Stochastic Modeling Medical Image for Analysis Stochastic Modeling Medical Image for Analysis Ayman El-Baz Georgy Gimel’farb Jasjit S. Suri Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20150814 International Standard Book Number-13: 978-1-4665-9908-6 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ix Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 1. MedicalImagingModalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 MagneticResonanceImaging . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 StructuralMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 DynamicContrast-EnhancedMRI . . . . . . . . . . . . . . . . . 4 1.1.3 DiffusionMRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.4 FunctionalMRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.5 MagneticResonanceAngiography . . . . . . . . . . . . . . . . 7 1.1.6 TaggedMRI,MRS,andPWI . . . . . . . . . . . . . . . . . . . . . 8 1.1.7 MRI:ProsandCons . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 ComputedTomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 StructuralCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 1.2.2 Contrast–EnhancedCT . . . . . . . . . . . . . . . . . . . . . . . . .10 1.2.3 CTAngiography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.2.4 Microtomography. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.2.5 CTImaging:ProsandCons. . . . . . . . . . . . . . . . . . . . . .12 1.3 UltrasoundImaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 1.4 NuclearMedicalImaging(NuclideImaging) . . . . . . . . . . . . . .17 1.5 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . . .21 2. FromImagestoGraphicalModels . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1 BasicsofImageModeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 2.1.1 DigitalImages,Videos,andRegionMaps . . . . . . . . . . .26 2.1.2 ImageHomogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . .28 2.1.3 ProbabilityModelsofImagesandRegionMaps . . . . . .29 2.1.4 OptimalStatisticalInference . . . . . . . . . . . . . . . . . . . . .31 2.1.5 UnessentialImageDeviations . . . . . . . . . . . . . . . . . . . .32 2.2 Pixel/VoxelInteractionsandNeighborhoods . . . . . . . . . . . . . .35 2.2.1 MarkovRandomField(MRF) . . . . . . . . . . . . . . . . . . . .37 2.2.2 BasicStochasticModelingScenarios . . . . . . . . . . . . . . .40 2.2.3 InvariancetoUnessentialDeviations. . . . . . . . . . . . . . .41 2.2.3.1 MultipleSecond-andHigher-Order Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . .42 2.2.3.2 Contrast/Offset-InvariantMGRFs . . . . . . . . . .43 2.3 ExponentialFamiliesofProbabilityDistributions . . . . . . . . . . .44 2.3.1 LearninganExponentialFamily . . . . . . . . . . . . . . . . . .48 v vi Contents 2.4 AppearanceandShapeModeling . . . . . . . . . . . . . . . . . . . . . . .50 2.5 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . . .55 2.5.1 ShapeModelingwithDeformableModels. . . . . . . . . . .58 3. IRFModels:EstimatingMarginals . . . . . . . . . . . . . . . . . . . . . . . 63 3.1 BasicIndependentRandomFields . . . . . . . . . . . . . . . . . . . . . .63 3.2 SupervisedandUnsupervisedLearning . . . . . . . . . . . . . . . . . .65 3.2.1 ParametricVersusNonparametricModels. . . . . . . . . . .68 3.3 Expectation-MaximizationtoIdentifyMixtures . . . . . . . . . . . .68 3.4 GaussianLinearCombinationsVersusMixtures . . . . . . . . . . . .71 3.4.1 SequentialInitializationofanLCG/LCDGModel . . . . .73 3.4.2 RefinementofanLCG/LCDGModel . . . . . . . . . . . . . .75 3.4.3 ModelPartitioningbyAllocatingSubordinateTerms. . .77 3.5 Pseudo-MarginalsinMedicalImageAnalysis. . . . . . . . . . . . . .78 3.5.1 SyntheticCheckerboardImages . . . . . . . . . . . . . . . . . .79 3.5.2 ModelingLungsonSpiralLDCTChestScans . . . . . . . .83 3.5.3 ModelingBloodVesselsonTOF-MRAImages . . . . . . . .86 3.5.4 ModelingBrainTissuesonMRI. . . . . . . . . . . . . . . . . . .89 3.5.5 ModelingBrainBloodVesselsonPC-MRAImages . . . .90 3.5.6 AortaModelingonCTAImages . . . . . . . . . . . . . . . . . .91 3.6 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . . .94 4. Markov-GibbsRandomFieldModels:EstimatingSignal Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.1 GenericKth-OrderMGRFs . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 4.1.1 MCMCSamplingofanMGRF . . . . . . . . . . . . . . . . . .100 4.1.2 GibbsandMetropolis-HastingsSamplers . . . . . . . . . .101 4.2 CommonSecond-andHigher-OrderMGRFs . . . . . . . . . . . . .104 4.2.1 Nearest-NeighborMGRFs. . . . . . . . . . . . . . . . . . . . . .105 4.2.2 GaussianandGauss-MarkovRandomFields. . . . . . . .111 4.2.3 ModelswithMultiplePairwiseInteractions. . . . . . . . .113 4.2.4 Higher-OrderMGRFs . . . . . . . . . . . . . . . . . . . . . . . . .117 4.3 LearningSecond-OrderInteractionStructures . . . . . . . . . . . .119 4.4 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . .123 4.4.1 ImageFiltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 4.4.2 ImageSampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 4.4.3 ModelLearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 5. Applications:ImageAlignment. . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.1 GeneralImageAlignmentFrameworks . . . . . . . . . . . . . . . . .129 5.2 GlobalAlignmentbyLearninganAppearancePrior. . . . . . . .131 5.3 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . .134 6. SegmentingMultimodalImages . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1 JointMGRFofImagesandRegionMaps. . . . . . . . . . . . . . . . .144 Contents vii 6.2 ExperimentalValidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 6.2.1 SyntheticData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 6.2.2 LungLDCTImages . . . . . . . . . . . . . . . . . . . . . . . . . .150 6.2.3 BloodVesselsinTOF-MRAImages . . . . . . . . . . . . . . .154 6.2.4 BloodVesselsinPC-MRAImages . . . . . . . . . . . . . . . .158 6.2.5 AortaBloodVesselsinCTAImages. . . . . . . . . . . . . . .161 6.2.6 BrainMRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 6.3 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . .167 6.4 PerformanceEvaluationandValidation . . . . . . . . . . . . . . . . .169 7. SegmentingwithDeformableModels . . . . . . . . . . . . . . . . . . . . . 173 7.1 Appearance-BasedSegmentation . . . . . . . . . . . . . . . . . . . . . .173 7.1.1 ExperimentalValidation . . . . . . . . . . . . . . . . . . . . . . .175 7.1.1.1 Starfish . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 7.1.1.2 Hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 7.1.1.3 Bones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 7.1.1.4 VariousOtherObjects . . . . . . . . . . . . . . . . . .178 7.2 ShapeandAppearance-BasedSegmentation. . . . . . . . . . . . . .183 7.2.1 LearningaShapeModel . . . . . . . . . . . . . . . . . . . . . . .185 7.2.2 ExperimentalValidation . . . . . . . . . . . . . . . . . . . . . . .185 7.2.2.1 Starfish . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 7.2.2.2 Kidney . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 7.3 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . .193 8. SegmentingwithShapeandAppearancePriors . . . . . . . . . . . . . 197 8.1 LearningaShapePrior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 8.2 EvolvingaDeformableBoundary. . . . . . . . . . . . . . . . . . . . . .200 8.3 ExperimentalValidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 8.4 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . .203 9. CineCardiacMRIAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 9.1 SegmentingMyocardialBorders. . . . . . . . . . . . . . . . . . . . . . .210 9.2 WallThicknessAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 9.2.1 GGMRF-BasedContinuityAnalysis . . . . . . . . . . . . . .215 9.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217 9.3.1 LVWallCorrespondences . . . . . . . . . . . . . . . . . . . . . .218 9.3.2 LVWallSegmentation. . . . . . . . . . . . . . . . . . . . . . . . .219 9.3.3 WallThickening . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 9.4 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . .227 10. SizingCardiacPathologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 10.1 LVWallSegmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 10.2 IdentifyingthePathologicalTissue . . . . . . . . . . . . . . . . . . . . .241 10.3 QuantifyingtheMyocardialViability . . . . . . . . . . . . . . . . . . .242 10.4 PerformanceEvaluationandValidation . . . . . . . . . . . . . . . . .243 viii Contents 10.4.1 SegmentationAccuracy . . . . . . . . . . . . . . . . . . . . . . .244 10.4.2 TransmuralExtentAccuracy . . . . . . . . . . . . . . . . . . . .244 10.4.3 PathologyDelineationAccuracy . . . . . . . . . . . . . . . . .247 10.4.4 ClinicallyMeaningfulEffects . . . . . . . . . . . . . . . . . . .249 10.5 BibliographicandHistoricalNotes . . . . . . . . . . . . . . . . . . . . .253 10.5.1 AppearanceandShapePriors . . . . . . . . . . . . . . . . . . .253 10.5.2 MyocardialViabilityMetrics . . . . . . . . . . . . . . . . . . . .254 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277