ebook img

Stochastic Modelling of Reaction-Diffusion Processes PDF

321 Pages·2020·14.276 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Stochastic Modelling of Reaction-Diffusion Processes

StochasticModellingofReaction–DiffusionProcesses Thispracticalintroductiontostochasticreaction–diffusionmodellingisbasedon coursestaughtattheUniversityofOxford.Theauthorsdiscusstheessenceof mathematicalmethodsthatappear(underdifferentnames)inanumberof interdisciplinaryscientificfieldsbridgingmathematicsandcomputationswithbiology andchemistry. Thebookcanbeusedbothforself-studyandasasupportingtextforadvanced undergraduateorbeginninggraduate-levelcoursesinappliedmathematics.New mathematicalapproachesareexplainedusingsimpleexamplesofbiologicalmodels, whichrangeinsizefromsimulationsofsmallbiomoleculestogroupsofanimals.The bookstartswithstochasticmodellingofchemicalreactions,introducingstochastic simulationalgorithmsandmathematicalmethodsforanalysisofstochasticmodels. Differentstochasticspatio-temporalmodelsarethenstudied,includingmodelsof diffusionandstochasticreaction–diffusionmodelling.Themethodscoveredinclude moleculardynamics,Browniandynamics,velocity-jumpprocessesand compartment-based(lattice-based)models. radek erbanisProfessorofMathematicsattheUniversityofOxford,aFellowof MertonCollege,Oxford,andaRoyalSocietyUniversityResearchFellow. s. jonathan chapmanisProfessorofMathematicsanditsApplicationsatthe UniversityofOxford,andaFellowofMansfieldCollege,Oxford. CambridgeTextsinAppliedMathematics All titles listed below can be obtained from good booksellers or from Cambridge UniversityPress.Foracompleteserieslisting,visitwww.cambridge.org/mathematics. Flow,DeformationandFracture G.I.BARENBLATT GeometricandTopologicalInference JEAN-DANIELBOISSONNAT,FRÉDÉRICCHAZAL&MARIETTEYVINEC TheMathematicsofSignalProcessing STEVENB.DAMELIN&WILLARDMILLER,JR IntroductiontoMagnetohydrodynamics(2ndEdition) P.A.DAVIDSON AnIntroductiontoStochasticDynamics JINQIAODUAN Singularities:Formation,StructureandPropagation J.EGGERS&M.A.FONTELOS Microhydrodynamics,BrownianMotionandComplexFluids MICHAELD.GRAHAM DiscreteSystemsandIntegrability J.HIETARINTA,N.JOSHI&F.W.NIJHOFF AnIntroductiontoPolynomialandSemi-AlgebraicOptimization JEANBERNARDLASSERRE AnIntroductiontoComputationalStochasticPDEs GABRIELJ.LORD,CATHERINEE.POWELL&TONYSHARDLOW Self-ExcitingFluidDynamos KEITHMOFFATT&EMMANUELDORMY NumericalLinearAlgebra HOLGERWENDLAND Stochastic Modelling of ff Reaction–Di usion Processes RADEK ERBAN UniversityofOxford S. JONATHAN CHAPMAN UniversityofOxford UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108498128 DOI:10.1017/9781108628389 (cid:2)c RadekErbanandS.JonathanChapman2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedinSingaporebyMarkonoPrintMediaPteLtd AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Erban,Radek,author.|Chapman,Jon,author. Title:Stochasticmodellingofreaction–diffusionprocesses/RadekErban(Universityof Oxford),S.JonathanChapman(UniversityofOxford). Description:Cambridge;NewYork,NY:CambridgeUniversityPress,[2020]|Series: Cambridgetextsinappliedmathematics|Includesbibliographicalreferencesandindex. Identifiers:LCCN2019019436|ISBN9781108498128(alk.paper) Subjects:LCSH:Stochasticprocesses–Textbooks.|Reaction–diffusion equations–Textbooks. Classification:LCCQA274.E732020|DDC515/.3534–dc23 LCrecordavailableathttps://lccn.loc.gov/2019019436 ISBN978-1-108-49812-8Hardback ISBN978-1-108-70300-0Paperback Additionalresourcesforthispublicationatwww.cambridge.org/9781108498128 CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix 1 StochasticSimulationofChemicalReactions 1 1.1 StochasticSimulationofDegradation 1 1.2 StochasticSimulationofProductionandDegradation 8 1.3 Higher-OrderChemicalReactions 14 1.4 StochasticSimulationofDimerization 16 1.5 GillespieAlgorithm 25 Exercises 29 2 DeterministicversusStochasticModelling 33 2.1 SystemswithMultipleFavourableStates 34 2.2 Self-InducedStochasticResonance 37 2.3 StochasticFocusing 42 2.4 DesigningStochasticChemicalSystems 49 Exercises 55 3 StochasticDifferentialEquations 59 3.1 AComputationalDefinitionofSDE 60 3.2 ExamplesofSDEs 62 3.3 Fokker–PlanckEquation 66 3.4 BoundaryConditionsontheFokker–PlanckEquation 72 3.5 KolmogorovBackwardEquation 75 3.6 SDEswithMultipleFavourableStates 76 3.7 ChemicalFokker–PlanckEquation 80 3.8 AnalysisofProblemfromSection2.1 85 3.9 AnalysisofProblemfromSection2.2 88 Exercises 92 4 Diffusion 95 4.1 DiffusionModelledbySDEs 96 4.2 Compartment-BasedApproachtoDiffusion 100 v vi Contents 4.3 DiffusionandVelocity-JumpProcesses 107 4.4 DiffusiontoAdsorbingSurfaces 117 4.5 ReactiveBoundaryConditions 125 4.6 Einstein–SmoluchowskiRelation 130 Exercises 133 5 EfficientStochasticModellingofChemicalReactions 137 5.1 ASimpleMultiscaleProblem 139 5.2 MultiscaleSSAwithPartialEquilibriumAssumption 142 5.3 MultiscaleModelling 148 5.4 First-ReactionSSA 151 5.5 ExactEfficientSSAs 152 Exercises 157 6 StochasticReaction–DiffusionModels 160 6.1 ACompartment-BasedReaction–DiffusionAlgorithm 161 6.2 A Reaction–Diffusion SSA Based on the SDEModelofDiffusion 164 6.3 Compartment-BasedSSAforHigher-Order Reactions 166 6.4 AChoiceofCompartmentSizeh 169 6.5 Molecular-Based Approaches for Second-Order Reactions 174 6.6 ReactionRadiusandReactionProbability 177 6.7 ModellingReversibleReactions 183 6.8 BiologicalPatternFormation 186 Exercises 190 7 SSAsforReaction–Diffusion–AdvectionProcesses 192 7.1 SSAsforDiffusion–AdvectionProcesses 193 7.2 Reaction–Diffusion–AdvectionSSAs 196 7.3 BacterialChemotaxis 199 7.4 CollectiveBehaviourofLocusts 206 7.5 IonsandIonChannels 211 7.6 Metropolis–HastingsAlgorithm 216 Exercises 222 8 MicroscopicModelsofBrownianMotion 226 8.1 One-ParticleSolventModel 227 8.2 GeneralizedLangevinEquation 233 8.3 SolventasHarmonicOscillators 242 8.4 SolventasPointsCollidingwiththeDiffusingParticle 246 8.5 ForcesBetweenAtomsandMolecules 252 Contents vii 8.6 MolecularDynamics 257 Exercises 265 9 MultiscaleandMulti-ResolutionMethods 268 9.1 CouplingSDE-BasedandCompartment-BasedModels 270 9.2 CouplingMolecularDynamicswithLangevin Dynamics 278 9.3 Multi-ResolutionMolecularandBrownianDynamics 285 Exercises 289 Appendix 293 AppendixA DeterministicModellingofChemicalReactions 293 AppendixB DiscreteProbabilityDistributions 295 AppendixC ContinuousProbabilityDistributions 296 References 297 Index 305 Preface In this textbook, we provide an introduction to stochastic modelling of reaction–diffusion processes presented in a way that is aimed at advanced undergraduateorbeginninggraduatestudents.Weassumethatthereaderhas abasicunderstandingofdifferentialequations,butwedonotassumeanyprior knowledgeofadvancedprobabilitytheoryorstochasticanalysis.Weintroduce and explain some common stochastic simulation methods using illustrative examples. At the same time we present some basic theoretical tools that are usedtoanalysethemethods.Newtheoryisintroducedwheneveritprovidesa better insight into a particular example. In our experience, such an example- based approach is more accessible to students than a theory-first approach. To make this textbook self-contained, we also summarize some basic facts aboutdeterministicmodelling(basedondifferentialequations)andprobability distributionsintheAppendix. The material in this textbook has been developed (and used in teaching students in Oxford) over a period of 12 years. It started as a short 30- page-long set of lecture notes on stochastic modelling of reaction–diffusion processeswrittenbyErban,ChapmanandMaini(Erbanetal.,2007),wherewe explainedsimplealgorithmsonsimple(linear)models.Manyimportanttopics hadtobeomittedduetolackofspace.Overthenext12years,wesignificantly extendedthatmaterialtothepresentform.Theresultingbookcoversstochas- tic models of chemical reactions, stochastic differential equations (SDEs), andstochasticmodelsofdiffusion,reaction–diffusionandreaction–diffusion– advection processes. We explain how stochastic models can be derived from moredetailedmoleculardynamicsapproachesandprovideanintroductionto methods designed for modelling processes on multiple spatial and temporal scales.Weintroducemethodsforanalysisofstochasticmodels(forexample, the chemical master equation and the Fokker–Planck equation) and efficient ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.