesinconnectionwiththestability behaviorofnonlinearstochasticsystems.Inparticular,Igeneralizethoselinear characteristic results from Chapter 2 in an appropriate way to obtain some nonlinear versions for semi-linear stochastic evolution equations. Motivated by the idea of reducing the stability problem of nonlinear stochastic systems tothecorrespondingoneoflinearsystems,Ideveloptheso-calledLyapunov functioncharacterizationmethodandexploretheassociatedfirst-orderapprox- imationtechniques.Otherinterestingtopicssuchasnon-exponentialdecayor stabilizationbynoiseofsystemsarealsoconsidered. vii viii Preface Chapter4isastatementofstabilitytheoryforstochasticfunctionaldiffer- entialequations.Generallyspeaking,itisanaturalideatoextendtheso-called Lyapunov function theory in the previous chapters to develop a Lyapunov functional type of scheme for time delay stochastic systems although this programcanfrequentlybecomefrustrating.Toavoidtheunderlyingdifficulty, Iemphasizeinlinearcasestheso-calledfundamentalsolutionsandassociated lift-up methods. For nonlinear systems, I introduce various approaches such asafixed-pointtheoremorRazumikhinfunctionmethodtohandlestochastic stabilityproblems. In Chapter 5, I present selected applications in which the choice of the materialreflectsmyownpersonalpreference.Herethetreatmentissomewhat sketchy and by no means the only way or even the most appropriate way. The purpose of my account is a desire to present some practical topics such as stochastic optimal control or stochastic population dynamics, beyond the mainschemeofthebook,buthavingarelationtostabilitytheoryofstochastic evolution equations. It is also hoped that the selected presentation here will stimulatefurtherworkintheseandrelatedfields. Notes and Comments at the end of each chapter contain historical and related background material as well as references to the results discussed in that chapter. The pervading influence of a variety of authors’ work in this book is obvious. I have drawn freely on their work and hopefully I can acknowledge my scientific debts to them by some remarks shown there. It should be emphasized that my choice of material in this book is highly subjective. In particular, this book is organized only to cover stability theory of stochastic models with white noise and a number of specific topics are not treated. For instance, I do not consider stochastic equations driven by a jumpprocessorfractionalBrownianmotion.Fortimedelaysystems,Idonot treatstochasticfunctionaldifferentialequationsofinfinitetimelagorneutral type.Eachofthosesubjectswouldrequireseveraladditionalchapters.Onthe other hand, the lengthy list of references at the end of the book is somewhat incompleteandonlyincludesthosetitleswhichpertaindirectlytothecontent. The author wishes to apologize to those researchers whose work might have beenoverlooked. Thecurrentvolumeisanoutgrowthoftheauthor’sbookStabilityofInfinite DimensionalStochasticDifferentialEquationswithApplicationspublishedby Chapman & Hall/CRC in 2006. Since its publication, many new results have appearedandsignificantprogresshasbeenmadeinthisexcitingresearchfield. Most ingredients in the author’s old version are maintained as the skeleton of the present volume. But they are reorganized and integrated with much materialdevelopedinthelastdecadetoreflectnewdevelopmentsandupdate theexistingresults. Preface ix I would like to thank all those who helped in the realization of this book through encouragement, advice, or scientific exchanges: Jianhai Bao, Joris Bierkens, Toma´s Caraballo, Mar´ıa Garrido-Atienza, Anna Kwiecin´ska, Vidyadhar Mandrekar, Xuerong Mao, Bohdan Maslowski, Michael Scheut- zow,TakeshiTaniguchi,AubreyTruman,Feng-YuWang,WeiWang,George Yin, and Chenggui Yuan. I am extremely grateful to Professor Peter Giblin for his language comments which have led to a significant improvement of my presentation. My special thanks go to Professor Pao-Liu Chow and Professor Jerzy Zabczyk whose warm assistance and concern has provided lastingsupportatvariousstagesofmyacademiccareer.Lastbutcertainlynot least, I want to thank my wife and daughter, Lihong and Annie, who had to putupwithmebeingevenmore“random”duringthepreparationofthisbook thanusual.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.