ebook img

Stochastic Reachability Analysis of Hybrid Systems PDF

250 Pages·2012·3.143 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic Reachability Analysis of Hybrid Systems

Communications and Control Engineering SeriesEditors (cid:2) (cid:2) (cid:2) (cid:2) A.Isidori J.H.vanSchuppen E.D.Sontag M.Thoma M.Krstic Forfurthervolumes: www.springer.com/series/61 Luminita Manuela Bujorianu Stochastic Reachability Analysis of Hybrid Systems LuminitaManuelaBujorianu SchoolofMathematics UniversityofManchester Manchester UK ISSN0178-5354 CommunicationsandControlEngineering ISBN978-1-4471-2794-9 e-ISBN978-1-4471-2795-6 DOI10.1007/978-1-4471-2795-6 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2012932743 MathematicsSubjectClassification(2010): 60J27,60J25,60J35,60J40,60J60,60K15,62F15,60G40, 32U20,93C30,34A38,49J40,49J55,49L20,49L25,35J99,47B34,45H05 ©Springer-VerlagLondonLimited2012 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) In memoryofElenaand Constanta Preface Theconceptofhybridsystemsisamathematicalmodelforreallifesystemswhose behaviourinvolvesamixtureofdiscreteandcontinuousdynamics.Suchsystemsare everywhere around us, from the simple bouncing ball to sophisticated cars, trains, planes and robots. Basically, every form of life exhibits a hybrid dynamics. Most physical and meteorological phenomena exhibit a hybrid dynamics. For scientists andengineers,thesystemsofinterestarethoseforwhichthediscreteandcontinu- ousdynamicsinteractorareconnected.Thisinteractioncantakemanyforms,but themostcommononeoccurswhendiscrete/digitalcontrollersswitchbetweendif- ferentcontinuousprocesses.Otherformsofinteractionincludediscretetransitions thatdependoncontinuousevolutions,orotherappearasresultofadecisionprocess, orbecauseoftheoccurrenceofcertainevents.Thesesystemsarenotgivenadistinct name.Mostrecently,thetermcyber-physicalsystemshasbeenproposedtodenote collectionsofsuchinteractingsystemsasnetworkedormulti-agenthybridsystems. Although many engineered systems exhibit a mixture of discrete and continuous dynamics,inmanycasestheunderlyingmathematicalmodelisnotahybridsystem. Wehavetopointoutherethathybridsystemsdenoteafamilyofmathematicalmod- els, but real life systems are traditionally developedusing either continuous-based mathematical models (as in control engineering), or discrete-based mathematical models(asincomputerscience).Methodsbasedonhybridsystemscanbeapplied straightforwardlytopracticalsystems.Thisiswhysystemengineeringthatuseshy- briddiscretecontinuousmodels(i.e.hybridsystems)hasbeensubjecttointensive researchinthepasttwodecades. Researchinhybridsystemsisusuallygoaloriented.Forexample,inlifesciences, hybridsystemsareusedmainlyformodellingandanalysis.Incontrolengineering, the main emphasis is on design, optimisation, analysis and control synthesis. In computer science, the major focus is on modelling and formal verification. Con- sequently, three major specialisations of the hybrid system concept arose: hybrid dynamicalsystems,hybridcontrolsystemsandhybridautomata. Traditionally, hybrid systems have been proposed as a modelling paradigm for embeddedsystems.Embeddedsystemsrepresentanengineeringparadigmforelec- tronic systems operating in physical, often harsh environments. The simplest way vii viii Preface toobtainahybridmodelforanembeddedsystemistomodeltheelectricsystemas adiscreteautomatonandtheenvironmentasaphysicalprocessgovernedbysome differentialequations.Inmanycases,theelectronicsystemisahybridsystemitself andthentheembeddedsystemismodelledasahybridsystemoperatinginaphys- icalenvironment.Thisisthecaseformostautomotivesystems.Forexample,acar oraplanehasmanyelectroniccontrollersthatcanswitchbetweendifferentmodes ofoperationofaphysicaldeviceaccordingtotheenvironmentevolution. Modernapplicationsofhybridsystemshavebecomeincreasinglycomplex.The complexity is due to rich interactions, complicated dynamics, randomness of en- vironment, uncertainty of measurements and tolerance to faults. Traditionally, the way one reduces system complexity is by employing stochastics. Randomisation hasbecomeastandardmethodinmodellingandanalysisofcomplexsystems.The standardtheoryofstochasticprocesses hasthreemajoravenues:theabstractcase, which is then specialised to the discrete case, and the continuous case. One could easilyremarkthatthehybriddiscretecontinuouscaseismissinginmathematicalor engineeringorientedtextbooks.Infact,hybridstochasticsstarteddevelopingonly inthepastdecade. Thepurposeofthisbookistopresentrecentdevelopmentsintheuseofhybrid discretecontinuousstochasticmodellingfortheanalysisofembeddedsystems.The book is based on an interdisciplinary perspective that can be used in control en- gineering and computer and life sciences. The modelling aspect is now known as thetheoryofstochastichybridsystems.Theanalysisaspectisknownasstochastic reachability. Stochastic hybrid systems constitute a family of models that resulted fromvarioustypesofrandomisationofhybridsystems.Therearemanywaystoin- troducerandomnessinamodel.Thereareprobabilistichybridsystemswithproba- bilitydistributionsassociatedonlywithdiscretetransitions.Otherstochasticmodels considerthenoisethatperturbsthecontinuousevolutions.Inthemostgeneralform, astochastichybridsystemconsidersprobabilitydistributionsforbothdiscreteand continuoustransitions,andmoreoverthesedistributionscandependoneachother. Thesimplestformofstochastichybridsystemswasintroducedincontrolengineer- ing three decades ago, and in mathematics even earlier. The most general form of stochastichybridsystemswasintroducedinthelastdecade,motivatedbyproblems inairtrafficcontrol.Indeed,aturbulentenvironmentcanproduceasignificantdevi- ationofaplanetrajectoryfromitsdesignatedflightplan.Inordertopreventserious problems like sector intrusions or collisions, corrective actions have to be taken. Suchsituationsaredescribedwithhighaccuracybystochastichybridsystems. Theanalysisofstochastichybridsystemsisveryimportantsinceitisusedinall activitiesrelatedtosystemengineering.Aspecifictypeofanalysisisdevelopedin thiscontext.Itiscalledstochasticreachabilityanalysisanditadmitsaneatmathe- maticalformulation:Evaluatetheprobabilitythatthesystemstartingfromagiven initialstatecanreachatargetstateset. Inthecaseofdiscretesystems,thismathematicalformulationdescribesthewell established conceptof transient analysis of Markov chains (or probabilisticmodel checking).Inthecontinuouscase,thisproblemisrelatedtotheclassicaltheoryof hitting probabilities, or first passage times. In the hybrid case, the system exhibits Preface ix behavioursthatviolateallthepropertiesthatareknownindiscreteandcontinuous cases. Consequently, none of the classical methods can be directly applicable to hybridsystems. The research goal in stochastic reachability analysis is twofold: to invent new specificmethodsortodevelopwaystoapplytheexistingmethodsfromthediscrete andcontinuouscases.Thisbodyofresearchisthesubjectofthisbook.Currently, no book is dedicated to stochastic reachability for hybrid systems. This book is ideal for postgraduate students, offering complete background, the state of the art in research, case studies and many open problems. Practitioners (engineers) will findthisbookusefulastheyattempttoconstructmorereliableflexibleandrobust systems.Althoughthebookisintendedasasolidtheoreticalpresentation,thereare manyindicationsonhowonemayobtaintoolsupport.Thetopictreatedinthisbook isahighlyinterdisciplinaryarea,soknowledgeofmultipledisciplinesisrequired. Thebookisself-containedanditaddressespostgraduatestudents,researchersand practitionersfromcontrolengineering,computerscience,andappliedmathematics. Iwouldliketothankmanypeoplewhomadethisbookpossible.First,Iexpress mygratitudetoSpringereditors,OliverJacksonandKathyMcKenzie.Oliverspot- tedtheneedforamonographtointroducestochasticreachabilityanalysistoawider audience,andhechallengedmetowritesuchabook.Hispatienceandconstanten- couragementhavebeeninvaluableforitscompletion.Kathyhassopatientlystud- iedthemanuscriptastosuggestdozenofimprovements.Mostimportantly,Iwould like to thank Professor John Lygeros for introducing me to the area of stochastic hybrid systems. I am indebted to Savi Maharaj, Henk Blom, Rom Langerak, Hol- gerHermanns,JianghaiHu,XenofonKoutsoukos,MariaPrandini,AlesandroGiua and Joost-Pieter Katoen for fruitful collaboration and discussion. I also thank all colleagues from the Hybridge project for their role in introducing the stochastic reachabilityanalysisconcept.ProfessorDaveBroomheadmademeevaluatethisre- searchinamultidisciplinarycontext,withsupportprovidedbytheCICADAproject attheUniversityofManchester.Thankyou,Dave,forthreeyearsatManchesterand contagiousenthusiasm! Last,butnotleast,Ithankmyfamilyfortheirimmensesupport! Manchester,UK LuminitaManuelaBujorianu Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 MarkovModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 DiscreteSpaceMarkovModels . . . . . . . . . . . . . . . . . . . 5 2.2.1 DiscreteTimeMarkovChains . . . . . . . . . . . . . . . . 5 2.2.2 ContinuousTimeMarkovChains . . . . . . . . . . . . . . 7 2.3 ContinuousSpaceMarkovModels . . . . . . . . . . . . . . . . . 11 2.3.1 StrongMarkovProcesses . . . . . . . . . . . . . . . . . . 14 2.3.2 ContinuousProcesses . . . . . . . . . . . . . . . . . . . . 15 2.3.3 DiscontinuousProcesses. . . . . . . . . . . . . . . . . . . 18 2.4 MarkovProcessCharacterisations . . . . . . . . . . . . . . . . . . 21 2.4.1 OperatorMethods . . . . . . . . . . . . . . . . . . . . . . 21 2.4.2 KolmogorovEquations . . . . . . . . . . . . . . . . . . . 25 2.4.3 MartingaleProblemandExtendedGenerator . . . . . . . . 26 2.5 SomeRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 HybridSystems:DeterministictoStochasticPerspectives . . . . . . 31 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 DeterministicHybridSystems . . . . . . . . . . . . . . . . . . . . 32 3.2.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 RandomnessIssueswhenModellingHybridSystems . . . . . . . 40 3.3.1 ProbabilisticHybridAutomata . . . . . . . . . . . . . . . 41 3.3.2 PiecewiseDeterministicMarkovProcesses . . . . . . . . . 42 3.3.3 StochasticHybridSystems . . . . . . . . . . . . . . . . . 45 3.3.4 SwitchingDiffusionProcesses . . . . . . . . . . . . . . . 47 3.3.5 GeneralSwitchingDiffusionProcesses . . . . . . . . . . . 49 3.3.6 AnalysisofStochasticHybridSystems . . . . . . . . . . . 51 3.4 SomeRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 xi xii Contents 4 StochasticHybridSystems . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 GeneralStochasticHybridSystems . . . . . . . . . . . . . . . . . 56 4.2.1 InformalPresentation . . . . . . . . . . . . . . . . . . . . 57 4.2.2 TheMathematicalModel . . . . . . . . . . . . . . . . . . 58 4.2.3 FormalDefinitions . . . . . . . . . . . . . . . . . . . . . . 61 4.3 MarkovString . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3.1 InformalDescription. . . . . . . . . . . . . . . . . . . . . 63 4.3.2 TheComponents . . . . . . . . . . . . . . . . . . . . . . . 64 4.3.3 PiecingoutMarkovProcesses . . . . . . . . . . . . . . . . 69 4.3.4 BasicProperties . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 StochasticHybridProcesses . . . . . . . . . . . . . . . . . . . . . 77 4.5 ExamplesofStochasticHybridSystems . . . . . . . . . . . . . . 81 4.5.1 Single-ServerQueues . . . . . . . . . . . . . . . . . . . . 81 4.5.2 AHybridManufacturingSystemModel . . . . . . . . . . 82 4.5.3 ASimplifiedModelofaTruckwithFlexibleTransmission 83 4.5.4 TheStochasticThermostat . . . . . . . . . . . . . . . . . 84 4.6 SomeRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 StochasticReachabilityConcepts . . . . . . . . . . . . . . . . . . . . 87 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 StochasticHybridControl . . . . . . . . . . . . . . . . . . . . . . 87 5.3 StochasticReachabilityProblem . . . . . . . . . . . . . . . . . . 89 5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.2 MathematicalFormulation. . . . . . . . . . . . . . . . . . 91 5.4 MeasurabilityResults . . . . . . . . . . . . . . . . . . . . . . . . 92 5.5 DifferentMeasuresAssociatedwithStochasticReachability . . . . 93 5.5.1 HittingDistributions . . . . . . . . . . . . . . . . . . . . . 94 5.5.2 ExitDistributions . . . . . . . . . . . . . . . . . . . . . . 96 5.5.3 OccupationMeasure . . . . . . . . . . . . . . . . . . . . . 97 5.5.4 OccupationTimeDistribution . . . . . . . . . . . . . . . . 98 5.5.5 ImpreciseProbability . . . . . . . . . . . . . . . . . . . . 98 5.5.6 RéduiteandBalayage . . . . . . . . . . . . . . . . . . . . 101 5.6 SomeRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6 ProbabilisticMethodsforStochasticReachability . . . . . . . . . . . 105 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 ReachabilityEstimationviaHittingTimes . . . . . . . . . . . . . 105 6.2.1 HittingDistributionsforMarkovChains . . . . . . . . . . 105 6.2.2 HittingDistributionsofGSHSs . . . . . . . . . . . . . . . 110 6.3 ReachabilityEstimationviaTransitionSemigroup . . . . . . . . . 111 6.3.1 TheCaseofaMarkovChain . . . . . . . . . . . . . . . . 112 6.3.2 TheCaseofaMarkovProcess . . . . . . . . . . . . . . . 113 6.3.3 TheCaseofaStochasticHybridProcess . . . . . . . . . . 114 6.4 ReachabilityEstimationviaMartinCapacities . . . . . . . . . . . 115 6.4.1 MartinCapacity . . . . . . . . . . . . . . . . . . . . . . . 116 Contents xiii 6.4.2 TheCaseofaMarkovChain . . . . . . . . . . . . . . . . 116 6.4.3 TheCaseofBrownianMotion. . . . . . . . . . . . . . . . 117 6.4.4 TheCaseofaMarkovProcess . . . . . . . . . . . . . . . 117 6.5 ReachabilityEstimationviaMartingaleTheory . . . . . . . . . . . 122 6.5.1 MethodBasedontheMartingaleProblem . . . . . . . . . 122 6.5.2 MethodBasedonMartingaleInequalities . . . . . . . . . . 124 6.5.3 MethodBasedontheBarrierCertificates . . . . . . . . . . 126 6.6 ReachabilityEstimationviaQuadraticForms . . . . . . . . . . . . 129 6.6.1 TargetSets . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.2 DirichletForms . . . . . . . . . . . . . . . . . . . . . . . 130 6.6.3 InducedDirichletForms . . . . . . . . . . . . . . . . . . . 130 6.6.4 UpperBoundsforReachSetProbabilities . . . . . . . . . 132 6.7 SomeRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7 AnalyticMethodsforStochasticReachability . . . . . . . . . . . . . 135 7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2 RéduiteandOptimalStopping. . . . . . . . . . . . . . . . . . . . 135 7.3 StochasticReachabilityasanOptimalStoppingProblem. . . . . . 136 7.4 OptimalStoppingProblemforBorelRightProcesses . . . . . . . 137 7.5 MethodsBasedonExcessiveFunctionRepresentations . . . . . . 138 7.5.1 HowtheMethodWorksforStochasticHybridSystems . . 141 7.6 VariationalInequalitiesforStochasticReachability(I) . . . . . . . 145 7.7 OptimalStoppingProblemasanObstacleProblem . . . . . . . . . 147 7.8 EnergyForm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.8.1 EnergyFormAssociatedtoaBorelRightProcess . . . . . 150 7.9 VariationalInequalitiesonHilbertSpaces . . . . . . . . . . . . . . 151 7.10 VariationalInequalitiesforStochasticReachability(II). . . . . . . 154 7.10.1 ReachabilityforDiffusionProcesses . . . . . . . . . . . . 155 7.10.2 ReachabilityforJumpProcesses . . . . . . . . . . . . . . 156 7.11 Hamilton–Jacobi–BellmanEquations . . . . . . . . . . . . . . . . 157 7.12 SomeRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 8 StatisticalMethodstoStochasticReachability . . . . . . . . . . . . . 163 8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 8.2 ImpreciseProbabilities. . . . . . . . . . . . . . . . . . . . . . . . 164 8.2.1 ChoquetIntegral . . . . . . . . . . . . . . . . . . . . . . . 165 8.2.2 Bayes’TheoremforCapacities . . . . . . . . . . . . . . . 165 8.3 CapacitiesandStochasticReachability . . . . . . . . . . . . . . . 167 8.3.1 CapacitiesAssociatedtoGSHSRealisations . . . . . . . . 167 8.3.2 TheGeneralisedBayesRuleforStochasticReachability . . 169 8.3.3 ComputingReachSetProbabilities . . . . . . . . . . . . . 170 8.4 SomeRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9 StochasticReachabilityBasedonProbabilisticBisimulation . . . . . 173 9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 9.2 StochasticEquivalence . . . . . . . . . . . . . . . . . . . . . . . 174 9.3 StochasticBisimulation . . . . . . . . . . . . . . . . . . . . . . . 176

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.