View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINALRESEARCH published:24April2015 doi:10.3389/fncom.2015.00048 Stochastic non-linear oscillator models of EEG: the Alzheimer’s disease case ParhamGhorbanian1,SubramanianRamakrishnan2andHashemAshrafiuon1* 1DepartmentofMechanicalEngineering,CenterforNonlinearDynamicsandControl,VillanovaUniversity,Villanova,PA, USA,2DepartmentofMechanicalandIndustrialEngineering,UniversityofMinnesotaDuluth,Duluth,MN,USA In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer’s disease (AD) patients may be understood as distinct, statistically significant realizations of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) resting conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing—van der Pol double oscillator network with EEG signalsrecordedduringeachconditionforADandCTLsubjectsbyselectingthemodel physical parameters and noise intensity. The selected signal characteristics are power spectraldensitiesinmajorbrainfrequencybandsShannonandsampleentropies.These Editedby: measures allow matching of linear time varying frequency content as well as non-linear TobiasAlecioMattei, signalinformationcontentandcomplexity.Themainfindingoftheworkisthatstatistically Brain&SpineCenter-InvisionHealth- KenmoreMercyHospital,USA significant unique models represent the EC and EO conditions for both CTL and AD Reviewedby: subjects.However,itisalsoshownthattheinclusionofsampleentropyintheoptimization RobinA.A.Ince, process,tomatchthecomplexityoftheEEGsignal,enhancesthestochasticnon-linear UniversityofManchester,UK FanLiao, oscillatormodelperformance. WashingtonUniversityinStlouis,USA Keywords:EEG,Alzheimer’sdisease,stochasticdifferentialequations,duffing—vanderPol,entropy *Correspondence: HashemAshrafiuon, DepartmentofMechanical 1. Introduction Engineering,CenterforNonlinear DynamicsandControl,Villanova University,800E.LancasterAve., Quantitativeanalysisofhumanbrainelectroencephalography(EEG)recordingsaimedatenhanc- Villanova,PA19085,USA ingourunderstandingofbraininjuriesanddisordersiscurrentlyanimportantresearcharea.In hashem.ashrafi[email protected] additiontobeingusefulindiagnosis,suchanalysiscanprovideinsightsintotheunderlyingneuro- physiologyoftheinjuryordisorder,therebyleadingtobettertreatmentandpreventivestrategies. Received:28January2015 Alzheimer’s disease (AD) is the most common form of dementia and is the subject of intense Accepted:07April2015 research. While no known cure exists, certain medications have shown promise in delaying the Published:24April2015 symptoms(Dauwelsetal.,2010)promptingresearcherstoseekearlydiagnosisandintervention Citation: strategies.Inthiscontext,analysisoftheEEGisapotentialnon-invasivetoolthatmayaidearly GhorbanianP,RamakrishnanSand diagnosis of AD. However, the use of EEG signal analysis in order to improve the diagnosis of AshrafiuonH(2015)Stochastic ADisacomplexproblemwhere,despitesignificantadvances,anumberoffundamentalquestions non-linearoscillatormodelsofEEG: remainopen(Elgendietal.,2011). theAlzheimer’sdiseasecase. Front.Comput.Neurosci.9:48. ConsideringnowthecharacteristicsoftheEEG,sincethenon-stationarynatureofthesignal doi:10.3389/fncom.2015.00048 is generally well-recognized (see, for instance Akin, 2002), decomposition using a fast Fourier FrontiersinComputationalNeuroscience|www.frontiersin.org 1 April2015|Volume9|Article48 Ghorbanianetal. Stochasticnon-linearoscillatormodelsofEEG transform (FFT) with sliding windows and the wavelet trans- and Moorman, 2000) as an improvement over approximate formshavebeenthemostpopulartechniquesemployedtocap- entropy. turethespectralpropertiesofEEG(DarvishiandAl-Ani,2007; In recent work, the authors proposed a phenomenological Dauwels et al., 2010). However, linear transformation methods model of the EEG signal based on the dynamics of a stochas- fail to address the non-linear characteristics of the EEG signal tic, coupled, Duffing- van der Pol oscillator network (Ghorba- (Stam, 2005). Therefore, non-linear dynamic approaches have nianetal.,2015).Anoptimizationschemewasadoptedtomatch beenattemptedaswell,mostlyinvolvingcomputationallycom- modeloutputwithactualEEGdataobtainedfromhealthysub- plex time series analysis (Jeong, 2004). Several other aspects jectsinthetwodistinctrestingeyes-open(EO)andeyes-closed of non-linear modeling and analysis in this context have also (EC) conditions and it was shown that the actual EEG signals been studied in the literature (see, for instance, Stam, 2005 for in both cases were distinct realizations of the model with qual- a review). These include frameworks based on a neural mass itativelydifferentnon-lineardynamiccharacteristics.Moreover, model (Valdes et al., 1999; Huang et al., 2011), coupled oscilla- themodeloutputandtheactualEEGdatawereshowntobein tors(Baieretal.,2005;Leistritzetal.,2007),continuummodels good agreement in terms of both the power spectra (frequency (Kimetal.,2007),non-linearnon-stationarymodels(Celkaand content)andShannonentropy(informationcontent). Colditz, 2002; Rankine et al., 2007), random neural networks In the present effort, we improve the model introduced in (AcedoandMorano,2013),andchaoticphenomenaandstabil- Ghorbanianetal.(2015)bymatchingthesampleentropyofthe ityaspects(Rodriguesetal.,2007;Dafilisetal.,2009).Stochastic modeloutputandEEGsignaltocaptureitscomplexity.Aglobal approachesbasedonMarkovchainMonteCarlomethods(Het- optimization routine is employed in order to match the output tiarachchi et al., 2012) and Markov process amplitude (Wang of with EEG recordings in terms of power spectrum, Shannon et al., 2011) that take into account the inherent randomness of entropy, and sample entropy. The EEG signals were recorded theEEGsignalhavealsobeenreported.Inthesamevein,limit underrestingECandEOconditionsinanearlierpilotstudyof cycleoscillators(Hernandezetal.,1996;BurkeandPaor,2004) Alzheimer’sdisease(AD)patientsvs.age-matchedhealthycon- aswellasstochasticsynchronization(BressloffandLai,2011)and trol(CTL)subjects(Ghorbanianetal.,2013).Themodelparam- stochasticapproximation(Felletal.,2000;Sunetal.,2008)meth- eters obtained for the oscillators representing EC and EO EEG odshavebeenconsideredinEEGmodeling.Notably,limitcycle signalsforCTLandADpatientsarecomparedinordertoestab- behaviorateachofthebrainfrequencybandsappearstoprovide lishstatisticallysignificant,distinctmodelsforADandCTLsub- amoreaccuraterepresentationoftheEEGsignalthanonebased jects under each condition. In addition, we present new results onchaoticphenomena. fromaphasespacereconstructionanalysisofthemodeloutputto Some of the most important features in non-linear dynamic matchtheactualEEGsignal.Theresultsindicatethattheanalyt- and stochastic approaches are signal information content and icalmodeleffectivelycapturesthefrequencyspectrumandnon- complexity as measured using various forms of information linearcharacteristicsoftheEEGsignalintermsofcomplexityand entropy. Measures such as Shannon entropy (Shannon, 1948) informationcontent.Furthermore,itisshownthattheaddition characterize the information content in a signal and higher ofsampleentropysignificantlyenhancesthemodelperformance entropycorrespondstoincreasedrandomnessandchaoticbehav- intermsofcomplexityandnon-lineardynamiccharacteristics,as ior (Abasolo et al., 2006). Importantly, one observes that, with demonstratedbyphasespacereconstruction.Theresultssuggest respecttotheEEGsignal,higherinformationcontentcorrelates excitingnewpathwaystodevelopbettertoolsfordistinguishing with better brain function (Shin et al., 2006). Furthermore, it pathological and normal brain states in AD and perhaps other has been reported thatvariations in information entropic mea- neurologicaldiseasesanddisorders. sures may be used to detect functional abnormalities in the The rest of the article is set as follows. Details of the EEG brain caused by disorders or injuries (Slobounov et al., 2009). recordings, the analytical model, the optimization scheme and Hence,informationcontentoftheEEGsignal,characterizedby thephasespacereconstructiontechniqueareprovidedinSection information-entropicmeasures,maybeexpectedtobeimportant 2.TheresultsarepresentedinSection3anddiscussedinSection in identifying distinct states of the brain. This is further rein- 4.Thearticlesconcludeswithcommentsonfurtherresearchin forced by the recent results of McBride and colleagues on the Section5. roleofinformationentropicandspectralanalysisinthestudyof theearlystagesofAlzheimer’sdiseaseandmildTraumaticBrain 2. Materials and Methods InjuryMcBrideetal.(2013a,b,2014). Entropy may also be utilized to measure signal complex- 2.1.EEGRecordingBlocks ity. For instance, embedding entropy provides information Twenty six AD patients and healthy age-matched CTL subjects about how the EEG signal fluctuates in time by compar- were selected for this study (“A Brain-Computer Interface for ing the time series with a delayed version of itself (Abasolo DiagnosingBrainFunction,”AspireIRB,HumanSubjectProto- etal.,2006).Moreover,theconceptofapproximateentropywas colNumberPDMC-001,approvedonOctober7,2010).Ofthe introduced as a measure of system complexity (Pincus, 1991) 26subjectsselected,onewithdrewandonedidnotqualifyasAD and has been applied to brain wave signals (Quiroga et al., or CTL. Subjects were asked to relax and wear an EEG record- 2001).However,theapproximateentropymeasuresuffersfrom ingheadsetduringalternatingblocksofECandEOfollowedbya drawbacks such as bias and inconsistency (Xu et al., 2010). varietyofcognitiveandauditorytasksandafinalEC-EOresting Hence,thenotionofsampleentropywasintroduced(Richman period. FrontiersinComputationalNeuroscience|www.frontiersin.org 2 April2015|Volume9|Article48 Ghorbanianetal. Stochasticnon-linearoscillatormodelsofEEG FIGURE1|SchematicofthestochasticcoupledDuffing—vanderPoloscillators. TABLE1|OptimalparametersoftheDuffing—vanderPoloscillatorfor subjects(10ECand10EO).Notethat,thesmallernumberofAD ECandEOofCTLsubjects(N=40)andthep-valuesfromunpairedt-test, patientsalongwithsmallernumberofADpatientrecordingses- Wilcoxonranksumtest,andBonferonnicorrection. sions that were were not dominated by artifacts resulted in the selectionofsmallerADsamplesize. Parameter Eyes-Closed Eyes-Open t-test Wilcoxon Bonferroni (EC) (EO) 2.2.EEGFeatures k1 7286.5±192.4 2427.2±448.91 1e-15 1e-8 1e-7 The time-varying power spectrum in each of the major brain k2 4523.5±282.3 499.92±84.04 1e-15 1e-8 1e-7 EEGfrequencybandswascalculatedusingshorttimefastFourier b1 232.05±18.3 95.61±24.20 1e-15 1e-8 1e-7 transform(FFT)withslidingwindow,sinceagoodmodelmust b2 10.78±2.3 103.36±9.22 1e-15 1e-8 1e-7 producesignalsthatcanmatchEEG’sfrequencycontent.Specif- ǫ1 33.60±5.4 48.89±9.49 1e-15 1e-8 1e-7 ically,thepowerspectrumwascomputedinsevenranges:lower ǫ2 0.97±0.19 28.75±1.74 1e-15 1e-8 1e-7 δ (1–2 Hz), upper δ (2–4Hz), θ (4–8Hz), α (8–13 Hz), lower β (13–20Hz),upperβ (20–30Hz),andγ (30–60Hz).However, µ 2.34±0.47 1.82±0.78 0.01 0.06 0.06 lowerδ andγ bandpowers,whichhappentohavelittlepower, wereignoredduetounreliabilityofthedeviceinthosefrequency TheEEGsignalswererecordedthroughasingle-dryelectrode ranges. device at position Fp1 (based on a 10–20 electrode placement Shannon entropy was measured based on a sliding tempo- system)withaBluetoothenabledtelemetricheadset.Thehead- ralwindowtechnique.Atemporalwindowwasdefinedtoslide set’seffectivesamplerateis125Hz.Frequenciesbelow1Hzand alongthesignaltimerepresentationwithaslidingstep(interval above 60 Hz (near Nyquist frequency) were filtered out by the or bin) to sample a part of the signal. A discrete entropy esti- devicehardware.Oncomparisonof theEEG recordingsbythe matorwasapplied,inwhich10uniformintervalsequallydivided devicewiththosefromotherwidelyaccepteddevices,frequencies therangeofthenormalizedobservedsignal.Thentheprobability within2–30Hzweredeemedtobeveryaccurate. thatthesampledsignalbelongstotheintervalistheratiobetween Therecordingdeviceeliminatedfrequentlyobservedartifacts the number of the samples found within each interval and the includinglinenoise.Otherartifactsweremainlyduetoeye-and total number of samples of the signal. The Shannon entropy is muscle-movements,whicharecommonatFp1locationandcan then calculated based on these probabilities (Shin et al., 2006), be clearly identified by their high amplitudes compared to true separatelyforeach40-sEEGrecordingblock(5000samples). EEGsignalrecordingsduringrestingstates.Theseartifactswere Sampleentropy(SE)isthenegativenaturallogarithmofthe removedusingasimpleartifactdetectionthateliminatedanypart conditionalprobabilitythattwosequencesofatimeseries,simi- of the signal greater than 4.5σ (standard deviation). The algo- larformpoints,remainsimilaratthenextpoint.ForgivenNdata rithmalsoreconstructedthenulledsamplesusingFFTinterpo- points from a time series, [x(1),x(2),··· ,x(N)], we calculated lationofthetrailingandsubsequentrecordeddata(Ghorbanian SE of each 40-s EEG recording block (5000 samples) by the etal.,2013). statistic(Abasoloetal.,2006): The EEG recordings in this study were obtained from sub- Um+1(r) jectsinanADpilotstudywith14control(CTL)subjectsand10 SE(m,r,N)= −ln , (1) Alzheimer’sDisease(AD)patientspresentedinourearlierwork (cid:26) (cid:20) Um(r) (cid:21)(cid:27) (Ghorbanian et al., 2013). Recording blocks of 40-s duration wheremistherunlength,risthetolerancewindowsize,and (approximately 5000 sample signals) from resting eyes-closed (EC)andeyes-open(EO)conditionswereselected.Inall,60ran- N−m dom blocks were selected from the pilot study: 40 blocks from Um(r)= 1 U. (2) i controlCTLsubjects(20ECand20EO)and20blocksfromAD (N−m)(N−m−1) Xi=1 FrontiersinComputationalNeuroscience|www.frontiersin.org 3 April2015|Volume9|Article48 Ghorbanianetal. Stochasticnon-linearoscillatormodelsofEEG Intheaboveequation,U indicatesthenumberofk’s(1 ≤ k ≤ majorbrainfrequencyspectraandvanderPolnon-linearitypro- i N − m) such that the Euclidean distance between X (i) and videsself-excitedlimitcyclebehaviorwhichhavebeenpreviously m X (k), k 6= i, is less than or equal r and X (i) = [x(i),x(i + reportedforeachmajorbrainfrequencybands(BurkeandPaor, m m 1),··· ,x(i+m−1)]. 2004). Generally, large m or small r values result in number of WeconsideraphenomenologicalmodeloftheEEGbasedon matches being too small for confident estimation of the condi- a coupled system of Duffing—van der Pol oscillators subject to tionalprobabilityandviceversa(LakeandMoorman,2011).In whitenoiseexcitation,asshowninFigure1.Theequationsfor thisstudy,weusedm = 2andr = 0.25σ basedontheconsis- themodelmaybewrittenas: tencyoftheresultsandrecommendedrangesinpreviousstudies (RichmanandMoorman,2000;Xuetal.,2010). x¨ +(k +k )x −k x =−b x3−b (x −x )3 1 1 2 1 2 2 1 1 2 1 2 2.3.StochasticCoupledNon-linearOscillators +ǫ1x˙1(1−x12), (3) WerecallthattheEEGhasbeenmodeledintheliteraturetaking x¨2−k2x1+k2x2 =b2(x1−x2)3 +ǫ x˙ (1−x2)+µdW, intoaccountcharacteristicsincludingnon-linearity(bothchaotic 2 2 2 and non-chaotic), non-stationarity, and randomness of the sig- nal(Felletal.,2000;Rankineetal.,2007;Sunetal.,2008).The where x,x˙,x¨,i = 1,2 are positions, velocities, and accelera- i i i EEG has also been studied as the manifestation of underlying tionsofthetwooscillators,respectively.Parametersk,b,ǫ,i= i i i limitcycleoscillationsatagivenfrequencyandothersuchperi- 1,2 are, respectively, linear stiffness, cubic stiffness, and van odic solutions (Hernandez et al., 1996; Burke and Paor, 2004). der Pol damping coefficient of the two oscillators. Parameters While inspired by the above, the authors were fundamentally bs indicate the strength of the Duffing non-linearity resulting i motivatedtodevelopmodelsthatcanbetterreproducethesig- in multiple resonant frequencies while ǫs indicate the strength i nificant linear and non-linear characteristicsof actual EEG sig- of van der Pol non-linearity and determine the extent of self- nals.Hence,weproposedaphenomenologicalmodeloftheEEG excitation and the shape of the resulting limit cycle. Parameter based on a coupled system of Duffing—van der Pol oscillators µ represents the intensity of white noise and dW is a Wiener subjected to white noise excitation (Ghorbanian et al., 2015). process (Gardiner, 1985; Higham, 2001) representing the addi- ThisparticularoscillatorwasselectedbecausetheDuffingnon- tive noise in the stochastic differential system. The input exci- linearity allows a system with only two oscillators capture the tation to the system is provided through µdW. The output 0.7 EEG Signal−−EC 0.6 Generated Signal−−EC 0.5 er 0.4 w o P 0.3 0.2 0.1 0 delta_L delta_U theta alpha beta_L beta_U gamma Frequency (Hz) 0.4 EEG Signal−−EO Generated Signal−−EO 0.3 er w 0.2 o P 0.1 0 delta_L delta_U theta alpha beta_L beta_U gamma Frequency (Hz) FIGURE2|ComparisonofmajorbrainfrequencybandmeanpowersofCTLEEGsignalsandoptimaloscillatormodeloutput;EC(top),EO(bottom). FrontiersinComputationalNeuroscience|www.frontiersin.org 4 April2015|Volume9|Article48 Ghorbanianetal. Stochasticnon-linearoscillatormodelsofEEG maybeselectedasanycombinationofthepositionsandveloc- where J is the objective function, p = [k ,k ,b ,b ,ǫ ,ǫ ,µ] 1 2 1 2 1 2 ities to mimic an EEG signal. Note that, the Euler-Maruyama thedecisionvariables,P andP thepowersinthemajorbrain Ej Oj method(Higham,2001)wasselectedtointegratethestochastic frequency bands for the normalized EEG signal and the model differential equations in Equation (3) since standard numerical output,respectively,misnumberoffrequencybands(m = 7), integrationmethodsarenotapplicable. S and S the Shannon entropies of the EEG signal and the E O modeloutput,respectively,SP andSP thesampleentropiesof E O the EEG signal and the model output, respectively, w and w 1 2 2.4.OptimizationFormulation areweightingfactorforabsoluteShannonandsampleentropies, Wehaveselectedthevelocityofthesecondoscillatorasthesys- respectively,and||representsabsolutevalue.Theweightingfac- tem output approximating the EEG signal since it is directly torsw andw arerequiredtogiveequalimportancetopower 1 2 impacted by the noise. A global optimization search method spectrumandentropycharacteristicsofthesignal.Notethatthe basedonamulti-startalgorithm(Ugrayetal.,2007)wasadopted magnitudeoftheoutputsignalsarematchedthroughnormaliza- to determine the oscillator model parameters that can pro- tionofboththemodeloutputandtheEEGsignalwithrespectto duce the output matching various EEG signals. The optimiza- theirstandarddeviations. tionobjectivefunctionwasselectedastherootmeansquaredof The objective function minimization is subject to equality the errors in power spectrum of each selected brain frequency constraintsrepresentedbythestate(Equation3)andinequality bands plus weighted values of the errors in absolute Shannon constraintsrepresentedbythedecisionvariablelowerandupper and sample entropies. Hence, the optimization goal is error bounds: minimization: 0<k ≤1e4, 0<b ≤ 1k, 0<ǫ ≤ 1k, i i 2 i i 3 i (5) i=1,2, 0≤µ≤2. m minJ =v (PEj−POj)2+w1|SE−SO|+w2|SPE−SPO|, (4) Theconstraintsforbi’sandǫi’swereimposedtoavoidthechaotic p uuXj=1 regime(Lietal.,2006)andprovideaperiodicstochasticresponse. t 100 al n g Si G E E 0 10 20 30 40 50 60 70 el od 100 M d Ol − 10−2 al n g Si d 10−4 e at er n Ge 0 10 20 30 40 50 60 70 100 al n g Si d e at er n e G 0 10 20 30 40 50 60 70 Frequency (Hz) FIGURE3|PowerspectrumofasampleCTLEC(top)EEGsignal;(middle)outputofstochasticoscillatormodelusingShannonentropy;(bottom) outputofstochasticoscillatormodelusingShannonandsampleentropies. FrontiersinComputationalNeuroscience|www.frontiersin.org 5 April2015|Volume9|Article48 Ghorbanianetal. Stochasticnon-linearoscillatormodelsofEEG Noiseintensityisalsoconstrainedtoavoidaresponsedominated 2.6.PhaseSpaceReconstruction by random noise. The initial guesses for the global optimiza- In addition to matching Shannon and sample entropies of the tion search are randomly generated within the bounds defined modeloutputandEEGsignalthroughtheoptimizationprocess, inEquation(5). it is of interest to investigate matching other features such as The stochastic component was introduced as white noise, the phase plot which plays a significant role in non-linear time which was generated through a normally distributed random seriesanalysis(KantzandSchreiber,2004).Itisknownthatany variable and applied to the model via Wiener process. A new dynamicsystemcanbecompletelyrecoveredinthephasespace, randomprocesswasgeneratedandappliedtothemodelduring which maybe reconstructed from the measured time domain integrationoftheequations,ateachiterationoftheoptimization responseofthesystem(Nieetal.,2013).Whilephasespacecon- algorithm. sistsofvelocityandpositionvariablesforamechanicalsystem,in thecasewherejustthetimerepresentationofasignalisavailable, aphasespacereconstructiontechniquebasedonthemethodof 2.5.StatisticalAnalysis delaysisused(KantzandSchreiber,2004). Akeyobjectiveofthephenomenologicalmodelinginthiswork The main idea is that one does not need the derivatives to is the ability to establish a correspondence between variations form a coordinate system in which to capture the structure in model parameters and the variations in the data obtained of phase space, but instead one could directly use the lagged from different physiological conditions. Hence, the parametric variables: unpaired t-test and non-parametric Wilcoxon rank sum statis- tical testing methods were employed to determine the relative significance of the model parameters. Furthermore, Bonferroni x(n+T)=x(t0+(n+T)1τs), (6) correction was applied due to multiple comparisons problem andadequacyofsamplesizesforstatisticaltestswereestablished where x(n) is the nth sample of the time series, 1τ the time s usingpoweranalysis. step, and T the delay integer to be determined. Then, a vector 100 al n g Si G E E 0 10 20 30 40 50 60 70 el 100 d o M d Ol − 10−2 al n g Si ed 10−4 at er n Ge 100 0 10 20 30 40 50 60 70 al n g Si d e at er n e G 0 10 20 30 40 50 60 70 Frequency (Hz) FIGURE4|PowerspectrumofasampleCTLEO(top)EEGsignal;(middle)outputofstochasticoscillatormodelusingShannonentropy;(bottom) outputofstochasticoscillatormodelusingShannonandsampleentropies. FrontiersinComputationalNeuroscience|www.frontiersin.org 6 April2015|Volume9|Article48 Ghorbanianetal. Stochasticnon-linearoscillatormodelsofEEG of(embedding)dimensiondmaybeconstructedusingthetime ameasurementatonetimefromameasurementtakenatanother lagsas: time. Consider the time series nth sample x(n) and its value aftertimedelayTwiththeassociatedprobabilitydistributionsof [x(n),x(n+T),x(n+2T),··· ,x(n+(d−1)T)]. (7) P(x(n))andP(x(n+T)),respectively.Theaverageinformation whichcanbeobtainedaboutx(n+T)fromx(n)isgivenbythe Time-delay embedding is probably one of the best systematic mutualinformationofthetwomeasurements(Abarbaneletal., methods for converting scalar data to multidimensional phase 1993;Mizrach,1996): space (Abarbanel et al., 1993; Burke and Paor, 2004; Nie et al., 2013).Anappropriateandsuccessfulreconstructiondependson P(x(n),x(n+T)) I(x(n),x(n+T))=log , (8) thechoiceofbothtimedelayTandtheembeddingdimensiond 2(cid:20)P(x(n))P(x(n+T))(cid:21) (Nieetal.,2013). Inthisstudy,theappropriatevalueofthetimelagwasdeter- where P(x(n),x(n + T)) is the joint probability of the mea- minedusingtheaveragemutualinformationmethodappliedto surements x(n) and x(n+T) calculated using a binning-based eachEEGrecordingblock.Theideabehindmutualinformation method,inwhich20uniformintervalsdividedtherangeofthe istoidentifytheamountofinformationthatcanbelearnedabout measurementsequally.Theaveragemutualinformationbetween 0.49 n o ati 0.485 m o nfr 0.48 al I u ut M 0.475 e g a er 0.47 v A 0.465 0 5 10 15 20 25 0.605 n o ati 0.6 m o nfr 0.595 ual I 0.59 ut M e 0.585 g a er 0.58 v A 0 5 10 15 20 25 0.595 n o ati 0.59 m o nfr 0.585 ual I 0.58 ut M e 0.575 g a er 0.57 v A 0 5 10 15 20 25 lag FIGURE5|AveragemutualinformationforasampleCTLEC(top)EEGsignal;(middle)outputofstochasticoscillatormodelusingShannonentropy; (bottom)outputofstochasticoscillatormodelusingShannonandsampleentropies. FrontiersinComputationalNeuroscience|www.frontiersin.org 7 April2015|Volume9|Article48 Ghorbanianetal. Stochasticnon-linearoscillatormodelsofEEG measurementsofanyvaluex(n)andx(n+T)istheaverageover After specifying the correct time delay T, an appropriate allpossiblemeasurementsofI(x(n),x(n+T))(Abarbaneletal., embedding dimension, d, should also be found for the phase 1993): space reconstruction. If d is too small, the trajectories will not beunique.Ontheotherhand,toolargead willresultinaddi- tional computational cost by requiring extra dimensions (Nie I(T)= P(x(n),x(n+T))I(x(n),x(n+T)). (9) etal.,2013). x(n)X,x(n+T) IfTistoosmall,themeasurementsx(n)andx(n+T)willhavetoo 3. Results muchoverlap.However,ifTistoolarge,thenI(T)willapproach zeroandnothingrelatesx(n)tox(n+T).Itissuggestedthatthe Theoptimizationalgorithmwasseparatelyappliedtodetermine proper T can be chosen as the first minimum of I(T) which is the model parameters (decision variables) for each of the 60 notnecessarilyoptimalbuthasbeenshowntoworkwell(Abar- selectedEEGsignalsusingtheweightingfactorsw =w =0.35. 1 2 baneletal.,1993;Nieetal.,2013).Ifinacase,nominimaexists These weighting factors give equal importance to the entropy forI(T),thechoiceofT =1or2hasbeensuggested(Abarbanel measuresandpowerspectrum.Wethencategorizedtheresult- etal.,1993). ing60setofmodelparametersintofourgroupsbasedrecording 1 0.5 ) T + 0 n ( x −0.5 −1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 x(n) 1 0.5 ) T + 0 n ( x −0.5 −1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 x(n) 1 0.5 ) T + 0 n ( x −0.5 −1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 x(n) FIGURE6|ReconstructedphaseplotofasampleCTLEC(top)EEGsignal;(middle)outputofstochasticoscillatormodelusingShannonentropy; (bottom)outputofstochasticoscillatormodelusingShannonandsampleentropies. FrontiersinComputationalNeuroscience|www.frontiersin.org 8 April2015|Volume9|Article48 Ghorbanianetal. Stochasticnon-linearoscillatormodelsofEEG conditionsandsubjectdiagnosis:EC-CTL,EO-CTL,EC-AD,and amoreflatfrequencydistributionfromupperδ tolowerβ fre- EO-AD. quencybands.Furthermore,ShannonandSEvaluesoftheEEG signals and the model outputs for the EC and EO cases show 3.1.HealthyEyes-ClosedandEyes-OpenResults closeagreement.Shannonentropyvalueswere1.80±0.08and Initially,westudiedthemodelsderivedfortheECandEOEEG 1.92 ± 0.08 for EC EEG and model output, respectively, and signalsofCTLsubjectsforvalidationpurposes.Themeansand 1.71 ± 0.11 and 1.57 ± 0.15 for EO EEG and model output, standarddeviationsoftheoptimalvaluesofthemodelparame- respectively.While,SEvalueswere1.04±0.20and1.17±0.22 tersforEC-CTLandEO-CTLEEGsignalsarelistedinTable1. forECEEGandmodeloutput,respectively,and0.97±0.20and The p-values from the two statistical tests and non-parametric 1.20±0.18forEOEEGandmodeloutput,respectively.These methodafterBonferronicorrectionsindicatethatthedifferences resultsshowasignificantimprovementoverourpreviousmodel betweenofallparametersofthetwomodelsarestronglystatisti- whereonlyShannonentropywasused(Ghorbanianetal.,2015). callysignificantwiththeexceptionofnoiseintensity.Notethat, Theimprovementisclearlyobservedinthethepowerspectraof µisalsofoundstatisticallysignificantusingt-testbutisslightly sampleECandEOEEGsignalsandtheircorrespondingoptimal offwhenthenon-parametricmethodisused. modeloutputs,respectivelyshowninFigures3,4.Bothfigures In order to ensure that adequate sample sizes are used, the demonstratemoredistributedspectraofthemodeloutputswith minimum required difference between means of two groups of similarnoisecomplexitiestotheactualEEGsignalswhenSEis dataforeachparameterarecomputed.Asexpectedduetovery addedtotheobjectivefunction;i.e.,powerspectraofthesignals small p-values, the sample size for statistical testing is found to withoutmatchingofSEhaveverydiscretepeaksunliketheEEG. be sufficient with more than 99.9% power for all parameters TheimpactofSEtomatchsignalcomplexityisfurtherdemon- exceptnoiseintensityµ,whichwasnotfoundtobestatistically stratedthroughphaseplotreconstructionofthetimeseries.Aver- significantusingthenon-parametricmethod. agemutualinformationforasampleECEEGsignalandoutputs Power spectrums of the optimal stochastic oscillator model oftheoptimalstochasticoscillatormodelsareshowninFigure5 outputandEEGsignalsfortheECandEOcasesofCTLsubjects asafunctionoflagtime.ThefirstminimumoccursatT = 5lag arepresentedinFigure2whereθ,α,andβ bandpowersshow samplesforboththeEEGsignalandtheoptimalmodelderived excellentagreement.Thecomparisonrevealedthat,asexpected, with both Shannon and sample entropies while T = 3 for the theoptimalmodeliscloselyfollowingtheα-banddominancein output of the model derived solely based on Shannon entropy. theECcases.While,intheEOcases,theoptimalmodelfollows TheresultingreconstructedphaseplotsoftheECEEGsignaland theoutputsofthetwooptimalmodelsarepresentedinFigure6. Clearly,thereconstructedphaseplotsoftheEEGandtheoutput ofthemodelderivedusingbothShannonandsampleentropies, TABLE2|OptimalparametersoftheDuffing—vanderPoloscillator displaysimilarbehavior.Whiletheoutputofthemodelderived modelforECandEOofADsubjects(N=20)andthep-valuesfrom using only Shannon entropy is qualitatively different form the unpairedt-test,Wilcoxonranksumtest,andBonferonnicorrection. EEGsignalintermsofcomplexityandnoise.Indeedthisresult providesfurtheraffirmationthatthestochasticDuffing—vander Parameter Eyes-Closed Eyes-Open t-test WilcoxonBonferroni PolmodelyieldsanoutputthatmatchestheactualEEGdatain (EC) (EO) termsofnon-linearcharacteristicsobservedinthephasespace. k1 1742.1±197.91 3139.9±1040.9 0.0005 0.0025 0.009 3.2.Alzheimer’sDiseasevs.ControlResults k2 1270.8±277.13 650.32±175.76 1e-5 0.0005 0.002 Next, we studied the models derived for the EC and EO EEG b1 771.99±126.81 101.1±27.86 1e-12 0.0001 0.001 signalsofADsubjects.Themeanandstandarddeviationofthe b2 1.91±0.22 81.3±9.76 1e-15 0.0001 0.001 optimalvaluesofthemodelparametersforEC-ADandEO-AD ǫ1 63.7±11.64 56.3±5.75 0.0884 0.021 0.063 EEG signals are listed in Table2 along with the p-values from ǫ2 20.7±5.64 19.12±2.87 0.4234 0.879 0.95 thetwostatisticaltestsandthenon-parametrictestafterBonfer- µ 1.78±0.8 1.74±0.67 0.905 0.879 0.95 ronicorrectionsindicatingthatthedifferencesbetweenonlythe TABLE3|Thep-valuesfromunpairedt-test,Wilcoxonranksumtest,andBonferonnicorrectionforcomparisonofmodelparametersbetweenAD (N=20)andCTL(N=40)subjects. Parameter t-test(EC) Wilcoxon(EC) Bonf.(EC) t-test(EO) Wilcoxon(EO) Bonf.(EO) k1 1e-30 1e-5 4e-5 0.013 0.027 0.08 k2 1e-23 1e-5 3e-5 0.0034 0.0015 0.007 b1 1e-17 1e-5 5e-5 0.58 0.027 0.08 b2 1e-12 1e-5 6e-5 1e-6 1e-5 9e-5 ǫ1 1e-10 6e-5 1e-5 0.031 0.0018 0.007 ǫ2 1e-15 5e-5 7e-6 4e-12 1e-5 7e-5 µ 0.02 0.06 0.06 0.80 0.70 0.7 FrontiersinComputationalNeuroscience|www.frontiersin.org 9 April2015|Volume9|Article48 Ghorbanianetal. Stochasticnon-linearoscillatormodelsofEEG first four parameters of the two models are statistically signifi- the model parameters of CTL and AD subjects under EO con- cant.Next,weseparatelycomparedthemodelparametersofEC dition are not, however, as strong, though they are still mostly andEOEEGsignalsofCTLsubjectswiththoseADpatients. statisticallysignificant.IntheEOcase,parameterµisnotstatis- Table3liststhep-valuesfromthetwostatisticaltestingmeth- ticallysignificantusingeithermethodandt-testdoesnotfindb 1 odsandthenon-parametricmethodafterBonferronicorrections tobestatisticallysignificanteither. comparingCTLvs.ADsubjectsunderseparateECandEOcon- The power analysis results for 90%, 95%, 99%, and 99.9% ditions.Theresultsindicatethatthedifferencebetweenallmodel fortwostatisticalarelistedinTables4,5forECandEOcases, parameters of CTL and AD subjects under EC condition are respectively. The actual difference between means are given stronglystatisticallysignificantexceptfornoiseintensity.Again, within parentheses following each parameter. The results indi- µisalsofoundstatisticallysignificantusingt-testbutisslightly cated that our sample size for statistical testing in EC case offwhennon-parametricmethodisused.Thedifferencebetween between AD and CTL subjects was sufficient for all parameters TABLE4|Minimumrequireddifferencebetweenmodelparametermean TABLE5|Minimumrequireddifferencebetweenmodelparametermean valuesofECADvs.ECCTLforvariousdesiredpowersofstatisticaltests. valuesofEOADvs.EOCTLforvariousdesiredpowersofstatisticaltests. Parameter 90% 95% 99% 99.9% Parameter 90% 95% 99% 99.9% 1k1(5544.3) 281.39 313.53 371.72 439.46 1k1(712.78) 1009.12 1124.36 1333.04 1575.97 1k2(3252.7) 406.65 453.09 537.18 635.08 1k2(175.81) 175.81 195.89 232.25 274.57 1b1(539.94) 106.44 118.60 140.61 166.24 1b1(5.49) 36.86 41.07 48.69 57.56 1b2(8.87) 2.82 3.14 3.72 4.40 1b2(22.02) 13.61 15.17 17.98 21.26 1e1(30.09) 11.54 12.86 15.25 18.03 1e1(7.41) 12.27 13.68 16.22 19.17 1e2(19.79) 4.64 5.17 6.13 7.25 1e2(9.62) 3.14 3.50 4.15 4.91 1µ(0.56) 0.87 0.97 1.15 1.36 1µ(0.07) 1.08 1.21 1.43 1.70 0.5 EEG Signal−−AD−−EC Generated Signal−−AD−−EC 0.4 0.3 er w o P 0.2 0.1 0 delta_L delta_U theta alpha beta_L beta_U gamma Frequency (Hz) 0.5 EEG Signal−−AD−−EO Generated Signal−−AD−−EO 0.4 0.3 er w o P 0.2 0.1 0 delta_L delta_U theta alpha beta_L beta_U gamma Frequency (Hz) FIGURE7|ComparisonofmajorbrainfrequencybandmeanpowersofADEEGsignalsandoptimaloscillatormodeloutput;EC(top),EO(bottom). FrontiersinComputationalNeuroscience|www.frontiersin.org 10 April2015|Volume9|Article48
Description: