Stochastic modelling and optimization with applications to actuarial models MENGDI LI, BSc. Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy July2012 Abstract This thesis is devoted to Ruin Theory which sometimes referred to the collective ruin theory. In Actuarial Science, one of the most important problems is to determine the finitetimeorinfinitetimeruinprobabilityoftheriskprocessinaninsurancecompany. To treat a realistic economic situation, the random interest factor should be taken into account. Wefirstdefinethemodelwiththeinterestrateandapproximatetheruinprobabilityfor themodelbytheBrownianmotionanddevelopseveralnumericalmethodstoevaluate theruinprobability. Then we construct several models which incorporate possible investment strategies. Weestimatetheparametersfromthesimulateddata. Thenwefindtheoptimalinvest- mentstrategywithagivenupperboundontheruinprobability. Finally we study the ruin probability for our class of models with the Heavy- Tailed claimsizedistribution. i Acknowledgements Foremost, I would like to express my sincere gratitude to my supervisor, Sergy Utev for the continuous support of my Ph.D study and research, for his patience, motiva- tion, enthusiasm, and wisdom. His invaluable guidance helped me in all the time of researchandwritingofthisthesis. I would like to thank all those whose suggestions, questions, problems, and solutions have contributed to this thesis. In particular, I want to thank Dr. Neil Butler for his discussionswhenIstartmyPh.Dwork. Lastbutnottheleast,Iwouldliketothankmymother,LifengWangforgivingbirthto meatthefirstplaceandsupportingmespirituallythroughoutmylife. Iowehermuch morethanIcouldeverrepay. ii Contents contents 1 1 Introduction 1 1.1 IntroductionandLiteratureReview . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 RuinProbability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 OptimalinvestmentStrategyandGambling . . . . . . . . . . . . 9 1.2 Aimsandobjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 StructureoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 TheRuinProbabilitywithBrownianMotion 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 TheModelandAssumptions . . . . . . . . . . . . . . . . . . . . . . . . . 13 Ψ 2.2.1 Approachestocalculating . . . . . . . . . . . . . . . . . . . . . 14 n 2.3 Firstapproach: Approximatingthesumofcorrelatedlognormalrandom variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Secondapproach: ApproximationbyBrownianMotion . . . . . . . . . . 17 2.5 IntegralofExponentialBrownianmotion . . . . . . . . . . . . . . . . . . 18 µ 2.5.1 TheLawof A atfixedtimes . . . . . . . . . . . . . . . . . . . . . 19 t 2.5.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.4 Numericalevaluationofthestochasticintegral . . . . . . . . . . . 22 2.6 ApproximationoftheIntegral . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6.1 FirstApproximation: Classicalapproach . . . . . . . . . . . . . . 24 2.6.2 SecondApproximation: viaTaylorFormula . . . . . . . . . . . . 24 iii 2.6.3 ThirdApproximation: ItôFormula . . . . . . . . . . . . . . . . . . 26 2.7 SimulationandComparison . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7.1 BasicIdeaandMethod . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7.2 Comparisonofmeanandvariancefordifferentapproximations 30 2.7.3 ComparisonofSimulatedRuinProbabilities . . . . . . . . . . . . 31 2.8 TheAdvancedModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.8.1 ConstructionofModel . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Optimalconstantfractionpoliciesundertheruinprobabilityconstraints 39 3.1 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 TheConstructionofModel. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Estimation: LikelihoodFunctions . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 Model1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.2 Model2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.3 Model3-BinomialModel . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.4 Model4-Modelwithinvestmentstrategywithconstantclaimsize 46 3.3.5 Model5-Modelwithinvestmentstrategywithexponentialclaims 47 3.3.6 Model6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 Estimation of the parameters: Numerical Analysis with Stochastic Sim- ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.1 Howtochoose A inthesimulation . . . . . . . . . . . . . . . . . 53 0 3.4.2 Theresultsofestimation . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.3 Discussion: Analysisofestimation . . . . . . . . . . . . . . . . . . 60 3.5 Optimalinvestmentpolicy . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.1 Simulationprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6 Approximationoftheruinprobability . . . . . . . . . . . . . . . . . . . . 72 3.6.1 ApproximationtoModel1 . . . . . . . . . . . . . . . . . . . . . . 72 3.6.2 ApproximationtoModel4 . . . . . . . . . . . . . . . . . . . . . . 74 3.6.3 ApproximationtoModel5 . . . . . . . . . . . . . . . . . . . . . . 78 3.6.4 ApproximationtoModel6 . . . . . . . . . . . . . . . . . . . . . . 80 iv 3.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4 RuinprobabilitywithHeavy-Tailedclaimamounts 84 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3 TheSimpleModelwithHeavy-TailedClaims . . . . . . . . . . . . . . . . 88 4.4 SumofTwoCompoundPoissonProcesses . . . . . . . . . . . . . . . . . 104 4.4.1 Constructionofnewmodel . . . . . . . . . . . . . . . . . . . . . . 104 4.4.2 ModelExpression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.4.3 MomentsofMGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5 Concludingandfurtherwork 111 v CHAPTER 1 Introduction 1.1 Introduction and Literature Review 1.1.1 RuinProbability Ruintheory,sometimescalledascollectiveruintheory,isthebranchofactuarialscience thatstudiesaninsurer’sinsolvencybasedonmathematicalmodellingoftheinsurer’s policy. In Actuarial Science, one of the most important problems is determining the finitetimeorultimateruinprobabilityoftheriskprocessinaninsuranceorinvestment company, for independent and dependent claims, see e.g. Cheng and Pai (2003, for independent claims); Dufresne and Gerber (1989, for general methods); Embrechts et al (1997, for modelling); Albrecher (1998); Schmidli (2008, for stochastic techniques) andLavenetal. (2005,fordependentclaims). Probabilityofruinistheprobabilitythatliabilitieswillexceedassetsonapresentvalue basisatagivenfuturevaluationdate,resultinginruin. Itisconsideredasthemeasure ofriskofinsolvencyforaninsurancecompany. Hencetheruinprobabilityisacrucial parameterforassessingtheriskexposureofcompanies. The theoretical foundation of ruin theory/risk probability, known as the classical risk model inthe literature, isintroduced in1903 by Lundberg(1934). The modelis stated below. LetU(u,t) > 0beaclassicalcontinuoustimesurplusprocess,then ∑Nt U(u,t) = u+ct− X, i i=1 1 where • uistheinsurer’sinitialsurplus, • cistheinsurer’srateofpremiumincomeperunittime, • N isthenumberofclaimsinthetimeinterval(0,t]andhasaPoissondistribution t withmeanλtand, • {X } is a sequence of independent and identically distributed (i.i.d.) random i variablesrepresentingtheindividualclaimamount. InLundberg’smodel, thecompanydoesnothaveanyinvestmentreturnonitsassets. RuinoccurswhenU(t)fallsbelow0,thismayequatetoinsolvency. Theprobabilityof ruinis Ψ(u) = P[U(t) < 0 forsomet 0 < t < ∞]. Lundbergestablishesanexplicitformulafortheruinprobabilitywhenclaimsizesare exponentiallydistributedandanothermainresultheobtainedisknownasLundberg’s inequality (1930), which gives an upper bound on the probability of ultimate ruin. It statesthat Ψ(u) ≤ exp(−Ru), where the parameter R known as the adjustment coefficient. Assenter and Nielsen (1995)getasimilarresultwhenthepremiumrateisarightcontinuousfunctionofthe reserve. Taylor(1976)derivesanimprovementtotheaboveinequalityfunction. Later,thecorrespondingideasaredevelopedbyThorin(1973). Hestudiestheclassical model where claim size has gamma distribution. Grandell (1991) derives Lundberg inequalitiesforthefinitetimehorizonruinprobabilityintheCox-Ingersoll-RossModel (Ross,2000). Anothermethodusestheconnectionbetweentheprobabilityofruinand the maximal aggregate random variable which is suggested by Goovaters and Vylder (1984a,1984b). The classical model is widely studied and developed in the actuarial literature. An- derson (1957) extends the model in which claims occur as a general renewal process. 2 In this new model, the inter-claim times form a sequence of independent and identi- cally distributed (i.i.d.) random variables with common distribution function and the claim sizes are also i.i.d. He obtains an equation for the surviving probability and the equationhasanexactsolutionwhenclaimssizesareexponentiallydistributed. Inad- dition,anexplicitresultfortheultimateruinprobabilityisderivedforaparticularcase. Then, much of the study of this model has concentrated on numerical procedures for calculatingruinprobabilities(forexample,Dickson,1998). In the classical model, when the claim size is exponentially distributed (or closely re- lated to it), simple analytic results for the probability of ruin in infinite time exist. For moregeneralclaimamountdistributions,e.g. heavy-tailed,theLaplacetransformtech- nique does not work and one needs some approximations. There are some common approximations. Cramer-Lundberg Approximation (Grandell, 1991) yields quite accurate results, how- ever it requires the adjustment coefficient to exist. Vylder (1996) derives Exponential Approximation. The Beekman-Bowers approximation (Burnecki, et al. 2004) gives the betterresults,itevenbecomesanexactformulainsomecases. The drawback of the above methods is that they ignore the interest rate of surplus of insurance company. In more recent developments, the ruin probability of a risk process with interest rate has received considerable attention. Brekelmans and Wae- genaere (2002) split the time horizon into small intervals of equal length and consider ruin probability in the case when the premium income (reserve) in a time interval is received at the beginning of that interval, instead of assuming claims are paid at the end of an interval, and derive lower and upper bounds of the ruin probability. The combined results of two bounds converge to the actual ruin probability with the high accuracy. 3 Recently, research has focused on calculating the ruin probability modelled when a stochastic interest rate is used. Cai (2002) develops two models. The first model as- sumes that the interest rates form an i.i.d. sequence. The second model assumes that theinterestratesformanautoregressivetimeseriesmodel. HeobtainsLundbergtype inequalitiesfortheruinprobability. YangandZhang(2006)usemartingaletechniques (Hall and Heyde, 1980) to prove the convergence of the discounted surplus process and to obtain an expression for the ruin probability of a discrete time risk model with randominterestrate. MarkovModel Paulsen(2008)showsthatsince1998,therehasbeenthreeparticularnewdevelopments inrisktheory. Theseare • Theemphasisonheavytailedclaimdistribution; • TheapplicationofGerber-Shiupenaltyfunction; • By control of the risky investments and possibly reinsurance, the possibility to influencetheruinprobability. He also introduces the risk process by means of two basic processes: A basic process P with P = 0; and a return on investment generating process V with V = 0. By 0 0 assumption, PandV havetheforms ∑Nt P = pt+σ W − S, V = vt+σ W . t P P,t i t V V,t i=1 HereW andW areBrownianmotion, N isaPoissonprocesswithrateλandthe{S } P V i arepositivei.i.d. randomvariableswithdistributionfunction F. Moreover,W ,W , N P V and {S } areallindependent, p isthepremiumrate. W isthesmallclaim. Thereturn i P on process V is the standard Black Scholes return process. Under these assumptions, Y isastronghomogeneousMarkovProcessanddefinedas t (cid:90) t Y = Y +P + YdV. t 0 t j j 0 4
Description: