ebook img

Stochastic Programming PDF

326 Pages·2003·1.851 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic Programming

Stochastic Programming Second Edition Peter Kall Institutefor Operations Research and Mathematical Methods of Economics University of Zurich CH-8044 Zurich Stein W. Wallace Molde UniversityCollege P.O. Box 2110 N-6402 Molde, Norway Reference to this text is “Peter Kall and Stein W. Wallace, Stochastic Programming, John Wiley & Sons, Chichester, 1994”. The text is printed with permission from the authors. The publisher reverted the rights to the authorsonFebruary4,2003.Thistextisslightlyupdatedfromthe published version. ii STOCHASTICPROGRAMMING Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 A numerical example . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Scenario analysis . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Using the expected value of p . . . . . . . . . . . . . . . 3 1.1.4 Maximizing the expected value of the objective . . . . . 4 1.1.5 The IQ of hindsight . . . . . . . . . . . . . . . . . . . . 5 1.1.6 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Stochastic Programs:General Formulation . . . . . . . . . . . . 21 1.4.1 Measures and Integrals. . . . . . . . . . . . . . . . . . . 21 1.4.2 Deterministic Equivalents . . . . . . . . . . . . . . . . . 31 1.5 Properties of Recourse Problems . . . . . . . . . . . . . . . . . 36 1.6 Properties of Probabilistic Constraints . . . . . . . . . . . . . . 46 1.7 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . 53 1.7.1 The Feasible Set and Solvability . . . . . . . . . . . . . 54 1.7.2 The Simplex Algorithm . . . . . . . . . . . . . . . . . . 64 1.7.3 Duality Statements . . . . . . . . . . . . . . . . . . . . . 70 1.7.4 A Dual Decomposition Method . . . . . . . . . . . . . . 75 1.8 Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . . 80 1.8.1 The Kuhn–Tucker Conditions . . . . . . . . . . . . . . . 83 1.8.2 Solution Techniques . . . . . . . . . . . . . . . . . . . . 89 1.8.2.1 Cutting-plane methods . . . . . . . . . . . . . 90 1.8.2.2 Descent methods . . . . . . . . . . . . . . . . . 93 1.8.2.3 Penalty methods . . . . . . . . . . . . . . . . . 97 1.8.2.4 Lagrangianmethods . . . . . . . . . . . . . . . 98 1.9 Bibliographical Notes. . . . . . . . . . . . . . . . . . . . . . . . 102 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 iv STOCHASTICPROGRAMMING References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2 Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 2.1 The Bellman Principle . . . . . . . . . . . . . . . . . . . . . . . 110 2.2 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . 117 2.3 Deterministic Decision Trees. . . . . . . . . . . . . . . . . . . . 121 2.4 Stochastic Decision Trees . . . . . . . . . . . . . . . . . . . . . 124 2.5 Stochastic Dynamic Programming . . . . . . . . . . . . . . . . 130 2.6 Scenario Aggregation . . . . . . . . . . . . . . . . . . . . . . . . 134 2.6.1 Approximate Scenario Solutions . . . . . . . . . . . . . 141 2.7 Financial Models . . . . . . . . . . . . . . . . . . . . . . . . . . 141 2.7.1 The Markowitz’ model . . . . . . . . . . . . . . . . . . . 142 2.7.2 Weak aspects of the model . . . . . . . . . . . . . . . . 143 2.7.3 More advanced models . . . . . . . . . . . . . . . . . . . 145 2.7.3.1 A scenario tree . . . . . . . . . . . . . . . . . . 145 2.7.3.2 The individual scenario problems. . . . . . . . 145 2.7.3.3 Practicalconsiderations . . . . . . . . . . . . . 147 2.8 Hydro power production . . . . . . . . . . . . . . . . . . . . . . 147 2.8.1 A small example . . . . . . . . . . . . . . . . . . . . . . 148 2.8.2 Further developments . . . . . . . . . . . . . . . . . . . 150 2.9 The Value of Using a Stochastic Model . . . . . . . . . . . . . . 151 2.9.1 Comparing the Deterministic and Stochastic Objective Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2.9.2 Deterministic Solutions in the Event Tree . . . . . . . . 152 2.9.3 Expected Value of Perfect Information . . . . . . . . . . 154 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 3 Recourse Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 159 3.1 Outline of Structure . . . . . . . . . . . . . . . . . . . . . . . . 159 3.2 The L-shaped Decomposition Method . . . . . . . . . . . . . . 161 3.2.1 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . 161 3.2.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . 168 3.3 Regularized Decomposition . . . . . . . . . . . . . . . . . . . . 173 3.4 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 3.4.1 The Jensen Lower Bound . . . . . . . . . . . . . . . . . 179 3.4.2 Edmundson–Madansky Upper Bound . . . . . . . . . . 181 3.4.3 Combinations . . . . . . . . . . . . . . . . . . . . . . . . 184 3.4.4 A Piecewise Linear Upper Bound . . . . . . . . . . . . . 185 3.5 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 3.5.1 Refinementsoftheboundsonthe“Wait-and-See”Solution190 3.5.2 Using the L-shaped Method within Approximation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 3.5.3 What is a Good Partition? . . . . . . . . . . . . . . . . 203 CONTENTS v 3.6 Simple Recourse . . . . . . . . . . . . . . . . . . . . . . . . . . 205 3.7 Integer First Stage . . . . . . . . . . . . . . . . . . . . . . . . . 209 3.7.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . 216 3.7.2 Feasibility Cuts . . . . . . . . . . . . . . . . . . . . . . . 216 3.7.3 Optimality Cuts . . . . . . . . . . . . . . . . . . . . . . 217 3.7.4 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . 217 3.8 Stochastic Decomposition . . . . . . . . . . . . . . . . . . . . . 217 3.9 Stochastic Quasi-GradientMethods. . . . . . . . . . . . . . . . 225 3.10 Solving Many Similar Linear Programs . . . . . . . . . . . . . . 229 3.10.1 Randomness in the Objective . . . . . . . . . . . . . . . 232 3.11 Bibliographical Notes. . . . . . . . . . . . . . . . . . . . . . . . 233 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 4 Probabilistic Constraints . . . . . . . . . . . . . . . . . . . . . . 243 4.1 Joint Chance Constrained Problems . . . . . . . . . . . . . . . 245 4.2 Separate Chance Constraints . . . . . . . . . . . . . . . . . . . 247 4.3 Bounding Distribution Functions . . . . . . . . . . . . . . . . . 249 4.4 Bibliographical Notes. . . . . . . . . . . . . . . . . . . . . . . . 257 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 5 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.1 Problem Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 261 5.1.1 Finding a Frame . . . . . . . . . . . . . . . . . . . . . . 262 5.1.2 Removing Unnecessary Columns . . . . . . . . . . . . . 263 5.1.3 Removing Unnecessary Rows . . . . . . . . . . . . . . . 264 5.2 Feasibility in Linear Programs. . . . . . . . . . . . . . . . . . . 265 5.2.1 A Small Example . . . . . . . . . . . . . . . . . . . . . . 271 5.3 Reducing the Complexity of Feasibility Tests . . . . . . . . . . 273 5.4 Bibliographical Notes. . . . . . . . . . . . . . . . . . . . . . . . 274 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 6 Network Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 277 6.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 6.2 Feasibility in Networks . . . . . . . . . . . . . . . . . . . . . . . 280 6.2.1 The uncapacitated case . . . . . . . . . . . . . . . . . . 286 6.2.2 Comparing the LP and Network Cases . . . . . . . . . . 287 6.3 Generating Relatively Complete Recourse . . . . . . . . . . . . 288 6.4 An Investment Example . . . . . . . . . . . . . . . . . . . . . . 290 6.5 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 6.5.1 Piecewise Linear Upper Bounds . . . . . . . . . . . . . . 295 vi STOCHASTICPROGRAMMING 6.6 Project Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 301 6.6.1 PERT as a Decision Problem . . . . . . . . . . . . . . . 303 6.6.2 Introduction of Randomness. . . . . . . . . . . . . . . . 303 6.6.3 Bounds on the Expected Project Duration . . . . . . . . 304 6.6.3.1 Series reductions . . . . . . . . . . . . . . . . . 305 6.6.3.2 Parallelreductions . . . . . . . . . . . . . . . . 305 6.6.3.3 Disregarding path dependences . . . . . . . . . 305 6.6.3.4 Arc duplications . . . . . . . . . . . . . . . . . 306 6.6.3.5 Using Jensen’s inequality . . . . . . . . . . . . 306 6.7 Bibliographical Notes. . . . . . . . . . . . . . . . . . . . . . . . 307 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Preface Overthe lastfew years,both of the authors,and alsomost othersin the field of stochastic programming,have said that what we need more than anything just now is a basic textbook—a textbook that makes the area available not onlytomathematicians,butalsotostudentsandotherinterestedpartieswho cannot or will not try to approach the field via the journals. We also felt the need to provide an appropriate text for instructors who want to include the subject in their curriculum. It is probably not possible to write such a book without assuming some knowledge of mathematics, but it has been our clear goalto avoidwriting a text readable only for mathematicians. We want the book to be accessible to any quantitatively minded student in business, economics, computer science and engineering, plus, of course, mathematics. So what do we mean by a quantitatively minded student? We assume that the reader of this book has had a basic course in calculus, linear algebra and probability. Although most readers will have a background in linear programming(whichreplacesthe needfora specific coursein linearalgebra), we provide an outline of all the theory we need from linear and nonlinear programming. We have chosen to put this material into Chapter 1, so that the reader who is familiar with the theory can drop it, and the reader who knows the material, but wonders about the exact definition of some term, or who is slightly unfamiliar with our terminology, can easily check how we see things. We hope that instructors will find enough material in Chapter 1 to cover specific topics that may have been omitted in the standard book on optimization used in their institution. By putting this material directly into the running text, we have made the book more readable for those with the minimalbackground.But,atthesametime,wehavefounditbesttoseparate what is new in this book—stochastic programming—from more standard material of linear and nonlinear programming. Despite this clear goal concerning the level of mathematics, we must admit that when treating some of the subjects, like probabilistic constraints (Section 1.6 and Chapter 4), or particular solution methods for stochastic programs, like stochastic decomposition (Section 3.8) or quasi-gradient viii STOCHASTICPROGRAMMING methods (Section3.9),we havehadto use a slightly moreadvancedlanguage in probability. Although the actual information found in those parts of the book is made simple, some terminology may here and there not belong to the basic probability terminology.Hence, for these parts, the instructor must either provide some basic backgroundin terminology,or the reader should at leastconsultcarefullySection1.4.1,wherewehavetriedtoputtogetherthose terms and concepts from probability theory used later in this text. Within the mathematical programming community, it is common to split the field into topics such as linear programming, nonlinear programming, networkflows,integerandcombinatorialoptimization,and,finally,stochastic programming. Convenient as that may be, it is conceptually inappropriate. It puts forwardthe idea that stochastic programming is distinct from integer programmingthesamewaythatlinearprogrammingisdistinctfromnonlinear programming. The counterpart of stochastic programming is, of course, deterministic programming. We have stochastic and deterministic linear programming,deterministicandstochasticnetworkflowproblems,andsoon. Althoughthisbookmostlycoversstochasticlinearprogramming(sincethatis the best developed topic), we also discuss stochastic nonlinear programming, integer programming and network flows. Since we have let subject areas guide the organization of the book, the chapters are of rather different lengths. Chapter 1 starts out with a simple examplethatintroducesmanyoftheconceptstobeusedlateron.Temptingas it may be, we strongly discourage skipping these introductory parts. If these parts are skipped, stochastic programming will come forward as merely an algorithmicandmathematicalsubject,whichwillservetolimittheusefulness of the field. In addition to the algorithmic and mathematical facets of the field, stochastic programming also involves model creation and specification of solution characteristics. All instructors know that modelling is harder to teach than are methods. We are sorry to admit that this difficulty persists in this text as well. That is, we do not provide an in-depth discussion of modellingstochasticprograms.Thetextisnotfreefromdiscussionsofmodels andmodelling,however,anditisourstrongbeliefthatacoursebasedonthis text is better (and also easier to teach and motivate) when modelling issues are included in the course. Chapter 1 contains a formal approach to stochastic programming, with a discussion of different problem classes and their characteristics. The chapter ends with linear and nonlinear programming theory that weighs heavily in stochastic programming. The reader will probably get the feeling that the parts concerned with chance-constrained programming are mathematically more complicated than some parts discussing recourse models. There is a good reason for that: whereas recourse models transform the randomness containedinastochasticprogramintoonespecialparameterofsomerandom vector’s distribution, namely its expectation, chance constrainedmodels deal PREFACE ix more explicitly with the distribution itself. Hence the latter models may be more difficult, but at the same time they also exhaust more of the informationcontainedintheprobabilitydistribution.However,withrespectto applications,thereisnogenerallyvalidjustificationtostatethatanyoneofthe two basic model types is “better” or “more relevant”.As a matter of fact, we know of applications for which the recourse model is very appropriate and of othersforwhichchanceconstraintshavetobemodelled,andevenapplications are known for which recourse terms for one part of the stochastic constraints andchanceconstraintsforanotherpartweredesigned.Hence,inafirstreading or an introductory course, one or the other proof appearing too complicated cancertainlybe skippedwithout harm.However,to geta validpicture about stochasticprogramming,thestatementsaboutbasicpropertiesofbothmodel typesaswellastheideasunderlyingthevarioussolutionapproachesshouldbe noticed.Althoughthebasiclinearandnonlinearprogrammingisputtogether in one specific part of the book, the instructor or the reader should pick up the subjects as they are needed for the understanding of the other chapters. That way, it will be easier to pick out exactly those parts of the theory that the students or readers do not know already. Chapter 2 starts out with a discussion of the Bellman principle for solving dynamic problems, and then discusses decision trees and dynamic programminginbothdeterministicandstochasticsettings.Therethenfollows a discussionofthe rathernew approachofscenarioaggregation.We conclude the chapter with a discussion of the value of using stochastic models. Chapter 3 covers recourse problems. We first discuss some topics from Chapter 1 in more detail. Then we consider decomposition procedures especially designed for stochastic programs with recourse. We next turn to the questions of bounds and approximations, outlining some major ideas and indicating the direction for other approaches. The special case of simple recourseis then explained,before we show how decompositionprocedures for stochastic programs fit into the framework of branch-and-cut procedures for integerprograms.Thismakesitpossibletodevelopanapproachforstochastic integer programs. We conclude the chapter with a discussion of Monte-Carlo based methods, in particular stochastic decomposition and quasi-gradient methods. Chapter 4 is devoted to probabilistic constraints. Based on convexity statementsprovidedinSection1.6,oneparticularsolutionmethodisdescribed forthecaseofjointchanceconstraintswithamultivariatenormaldistribution of the right-hand side. For separate probabilistic constraints with a joint normal distribution of the coefficients, we show how the problem can be transformed into a deterministic convex nonlinear program. Finally, we address a problem very relevant in dealing with chance constraints: the problem of how to construct efficiently lower and upper bounds for a multivariate distribution function, and give a first sketch of the ideas used x STOCHASTICPROGRAMMING in this area. Preprocessing is the subject of Chapter 5. “Preprocessing” is any analysis thatiscarriedoutbeforetheactualsolutionprocedureiscalled.Preprocessing canbeusefulforsimplifyingcalculations,butthemainpurposeistofacilitate a tool for model evaluation. We conclude the book with a closer look at networks (Chapter 6). Since these arenothing else thanspecially structuredlinear programs,we candraw freelyfromthetopicsinChapter3.However,the addedstructureofnetworks allowsmanysimplifications.We discussfeasibility,preprocessingandbounds. We conclude the chapter with a closer look at PERT networks. Each chapter ends with a short discussion of where more literature can be found, some exercises, and, finally, a list of references. Writingthisbookhasbeenbothinterestinganddifficult.Sinceitisthefirst basic textbook totally devoted to stochastic programming, we both enjoyed and suffered from the fact that there is, so far, no experience to suggest how such a book should be constructed. Are the chapters in the correct order? Is the level of difficulty even throughout the book? Have we really captured the basics of the field? In all cases the answer is probably NO. Therefore, dear reader, we appreciate all comments you may have, be they regarding misprints,plainerrors,orsimply goodideasabouthowthis shouldhavebeen done. And also, if you produce suitable exercises, we shall be very happy to receive them, and if this book ever gets revised, we shall certainly add them, and allude to the contributor. About 50% of this text served as a basis for a course in stochastic programmingatTheNorwegianInstituteofTechnologyinthefallof1992.We wish to thank the students for putting up with a very preliminary text, and for finding such an astonishing number of errors and misprints. Last but not least, we owe sincere thanks to Julia Higle (University of Arizona, Tucson), DiethardKlatte(UniverityofZurich),JanosMayer(UniversityofZurich)and Pavel Popela (Technical University of Brno) who have read the manuscript1 verycarefullyandfixednotonlylinguisticbugsbutpreventedusfromquitea numberofcrucialmistakes.Finallywehighlyappreciatethegoodcooperation and very helpful comments provided by our publisher. The remaining errors are obviously the sole responsibility of the authors. Zurich and Trondheim, February 1994 P. K. and S.W.W. 1 WritteninLATEX

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.