ebook img

Stochastic Multi-Stage Optimization: At the Crossroads between Discrete Time Stochastic Control and Stochastic Programming PDF

370 Pages·2015·5.998 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic Multi-Stage Optimization: At the Crossroads between Discrete Time Stochastic Control and Stochastic Programming

Probability Theory and Stochastic Modelling 75 Pierre Carpentier Jean-Philippe Chancelier Guy Cohen Michel De Lara Stochastic Multi-Stage Optimization At the Crossroads between Discrete Time Stochastic Control and Stochastic Programming Probability Theory and Stochastic Modelling Volume 75 Editors-in-Chief Søren Asmussen, Aarhus, Denmark Peter W. Glynn, Stanford, CA, USA Thomas G. Kurtz, Madison, WI, USA Yves Le Jan, Orsay, France Advisory Board Joe Gani, Canberra, ACT, Australia Martin Hairer, Coventry, UK Peter Jagers, Gothenburg, Sweden Ioannis Karatzas, New York, NY, USA Frank P. Kelly, Cambridge, UK Andreas E. Kyprianou, Bath, UK Bernt Øksendal, Oslo, Norway George Papanicolaou, Stanford, CA, USA Etienne Pardoux, Marseille, France Edwin Perkins, Vancouver, BC, Canada Halil Mete Soner, Zürich, Switzerland The Probability Theory and Stochastic Modelling series is a merger and continuation of Springer’s two well established series Stochastic Modelling and Applied Probability and Probability and Its Applications series. It publishes researchmonographsthatmakeasignificantcontributiontoprobabilitytheoryoran applications domain in which advanced probability methods are fundamental. Books in this series are expected to follow rigorous mathematical standards, while alsodisplayingtheexpositoryqualitynecessarytomakethemusefulandaccessible toadvancedstudentsaswellasresearchers.Theseriescoversallaspectsofmodern probability theory including (cid:129) Gaussian processes (cid:129) Markov processes (cid:129) Random Fields, point processes and random sets (cid:129) Random matrices (cid:129) Statistical mechanics and random media (cid:129) Stochastic analysis as well as applications that include (but are not restricted to): (cid:129) Branching processes and other models of population growth (cid:129) Communications and processing networks (cid:129) Computational methods in probability and stochastic processes, including simulation (cid:129) Genetics and other stochastic models in biology and the life sciences (cid:129) Information theory, signal processing, and image synthesis (cid:129) Mathematical economics and finance (cid:129) Statistical methods (e.g. empirical processes, MCMC) (cid:129) Statistics for stochastic processes (cid:129) Stochastic control (cid:129) Stochastic models in operations research and stochastic optimization (cid:129) Stochastic models in the physical sciences More information about this series at http://www.springer.com/series/13205 Pierre Carpentier Jean-Philippe Chancelier (cid:129) Guy Cohen Michel De Lara (cid:129) Stochastic Multi-Stage Optimization At the Crossroads between Discrete Time Stochastic Control and Stochastic Programming 123 Pierre Carpentier GuyCohen ENSTAParisTech CERMICS Palaiseau ÉcoleNationale des Ponts France etChaussées ParisTech Marnela Vallée Jean-Philippe Chancelier France CERMICS ÉcoleNationale des Ponts Michel DeLara etChaussées ParisTech CERMICS Marnela Vallée ÉcoleNationale des Ponts France etChaussées ParisTech Marnela Vallée France ISSN 2199-3130 ISSN 2199-3149 (electronic) Probability Theoryand Stochastic Modelling ISBN978-3-319-18137-0 ISBN978-3-319-18138-7 (eBook) DOI 10.1007/978-3-319-18138-7 LibraryofCongressControlNumber:2015937212 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface This book can be considered as the result of a ten-year cooperation (starting in 2000) of the four authors within the so-called Stochastic Optimization Working Group (SOWG), a research team of the CERMICS (Applied Mathematics Laboratory)ofÉcoleNationaledesPontsetChaussées(ENPC-ParisTech).Among the topics addressed in this working group, a major concern was to devise numerical methods to effectively solve stochastic optimization problems, particu- larlyinadynamiccontext,asthiswasthecontextofmostreal-lifeapplicationsalso tackled by the group. The background of the four authors is system theory and control but the 2000s have seen the emergence of the Stochastic Programming stream, a stochastic expansion of Mathematical Programming, so the group was interested in bridging the gap between these two communities. Of course, several Ph.D. students took part in the activities of this group, and amongthemwereKengyBarty,LaetitiaAndrieu,BabacarSeck,CyrilleStrugarek, Anes Dallagi, Pierre Girardeau. Their contributions are gratefully acknowledged. We hope this book can help future students to get familiar with the field. The book comprises five parts and two appendices. The first part provides an introduction to the main issues discussed later in the book, plus a chapter on the stochasticgradientalgorithmwhichaddressestheso-calledopen-loopoptimization problems in which on-line information is absent. Part Two introduces the theo- reticaltoolsandnotionsneededtomathematicallyformalizeandhandlethetopicof information which plays a major part in stochastic dynamic problems. It also dis- cussesoptimalityconditionsforsuchproblems,suchasthedynamicprogramming equation, and a variational approach which will lead to numerical methods in the next part. Part Three isprecisely about discretization and numerical approaches.A simple benchmark illustrates the contribution of the particle method proposed in Chap.7.ConvergenceissuesofallthosetechniquesarediscussedinPartFour.Part Five is devoted to more advanced topics that are more or less out of reach of the numerical methods previously discussed, namely multi-agent problems and the presence of the so-called dual effect. Appendix A recalls some basic facts on v vi Preface Optimization, while Appendix B provides a brief description of essential tools of Probability theory. Although the four authors share the responsibility of the whole book contents, the reader may be interested in knowing who was the primary writer of each chapter. Here is the list: Pierre Carpentier: Chapter 2, Appendix A; Jean-Philippe Chancelier: Chapter 8, Appendix B; Guy Cohen: Notation (in preliminary pages), Chapters 1, 5, 6, 7; Michel De Lara: Chapters 3, 4, 9, 10. Contents Part I Preliminaries 1 Issues and Problems in Decision Making Under Uncertainty. . . . . 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Decision Making as Constrained Optimization Problems. . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Facing Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 The Role of Information in the Presence of Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Problem Formulations and Information Structures. . . . . . . . . . 7 1.2.1 Stochastic Optimal Control (SOC). . . . . . . . . . . . . . . 7 1.2.2 Stochastic Programming (SP) . . . . . . . . . . . . . . . . . . 10 1.3 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 A Basic Example in Static Information . . . . . . . . . . . 12 1.3.2 The Communication Channel . . . . . . . . . . . . . . . . . . 13 1.3.3 Witsenhausen’s Celebrated Counterexample . . . . . . . . 16 1.4 Discretization Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Problems with Static Information Structure (SIS). . . . . 17 1.4.2 Working Out an Example. . . . . . . . . . . . . . . . . . . . . 18 1.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 Open-Loop Control: The Stochastic Gradient Method . . . . . . . . . 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Open-Loop Optimization Problems . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Sample Approximation in Stochastic Optimization. . . . 30 2.3 Stochastic Gradient Method Overview. . . . . . . . . . . . . . . . . . 31 2.3.1 Stochastic Gradient Algorithm. . . . . . . . . . . . . . . . . . 31 2.3.2 Connection with Stochastic Approximation. . . . . . . . . 34 vii viii Contents 2.4 Convergence Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.1 Auxiliary Problem Principle . . . . . . . . . . . . . . . . . . . 40 2.4.2 Stochastic Auxiliary Problem Principle Algorithm. . . . 41 2.4.3 Convergence Theorem. . . . . . . . . . . . . . . . . . . . . . . 42 2.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.5 Efficiency and Averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.5.1 Stochastic Newton Algorithm . . . . . . . . . . . . . . . . . . 45 2.5.2 Stochastic Gradient Algorithm with Averaging . . . . . . 48 2.5.3 Sample Average Approximation . . . . . . . . . . . . . . . . 49 2.6 Practical Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.6.1 Stopping Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6.2 Tuning the Standard Algorithm. . . . . . . . . . . . . . . . . 51 2.6.3 Robustness of the Averaged Algorithm . . . . . . . . . . . 54 2.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.8 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.8.1 Robbins-Siegmund Theorem. . . . . . . . . . . . . . . . . . . 57 2.8.2 A Technical Lemma . . . . . . . . . . . . . . . . . . . . . . . . 58 2.8.3 Proof of Theorem 2.17. . . . . . . . . . . . . . . . . . . . . . . 59 Part II Decision Under Uncertainty and the Role of Information 3 Tools for Information Handling. . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Basic Facts on Binary Relations and on Lattices. . . . . . . . . . . 66 3.2.1 Binary Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3 Partitions and Fields Approach. . . . . . . . . . . . . . . . . . . . . . . 71 3.3.1 The Lattice of Partitions/Equivalence Relations. . . . . . 71 3.3.2 The Lattice of π-Fields (Partition Fields) . . . . . . . . . . 74 3.3.3 The Lattice of σ-Fields. . . . . . . . . . . . . . . . . . . . . . . 78 3.4 Mapping Measurability Approach. . . . . . . . . . . . . . . . . . . . . 80 3.4.1 Measurability of Mappings w.r.t. Partitions. . . . . . . . . 80 3.4.2 Measurability of Mappings w.r.t. π-Fields . . . . . . . . . 81 3.4.3 Measurability of Mappings w.r.t. σ-Fields . . . . . . . . . 86 3.5 Conditional Expectation and Optimization . . . . . . . . . . . . . . . 87 3.5.1 Conditional Expectation w.r.t. a Partition . . . . . . . . . . 87 3.5.2 Interchanging Minimization and Conditional Expectation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.5.3 Conditional Expectation as an Optimal Value of a Minimization Problem. . . . . . . . . . . . . . . . . . . . 92 3.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Contents ix 4 Information and Stochastic Optimization Problems . . . . . . . . . . . 95 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 The Witsenhausen Counterexample. . . . . . . . . . . . . . . . . . . . 96 4.2.1 A Simple Linear Quadratic Control Problem. . . . . . . . 96 4.2.2 Problem Transformation Exploiting Sequentiality . . . . 98 4.2.3 The Dual Effect of the Initial Decision . . . . . . . . . . . 100 4.3 Other Information Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.1 Full Noise Observation . . . . . . . . . . . . . . . . . . . . . . 101 4.3.2 Classical Information Pattern. . . . . . . . . . . . . . . . . . . 102 4.3.3 Markovian Information Pattern . . . . . . . . . . . . . . . . . 103 4.3.4 Past Control Observation . . . . . . . . . . . . . . . . . . . . . 103 4.3.5 The Witsenhausen Counterexample . . . . . . . . . . . . . . 104 4.4 State Model and Dynamic Programming (DP) . . . . . . . . . . . . 104 4.4.1 State Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.4.2 State Feedbacks, Decisions, State and Control Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4.3 Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.4.4 Stochastic Optimization Problem. . . . . . . . . . . . . . . . 109 4.4.5 Stochastic Dynamic Programming. . . . . . . . . . . . . . . 109 4.5 Sequential Optimization Problems. . . . . . . . . . . . . . . . . . . . . 111 4.5.1 Sequential Optimal Stochastic Control Problem. . . . . . 112 4.5.2 Optimal Stochastic Control Problem in Standard Form . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.5.3 What Is a State? . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.5.4 Dynamic Programming Equations . . . . . . . . . . . . . . . 119 4.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5 Optimality Conditions for Stochastic Optimal Control (SOC) Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2 SOC Problems, Formulation and Assumptions . . . . . . . . . . . . 134 5.2.1 Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2.2 Cost Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2.3 Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.4 The Stochastic Programming (SP) Version . . . . . . . . . 137 5.3 Optimality Conditions for the SP Formulation . . . . . . . . . . . . 138 5.3.1 Projection on the Feasible Set. . . . . . . . . . . . . . . . . . 138 5.3.2 Stationary Conditions. . . . . . . . . . . . . . . . . . . . . . . . 140 5.4 Optimality Conditions for the SOC Formulation. . . . . . . . . . . 141 5.4.1 Computation of the Cost Gradient. . . . . . . . . . . . . . . 141 5.4.2 Optimality Conditions with Non-adapted Co-States . . . 144 5.4.3 Optimality Conditions with Adapted Co-States . . . . . . 145

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.